Properties

Label 1520.1.bh
Level $1520$
Weight $1$
Character orbit 1520.bh
Rep. character $\chi_{1520}(189,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $24$
Newform subspaces $3$
Sturm bound $240$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1520.bh (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1520 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 3 \)
Sturm bound: \(240\)
Trace bound: \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1520, [\chi])\).

Total New Old
Modular forms 32 32 0
Cusp forms 24 24 0
Eisenstein series 8 8 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 16 0 8 0

Trace form

\( 24 q + 4 q^{5} - 8 q^{6} - 8 q^{16} - 4 q^{20} - 16 q^{24} - 8 q^{26} - 4 q^{30} + 4 q^{35} - 16 q^{49} - 8 q^{61} + 16 q^{66} + 12 q^{80} - 8 q^{81} - 4 q^{85} + 16 q^{95} + 24 q^{96} + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1520, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1520.1.bh.a 1520.bh 1520.ah $4$ $0.759$ \(\Q(\zeta_{8})\) $S_{4}$ None None 1520.1.bh.a \(0\) \(0\) \(0\) \(-4\) \(q-\zeta_{8}^{3}q^{2}-\zeta_{8}q^{3}-\zeta_{8}^{2}q^{4}-\zeta_{8}^{2}q^{5}+\cdots\)
1520.1.bh.b 1520.bh 1520.ah $4$ $0.759$ \(\Q(\zeta_{8})\) $S_{4}$ None None 1520.1.bh.a \(0\) \(0\) \(4\) \(4\) \(q-\zeta_{8}^{3}q^{2}-\zeta_{8}q^{3}-\zeta_{8}^{2}q^{4}+q^{5}+\cdots\)
1520.1.bh.c 1520.bh 1520.ah $16$ $0.759$ \(\Q(\zeta_{32})\) $D_{16}$ \(\Q(\sqrt{-95}) \) None 1520.1.bh.c \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{32}^{3}q^{2}+(\zeta_{32}-\zeta_{32}^{7})q^{3}+\zeta_{32}^{6}q^{4}+\cdots\)