Properties

Label 152.4.a.d.1.5
Level $152$
Weight $4$
Character 152.1
Self dual yes
Analytic conductor $8.968$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [152,4,Mod(1,152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("152.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(152, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 152.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.96829032087\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 106x^{3} - 401x^{2} + 356x + 2112 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.15594\) of defining polynomial
Character \(\chi\) \(=\) 152.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.62694 q^{3} +4.10677 q^{5} -11.2105 q^{7} +47.4241 q^{9} +71.9427 q^{11} -33.7445 q^{13} +35.4289 q^{15} +18.4226 q^{17} +19.0000 q^{19} -96.7120 q^{21} -86.8656 q^{23} -108.134 q^{25} +176.198 q^{27} +192.838 q^{29} -203.026 q^{31} +620.645 q^{33} -46.0388 q^{35} +281.026 q^{37} -291.112 q^{39} -139.880 q^{41} -70.7620 q^{43} +194.760 q^{45} -275.829 q^{47} -217.326 q^{49} +158.931 q^{51} +296.114 q^{53} +295.452 q^{55} +163.912 q^{57} -884.504 q^{59} -67.8043 q^{61} -531.646 q^{63} -138.581 q^{65} +737.836 q^{67} -749.384 q^{69} -700.052 q^{71} -91.3241 q^{73} -932.869 q^{75} -806.511 q^{77} -1139.23 q^{79} +239.596 q^{81} +71.6383 q^{83} +75.6575 q^{85} +1663.61 q^{87} -296.333 q^{89} +378.292 q^{91} -1751.50 q^{93} +78.0287 q^{95} -28.5351 q^{97} +3411.82 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{3} + 22 q^{7} + 83 q^{9} + 6 q^{11} + 82 q^{13} + 204 q^{15} + 234 q^{17} + 95 q^{19} + 308 q^{21} - 60 q^{23} + 549 q^{25} - 190 q^{27} + 210 q^{29} - 224 q^{31} + 704 q^{33} + 42 q^{35} + 614 q^{37}+ \cdots + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 8.62694 1.66026 0.830128 0.557573i \(-0.188267\pi\)
0.830128 + 0.557573i \(0.188267\pi\)
\(4\) 0 0
\(5\) 4.10677 0.367321 0.183660 0.982990i \(-0.441205\pi\)
0.183660 + 0.982990i \(0.441205\pi\)
\(6\) 0 0
\(7\) −11.2105 −0.605308 −0.302654 0.953100i \(-0.597873\pi\)
−0.302654 + 0.953100i \(0.597873\pi\)
\(8\) 0 0
\(9\) 47.4241 1.75645
\(10\) 0 0
\(11\) 71.9427 1.97196 0.985979 0.166869i \(-0.0533656\pi\)
0.985979 + 0.166869i \(0.0533656\pi\)
\(12\) 0 0
\(13\) −33.7445 −0.719927 −0.359964 0.932966i \(-0.617211\pi\)
−0.359964 + 0.932966i \(0.617211\pi\)
\(14\) 0 0
\(15\) 35.4289 0.609847
\(16\) 0 0
\(17\) 18.4226 0.262832 0.131416 0.991327i \(-0.458048\pi\)
0.131416 + 0.991327i \(0.458048\pi\)
\(18\) 0 0
