Defining parameters
Level: | \( N \) | \(=\) | \( 1520 = 2^{4} \cdot 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1520.cr (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 95 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1520, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 76 | 16 | 60 |
Cusp forms | 28 | 8 | 20 |
Eisenstein series | 48 | 8 | 40 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 0 | 0 | 8 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1520, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
1520.1.cr.a | $4$ | $0.759$ | \(\Q(\zeta_{12})\) | $S_{4}$ | None | None | \(0\) | \(-2\) | \(0\) | \(0\) | \(q+(-\zeta_{12}+\zeta_{12}^{4})q^{3}-\zeta_{12}q^{5}-\zeta_{12}^{5}q^{9}+\cdots\) |
1520.1.cr.b | $4$ | $0.759$ | \(\Q(\zeta_{12})\) | $S_{4}$ | None | None | \(0\) | \(2\) | \(2\) | \(0\) | \(q+(\zeta_{12}-\zeta_{12}^{4})q^{3}-\zeta_{12}^{4}q^{5}-\zeta_{12}^{5}q^{9}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(1520, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(1520, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(380, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(760, [\chi])\)\(^{\oplus 2}\)