Properties

Label 1520.1.cr
Level $1520$
Weight $1$
Character orbit 1520.cr
Rep. character $\chi_{1520}(273,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $8$
Newform subspaces $2$
Sturm bound $240$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1520.cr (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 95 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 2 \)
Sturm bound: \(240\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1520, [\chi])\).

Total New Old
Modular forms 76 16 60
Cusp forms 28 8 20
Eisenstein series 48 8 40

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 8 0

Trace form

\( 8 q + 2 q^{5} - 8 q^{11} - 2 q^{13} - 2 q^{17} + 2 q^{23} + 8 q^{31} - 4 q^{37} + 2 q^{43} - 4 q^{45} + 2 q^{47} + 4 q^{51} + 4 q^{53} - 2 q^{55} - 8 q^{57} - 4 q^{65} - 2 q^{67} + 4 q^{71} + 2 q^{73} - 8 q^{75}+ \cdots + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1520, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1520.1.cr.a 1520.cr 95.m $4$ $0.759$ \(\Q(\zeta_{12})\) $S_{4}$ None None 760.1.bt.a \(0\) \(-2\) \(0\) \(0\) \(q+(-\zeta_{12}+\zeta_{12}^{4})q^{3}-\zeta_{12}q^{5}-\zeta_{12}^{5}q^{9}+\cdots\)
1520.1.cr.b 1520.cr 95.m $4$ $0.759$ \(\Q(\zeta_{12})\) $S_{4}$ None None 380.1.x.a \(0\) \(2\) \(2\) \(0\) \(q+(\zeta_{12}-\zeta_{12}^{4})q^{3}-\zeta_{12}^{4}q^{5}-\zeta_{12}^{5}q^{9}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(1520, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(1520, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(380, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(760, [\chi])\)\(^{\oplus 2}\)