\(19\) 19.0000 0.229416
\(20\) 0 0
\(21\) −96.7120 −1.00497
\(22\) 0 0
\(23\) −86.8656 −0.787510 −0.393755 0.919216i \(-0.628824\pi\)
−0.393755 + 0.919216i \(0.628824\pi\)
\(24\) 0 0
\(25\) −108.134 −0.865075
\(26\) 0 0
\(27\) 176.198 1.25590
\(28\) 0 0
\(29\) 192.838 1.23480 0.617400 0.786649i \(-0.288186\pi\)
0.617400 + 0.786649i \(0.288186\pi\)
\(30\) 0 0
\(31\) −203.026 −1.17628 −0.588139 0.808760i \(-0.700139\pi\)
−0.588139 + 0.808760i \(0.700139\pi\)
\(32\) 0 0
\(33\) 620.645 3.27395
\(34\) 0 0
\(35\) −46.0388 −0.222342
\(36\) 0 0
\(37\) 281.026 1.24866 0.624330 0.781161i \(-0.285372\pi\)
0.624330 + 0.781161i \(0.285372\pi\)
\(38\) 0 0
\(39\) −291.112 −1.19526
\(40\) 0 0
\(41\) −139.880 −0.532821 −0.266410 0.963860i \(-0.585838\pi\)
−0.266410 + 0.963860i \(0.585838\pi\)
\(42\) 0 0
\(43\) −70.7620 −0.250956 −0.125478 0.992096i \(-0.540046\pi\)
−0.125478 + 0.992096i \(0.540046\pi\)
\(44\) 0 0
\(45\) 194.760 0.645180
\(46\) 0 0
\(47\) −275.829 −0.856038 −0.428019 0.903770i \(-0.640788\pi\)
−0.428019 + 0.903770i \(0.640788\pi\)
\(48\) 0 0
\(49\) −217.326 −0.633602
\(50\) 0 0
\(51\) 158.931 0.436368
\(52\) 0 0
\(53\) 296.114 0.767441 0.383721 0.923449i \(-0.374643\pi\)
0.383721 + 0.923449i \(0.374643\pi\)
\(54\) 0 0
\(55\) 295.452 0.724342
\(56\) 0 0
\(57\) 163.912 0.380889
\(58\) 0 0
\(59\) −884.504 −1.95174 −0.975870 0.218353i \(-0.929932\pi\)
−0.975870 + 0.218353i \(0.929932\pi\)
\(60\) 0 0
\(61\) −67.8043 −0.142319 −0.0711594 0.997465i \(-0.522670\pi\)
−0.0711594 + 0.997465i \(0.522670\pi\)
\(62\) 0 0
\(63\) −531.646 −1.06319
\(64\) 0 0
\(65\) −138.581 −0.264444
\(66\) 0 0
\(67\) 737.836 1.34539 0.672694 0.739921i \(-0.265137\pi\)
0.672694 + 0.739921i \(0.265137\pi\)
\(68\) 0 0
\(69\) −749.384 −1.30747
\(70\) 0 0
\(71\) −700.052 −1.17015 −0.585077 0.810978i \(-0.698936\pi\)
−0.585077 + 0.810978i \(0.698936\pi\)
\(72\) 0 0
\(73\) −91.3241 −0.146420 −0.0732101 0.997317i \(-0.523324\pi\)
−0.0732101 + 0.997317i \(0.523324\pi\)
\(74\) 0 0
\(75\) −932.869 −1.43625
\(76\) 0 0
\(77\) −806.511 −1.19364
\(78\) 0 0
\(79\) −1139.23 −1.62245 −0.811225 0.584735i \(-0.801199\pi\)
−0.811225 + 0.584735i \(0.801199\pi\)
\(80\) 0 0
\(81\) 239.596 0.328663
\(82\) 0 0
\(83\) 71.6383 0.0947388 0.0473694 0.998877i \(-0.484916\pi\)
0.0473694 + 0.998877i \(0.484916\pi\)
\(84\) 0 0
\(85\) 75.6575 0.0965436
\(86\) 0 0
\(87\) 1663.61 2.05008
\(88\) 0 0
\(89\) −296.333 −0.352935 −0.176468 0.984306i \(-0.556467\pi\)
−0.176468 + 0.984306i \(0.556467\pi\)
\(90\) 0 0
\(91\) 378.292 0.435778
