Properties

Label 1520.1.ba.a
Level $1520$
Weight $1$
Character orbit 1520.ba
Analytic conductor $0.759$
Analytic rank $0$
Dimension $2$
Projective image $D_{4}$
CM discriminant -19
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1520,1,Mod(303,1520)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1520, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3, 2])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1520.303"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1520 = 2^{4} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1520.ba (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.758578819202\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.38000.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - q^{5} + ( - i - 1) q^{7} - i q^{9} + 2 i q^{11} + (i - 1) q^{17} - q^{19} + (i - 1) q^{23} + q^{25} + (i + 1) q^{35} + (i - 1) q^{43} + i q^{45} + ( - i - 1) q^{47} + i q^{49} - 2 i q^{55} + (i - 1) q^{63} + \cdots + 2 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 2 q^{7} - 2 q^{17} - 2 q^{19} - 2 q^{23} + 2 q^{25} + 2 q^{35} - 2 q^{43} - 2 q^{47} - 2 q^{63} - 2 q^{73} + 4 q^{77} - 2 q^{81} + 2 q^{83} + 2 q^{85} + 2 q^{95} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1520\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(401\) \(1141\) \(1217\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
303.1
1.00000i
1.00000i
0 0 0 −1.00000 0 −1.00000 1.00000i 0 1.00000i 0
607.1 0 0 0 −1.00000 0 −1.00000 + 1.00000i 0 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 CM by \(\Q(\sqrt{-19}) \)
20.e even 4 1 inner
380.j odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1520.1.ba.a 2
4.b odd 2 1 1520.1.ba.b yes 2
5.c odd 4 1 1520.1.ba.b yes 2
19.b odd 2 1 CM 1520.1.ba.a 2
20.e even 4 1 inner 1520.1.ba.a 2
76.d even 2 1 1520.1.ba.b yes 2
95.g even 4 1 1520.1.ba.b yes 2
380.j odd 4 1 inner 1520.1.ba.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1520.1.ba.a 2 1.a even 1 1 trivial
1520.1.ba.a 2 19.b odd 2 1 CM
1520.1.ba.a 2 20.e even 4 1 inner
1520.1.ba.a 2 380.j odd 4 1 inner
1520.1.ba.b yes 2 4.b odd 2 1
1520.1.ba.b yes 2 5.c odd 4 1
1520.1.ba.b yes 2 76.d even 2 1
1520.1.ba.b yes 2 95.g even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} + 2T_{7} + 2 \) acting on \(S_{1}^{\mathrm{new}}(1520, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$11$ \( T^{2} + 4 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$19$ \( (T + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$47$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less