# Properties

 Label 1520.2.a.l Level $1520$ Weight $2$ Character orbit 1520.a Self dual yes Analytic conductor $12.137$ Analytic rank $1$ Dimension $2$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1520,2,Mod(1,1520)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1520, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1520.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1520 = 2^{4} \cdot 5 \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1520.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$12.1372611072$$ Analytic rank: $$1$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - 3$$ x^2 - 3 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 380) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \sqrt{3}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (\beta - 1) q^{3} + q^{5} - 2 q^{7} + ( - 2 \beta + 1) q^{9}+O(q^{10})$$ q + (b - 1) * q^3 + q^5 - 2 * q^7 + (-2*b + 1) * q^9 $$q + (\beta - 1) q^{3} + q^{5} - 2 q^{7} + ( - 2 \beta + 1) q^{9} - 2 \beta q^{11} + (\beta - 1) q^{13} + (\beta - 1) q^{15} + 2 \beta q^{17} - q^{19} + ( - 2 \beta + 2) q^{21} - 2 \beta q^{23} + q^{25} - 4 q^{27} - 2 \beta q^{29} + ( - 2 \beta - 2) q^{31} + (2 \beta - 6) q^{33} - 2 q^{35} + ( - \beta + 5) q^{37} + ( - 2 \beta + 4) q^{39} - 6 q^{41} + ( - 4 \beta - 2) q^{43} + ( - 2 \beta + 1) q^{45} + (4 \beta - 6) q^{47} - 3 q^{49} + ( - 2 \beta + 6) q^{51} + (\beta - 9) q^{53} - 2 \beta q^{55} + ( - \beta + 1) q^{57} + 4 \beta q^{59} + ( - 6 \beta + 2) q^{61} + (4 \beta - 2) q^{63} + (\beta - 1) q^{65} + (\beta - 5) q^{67} + (2 \beta - 6) q^{69} + (2 \beta + 6) q^{71} + ( - 2 \beta - 4) q^{73} + (\beta - 1) q^{75} + 4 \beta q^{77} + (4 \beta + 4) q^{79} + (2 \beta + 1) q^{81} + 2 \beta q^{83} + 2 \beta q^{85} + (2 \beta - 6) q^{87} + (2 \beta - 12) q^{89} + ( - 2 \beta + 2) q^{91} - 4 q^{93} - q^{95} + (9 \beta - 1) q^{97} + ( - 2 \beta + 12) q^{99} +O(q^{100})$$ q + (b - 1) * q^3 + q^5 - 2 * q^7 + (-2*b + 1) * q^9 - 2*b * q^11 + (b - 1) * q^13 + (b - 1) * q^15 + 2*b * q^17 - q^19 + (-2*b + 2) * q^21 - 2*b * q^23 + q^25 - 4 * q^27 - 2*b * q^29 + (-2*b - 2) * q^31 + (2*b - 6) * q^33 - 2 * q^35 + (-b + 5) * q^37 + (-2*b + 4) * q^39 - 6 * q^41 + (-4*b - 2) * q^43 + (-2*b + 1) * q^45 + (4*b - 6) * q^47 - 3 * q^49 + (-2*b + 6) * q^51 + (b - 9) * q^53 - 2*b * q^55 + (-b + 1) * q^57 + 4*b * q^59 + (-6*b + 2) * q^61 + (4*b - 2) * q^63 + (b - 1) * q^65 + (b - 5) * q^67 + (2*b - 6) * q^69 + (2*b + 6) * q^71 + (-2*b - 4) * q^73 + (b - 1) * q^75 + 4*b * q^77 + (4*b + 4) * q^79 + (2*b + 1) * q^81 + 2*b * q^83 + 2*b * q^85 + (2*b - 6) * q^87 + (2*b - 12) * q^89 + (-2*b + 2) * q^91 - 4 * q^93 - q^95 + (9*b - 1) * q^97 + (-2*b + 12) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{3} + 2 q^{5} - 4 q^{7} + 2 q^{9}+O(q^{10})$$ 2 * q - 2 * q^3 + 2 * q^5 - 4 * q^7 + 2 * q^9 $$2 q - 2 q^{3} + 2 q^{5} - 4 q^{7} + 2 q^{9} - 2 q^{13} - 2 q^{15} - 2 q^{19} + 4 q^{21} + 2 q^{25} - 8 q^{27} - 4 q^{31} - 12 q^{33} - 4 q^{35} + 10 q^{37} + 8 q^{39} - 12 q^{41} - 4 q^{43} + 2 q^{45} - 12 q^{47} - 6 q^{49} + 12 q^{51} - 18 q^{53} + 2 q^{57} + 4 q^{61} - 4 q^{63} - 2 q^{65} - 10 q^{67} - 12 q^{69} + 12 q^{71} - 8 q^{73} - 2 q^{75} + 8 q^{79} + 2 q^{81} - 12 q^{87} - 24 q^{89} + 4 q^{91} - 8 q^{93} - 2 q^{95} - 2 q^{97} + 24 q^{99}+O(q^{100})$$ 2 * q - 2 * q^3 + 2 * q^5 - 4 * q^7 + 2 * q^9 - 2 * q^13 - 2 * q^15 - 2 * q^19 + 4 * q^21 + 2 * q^25 - 8 * q^27 - 4 * q^31 - 12 * q^33 - 4 * q^35 + 10 * q^37 + 8 * q^39 - 12 * q^41 - 4 * q^43 + 2 * q^45 - 12 * q^47 - 6 * q^49 + 12 * q^51 - 18 * q^53 + 2 * q^57 + 4 * q^61 - 4 * q^63 - 2 * q^65 - 10 * q^67 - 12 * q^69 + 12 * q^71 - 8 * q^73 - 2 * q^75 + 8 * q^79 + 2 * q^81 - 12 * q^87 - 24 * q^89 + 4 * q^91 - 8 * q^93 - 2 * q^95 - 2 * q^97 + 24 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.73205 1.73205
0 −2.73205 0 1.00000 0 −2.00000 0 4.46410 0
1.2 0 0.732051 0 1.00000 0 −2.00000 0 −2.46410 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$5$$ $$-1$$
$$19$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1520.2.a.l 2
4.b odd 2 1 380.2.a.d 2
5.b even 2 1 7600.2.a.bf 2
8.b even 2 1 6080.2.a.bj 2
8.d odd 2 1 6080.2.a.z 2
12.b even 2 1 3420.2.a.h 2
20.d odd 2 1 1900.2.a.d 2
20.e even 4 2 1900.2.c.e 4
76.d even 2 1 7220.2.a.h 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
380.2.a.d 2 4.b odd 2 1
1520.2.a.l 2 1.a even 1 1 trivial
1900.2.a.d 2 20.d odd 2 1
1900.2.c.e 4 20.e even 4 2
3420.2.a.h 2 12.b even 2 1
6080.2.a.z 2 8.d odd 2 1
6080.2.a.bj 2 8.b even 2 1
7220.2.a.h 2 76.d even 2 1
7600.2.a.bf 2 5.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1520))$$:

 $$T_{3}^{2} + 2T_{3} - 2$$ T3^2 + 2*T3 - 2 $$T_{7} + 2$$ T7 + 2

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2} + 2T - 2$$
$5$ $$(T - 1)^{2}$$
$7$ $$(T + 2)^{2}$$
$11$ $$T^{2} - 12$$
$13$ $$T^{2} + 2T - 2$$
$17$ $$T^{2} - 12$$
$19$ $$(T + 1)^{2}$$
$23$ $$T^{2} - 12$$
$29$ $$T^{2} - 12$$
$31$ $$T^{2} + 4T - 8$$
$37$ $$T^{2} - 10T + 22$$
$41$ $$(T + 6)^{2}$$
$43$ $$T^{2} + 4T - 44$$
$47$ $$T^{2} + 12T - 12$$
$53$ $$T^{2} + 18T + 78$$
$59$ $$T^{2} - 48$$
$61$ $$T^{2} - 4T - 104$$
$67$ $$T^{2} + 10T + 22$$
$71$ $$T^{2} - 12T + 24$$
$73$ $$T^{2} + 8T + 4$$
$79$ $$T^{2} - 8T - 32$$
$83$ $$T^{2} - 12$$
$89$ $$T^{2} + 24T + 132$$
$97$ $$T^{2} + 2T - 242$$