\(92\) 0 0
\(93\) −1751.50 −1.95292
\(94\) 0 0
\(95\) 78.0287 0.0842692
\(96\) 0 0
\(97\) −28.5351 −0.0298691 −0.0149346 0.999888i \(-0.504754\pi\)
−0.0149346 + 0.999888i \(0.504754\pi\)
\(98\) 0 0
\(99\) 3411.82 3.46364
\(100\) 0 0
\(101\) 179.849 0.177185 0.0885924 0.996068i \(-0.471763\pi\)
0.0885924 + 0.996068i \(0.471763\pi\)
\(102\) 0 0
\(103\) −1928.59 −1.84495 −0.922474 0.386060i \(-0.873836\pi\)
−0.922474 + 0.386060i \(0.873836\pi\)
\(104\) 0 0
\(105\) −397.174 −0.369145
\(106\) 0 0
\(107\) 1773.58 1.60242 0.801208 0.598385i \(-0.204191\pi\)
0.801208 + 0.598385i \(0.204191\pi\)
\(108\) 0 0
\(109\) 1151.75 1.01209 0.506046 0.862506i \(-0.331106\pi\)
0.506046 + 0.862506i \(0.331106\pi\)
\(110\) 0 0
\(111\) 2424.40 2.07310
\(112\) 0 0
\(113\) 1498.88 1.24782 0.623908 0.781498i \(-0.285544\pi\)
0.623908 + 0.781498i \(0.285544\pi\)
\(114\) 0 0
\(115\) −356.737 −0.289269
\(116\) 0 0
\(117\) −1600.31 −1.26452
\(118\) 0 0
\(119\) −206.526 −0.159094
\(120\) 0 0
\(121\) 3844.75 2.88862
\(122\) 0 0
\(123\) −1206.74 −0.884618
\(124\) 0 0
\(125\) −957.430 −0.685081
\(126\) 0 0
\(127\) 1691.58 1.18192 0.590959 0.806701i \(-0.298749\pi\)
0.590959 + 0.806701i \(0.298749\pi\)
\(128\) 0 0
\(129\) −610.460 −0.416651
\(130\) 0 0
\(131\) −2520.38 −1.68096 −0.840482 0.541840i \(-0.817728\pi\)
−0.840482 + 0.541840i \(0.817728\pi\)
\(132\) 0 0
\(133\) −212.999 −0.138867
\(134\) 0 0
\(135\) 723.604 0.461318
\(136\) 0 0
\(137\) 1180.48 0.736169 0.368084 0.929792i \(-0.380014\pi\)
0.368084 + 0.929792i \(0.380014\pi\)
\(138\) 0 0
\(139\) 1200.12 0.732326 0.366163 0.930551i \(-0.380671\pi\)
0.366163 + 0.930551i \(0.380671\pi\)
\(140\) 0 0
\(141\) −2379.56 −1.42124
\(142\) 0 0
\(143\) −2427.67 −1.41967
\(144\) 0 0
\(145\) 791.944 0.453568
\(146\) 0 0
\(147\) −1874.85 −1.05194
\(148\) 0 0
\(149\) −246.291 −0.135416 −0.0677079 0.997705i \(-0.521569\pi\)
−0.0677079 + 0.997705i \(0.521569\pi\)
\(150\) 0 0
\(151\) 949.844 0.511902 0.255951 0.966690i \(-0.417611\pi\)
0.255951 + 0.966690i \(0.417611\pi\)
\(152\) 0 0
\(153\) 873.676 0.461650
\(154\) 0 0
\(155\) −833.783 −0.432071
\(156\) 0 0
\(157\) −436.191 −0.221732 −0.110866 0.993835i \(-0.535362\pi\)
−0.110866 + 0.993835i \(0.535362\pi\)
\(158\) 0 0
\(159\) 2554.56 1.27415
\(160\) 0 0
\(161\) 973.803 0.476686
\(162\) 0 0
\(163\) 323.466 0.155434 0.0777172 0.996975i \(-0.475237\pi\)
0.0777172 + 0.996975i \(0.475237\pi\)
\(164\) 0 0
\(165\) 2548.85 1.20259
\(166\) 0 0
\(167\) 3428.12 1.58848 0.794238 0.607606i \(-0.207870\pi\)
0.794238 + 0.607606i \(0.207870\pi\)
\(168\) 0 0
\(169\) −1058.31 −0.481705
\(170\) 0 0
\(171\) 901.058 0.402957
\(172\) 0 0
\(173\) −3268.84 −1.43656 −0.718280 0.695754i \(-0.755071\pi\)
−0.718280 + 0.695754i \(0.755071\pi\)
\(174\) 0 0
\(175\) 1212.24 0.523637
\(176\) 0 0
\(177\) −7630.57 −3.24039
\(178\) 0 0
\(179\) −3900.63 −1.62875 −0.814377 0.580336i \(-0.802921\pi\)
−0.814377 + 0.580336i \(0.802921\pi\)
\(180\) 0 0
\(181\) 3128.05 1.28456 0.642282 0.766469i \(-0.277988\pi\)
0.642282 + 0.766469i \(0.277988\pi\)
\(182\) 0 0
\(183\) −584.943 −0.236286
\(184\) 0 0
\(185\) 1154.11 0.458659
\(186\) 0 0
\(187\) 1325.37 0.518293
\(188\) 0 0
\(189\) −1975.26 −0.760205
\(190\) 0 0
\(191\) 2878.40 1.09044 0.545219 0.838294i \(-0.316447\pi\)
0.545219 + 0.838294i \(0.316447\pi\)
\(192\) 0 0
\(193\) −617.191 −0.230188 −0.115094 0.993355i \(-0.536717\pi\)
−0.115094 + 0.993355i \(0.536717\pi\)
\(194\) 0 0
\(195\) −1195.53 −0.439045
\(196\) 0 0
\(197\) 2850.18 1.03080 0.515399 0.856950i \(-0.327644\pi\)
0.515399 + 0.856950i \(0.327644\pi\)
\(198\) 0 0
\(199\) 988.062 0.351969 0.175985 0.984393i \(-0.443689\pi\)
0.175985 + 0.984393i \(0.443689\pi\)
\(200\) 0 0
\(201\) 6365.27 2.23369
\(202\) 0 0
\(203\) −2161.81 −0.747434
\(204\) 0 0
\(205\) −574.457 −0.195716
\(206\) 0 0
\(207\) −4119.52 −1.38322
\(208\) 0 0
\(209\) 1366.91 0.452398
\(210\) 0 0
\(211\) 2249.02 0.733786 0.366893 0.930263i \(-0.380422\pi\)
0.366893 + 0.930263i \(0.380422\pi\)
\(212\) 0 0
\(213\) −6039.31 −1.94275
\(214\) 0 0
\(215\) −290.604 −0.0921814
\(216\) 0 0
\(217\) 2276.02 0.712010
\(218\) 0 0
\(219\) −787.848 −0.243095
\(220\) 0 0
\(221\) −621.662 −0.189220
\(222\) 0 0
\(223\) 5406.85 1.62363 0.811814 0.583916i \(-0.198480\pi\)
0.811814 + 0.583916i \(0.198480\pi\)
\(224\) 0 0
\(225\) −5128.18 −1.51946
\(226\) 0 0
\(227\) −352.967 −0.103204 −0.0516019 0.998668i \(-0.516433\pi\)
−0.0516019 + 0.998668i \(0.516433\pi\)
\(228\) 0 0
\(229\) 767.432 0.221456 0.110728 0.993851i \(-0.464682\pi\)
0.110728 + 0.993851i \(0.464682\pi\)
\(230\) 0 0
\(231\) −6957.72 −1.98175
\(232\) 0 0
\(233\) −755.415 −0.212399 −0.106199 0.994345i \(-0.533868\pi\)
−0.106199 + 0.994345i \(0.533868\pi\)
\(234\) 0 0
\(235\) −1132.77 −0.314441
\(236\) 0 0
\(237\) −9828.08 −2.69368
\(238\) 0 0
\(239\) −5257.18 −1.42284 −0.711420 0.702767i \(-0.751947\pi\)
−0.711420 + 0.702767i \(0.751947\pi\)
\(240\) 0 0
\(241\) −643.756 −0.172066 −0.0860331 0.996292i \(-0.527419\pi\)
−0.0860331 + 0.996292i \(0.527419\pi\)
\(242\) 0 0
\(243\) −2690.36 −0.710233
\(244\) 0 0
\(245\) −892.507 −0.232735
\(246\) 0 0
\(247\) −641.146 −0.165163
\(248\) 0 0
\(249\) 618.019 0.157291
\(250\) 0 0
\(251\) 3464.64 0.871258 0.435629 0.900126i \(-0.356526\pi\)
0.435629 + 0.900126i \(0.356526\pi\)
\(252\) 0 0
\(253\) −6249.34 −1.55294
\(254\) 0 0
\(255\) 652.692 0.160287
\(256\) 0 0
\(257\) 3303.56 0.801831 0.400915 0.916115i \(-0.368692\pi\)
0.400915 + 0.916115i \(0.368692\pi\)
\(258\) 0 0
\(259\) −3150.43 −0.755824
\(260\) 0 0
\(261\) 9145.19 2.16886
\(262\) 0 0
\(263\) 612.607 0.143631 0.0718155 0.997418i \(-0.477121\pi\)
0.0718155 + 0.997418i \(0.477121\pi\)
\(264\) 0 0
\(265\) 1216.07 0.281897
\(266\) 0 0
\(267\) −2556.45 −0.585963
\(268\) 0 0
\(269\) 4683.09 1.06146 0.530731 0.847540i \(-0.321918\pi\)
0.530731 + 0.847540i \(0.321918\pi\)
\(270\) 0 0
\(271\) 3816.91 0.855574 0.427787 0.903880i \(-0.359293\pi\)
0.427787 + 0.903880i \(0.359293\pi\)
\(272\) 0 0
\(273\) 3263.50 0.723502
\(274\) 0 0
\(275\) −7779.48 −1.70589
\(276\) 0 0
\(277\) 8588.70 1.86298 0.931489 0.363770i \(-0.118511\pi\)
0.931489 + 0.363770i \(0.118511\pi\)
\(278\) 0 0
\(279\) −9628.34 −2.06607
\(280\) 0 0
\(281\) 4233.53 0.898759 0.449380 0.893341i \(-0.351645\pi\)
0.449380 + 0.893341i \(0.351645\pi\)
\(282\) 0 0
\(283\) 7951.72 1.67025 0.835125 0.550061i \(-0.185395\pi\)
0.835125 + 0.550061i \(0.185395\pi\)
\(284\) 0 0
\(285\) 673.149 0.139908
\(286\) 0 0
\(287\) 1568.12 0.322521
\(288\) 0 0
\(289\) −4573.61 −0.930920
\(290\) 0 0
\(291\) −246.171 −0.0495904
\(292\) 0 0
\(293\) 8691.51 1.73298 0.866491 0.499193i \(-0.166370\pi\)
0.866491 + 0.499193i \(0.166370\pi\)
\(294\) 0 0
\(295\) −3632.46 −0.716915
\(296\) 0 0
\(297\) 12676.1 2.47658
\(298\) 0 0
\(299\) 2931.24 0.566950
\(300\) 0 0
\(301\) 793.275 0.151906
\(302\) 0 0
\(303\) 1551.55 0.294172
\(304\) 0 0
\(305\) −278.457 −0.0522767
\(306\) 0 0
\(307\) 1816.21 0.337644 0.168822 0.985647i \(-0.446004\pi\)
0.168822 + 0.985647i \(0.446004\pi\)
\(308\) 0 0
\(309\) −16637.8 −3.06308
\(310\) 0 0
\(311\) −10503.2 −1.91505 −0.957526 0.288347i \(-0.906894\pi\)
−0.957526 + 0.288347i \(0.906894\pi\)
\(312\) 0 0
\(313\) 4617.82 0.833912 0.416956 0.908927i \(-0.363097\pi\)
0.416956 + 0.908927i \(0.363097\pi\)
\(314\) 0 0
\(315\) −2183.35 −0.390533
\(316\) 0 0
\(317\) −999.131 −0.177025 −0.0885123 0.996075i \(-0.528211\pi\)
−0.0885123 + 0.996075i \(0.528211\pi\)
\(318\) 0 0
\(319\) 13873.3 2.43497
\(320\) 0 0
\(321\) 15300.6 2.66042
\(322\) 0 0
\(323\) 350.029 0.0602977
\(324\) 0 0
\(325\) 3648.95 0.622791
\(326\) 0 0
\(327\) 9936.12 1.68033
\(328\) 0 0
\(329\) 3092.17 0.518166
\(330\) 0 0
\(331\) −8285.70 −1.37590 −0.687951 0.725757i \(-0.741490\pi\)
−0.687951 + 0.725757i \(0.741490\pi\)
\(332\) 0 0
\(333\) 13327.4 2.19321
\(334\) 0 0
\(335\) 3030.13 0.494189
\(336\) 0 0
\(337\) −6313.43 −1.02052 −0.510259 0.860021i \(-0.670450\pi\)
−0.510259 + 0.860021i \(0.670450\pi\)
\(338\) 0 0
\(339\) 12930.8 2.07169
\(340\) 0 0
\(341\) −14606.3 −2.31957
\(342\) 0 0
\(343\) 6281.51 0.988832
\(344\) 0 0
\(345\) −3077.55 −0.480260
\(346\) 0 0
\(347\) 1267.35 0.196066 0.0980331 0.995183i \(-0.468745\pi\)
0.0980331 + 0.995183i \(0.468745\pi\)
\(348\) 0 0
\(349\) −5488.56 −0.841823 −0.420911 0.907102i \(-0.638290\pi\)
−0.420911 + 0.907102i \(0.638290\pi\)
\(350\) 0 0
\(351\) −5945.71 −0.904155
\(352\) 0 0
\(353\) −9253.29 −1.39519 −0.697596 0.716491i \(-0.745747\pi\)
−0.697596 + 0.716491i \(0.745747\pi\)
\(354\) 0 0
\(355\) −2874.96 −0.429822
\(356\) 0 0
\(357\) −1781.69 −0.264137
\(358\) 0 0
\(359\) −12158.7 −1.78750 −0.893748 0.448569i \(-0.851934\pi\)
−0.893748 + 0.448569i \(0.851934\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 0 0
\(363\) 33168.5 4.79585
\(364\) 0 0
\(365\) −375.047 −0.0537832
\(366\) 0 0
\(367\) −8906.82 −1.26685 −0.633423 0.773806i \(-0.718351\pi\)
−0.633423 + 0.773806i \(0.718351\pi\)
\(368\) 0 0
\(369\) −6633.70 −0.935872
\(370\) 0 0
\(371\) −3319.57 −0.464538
\(372\) 0 0
\(373\) −465.593 −0.0646314 −0.0323157 0.999478i \(-0.510288\pi\)
−0.0323157 + 0.999478i \(0.510288\pi\)
\(374\) 0 0
\(375\) −8259.69 −1.13741
\(376\) 0 0
\(377\) −6507.25 −0.888966
\(378\) 0 0
\(379\) −6221.96 −0.843274 −0.421637 0.906765i \(-0.638544\pi\)
−0.421637 + 0.906765i \(0.638544\pi\)
\(380\) 0 0
\(381\) 14593.2 1.96229
\(382\) 0 0
\(383\) −9367.45 −1.24975 −0.624875 0.780725i \(-0.714850\pi\)
−0.624875 + 0.780725i \(0.714850\pi\)
\(384\) 0 0
\(385\) −3312.16 −0.438450
\(386\) 0 0
\(387\) −3355.83 −0.440791
\(388\) 0 0
\(389\) 1205.29 0.157097 0.0785487 0.996910i \(-0.474971\pi\)
0.0785487 + 0.996910i \(0.474971\pi\)
\(390\) 0 0
\(391\) −1600.29 −0.206982
\(392\) 0 0
\(393\) −21743.1 −2.79083
\(394\) 0 0
\(395\) −4678.56 −0.595960
\(396\) 0 0
\(397\) −3135.03 −0.396329 −0.198164 0.980169i \(-0.563498\pi\)
−0.198164 + 0.980169i \(0.563498\pi\)
\(398\) 0 0
\(399\) −1837.53 −0.230555
\(400\) 0 0
\(401\) 2780.30 0.346238 0.173119 0.984901i \(-0.444615\pi\)
0.173119 + 0.984901i \(0.444615\pi\)
\(402\) 0 0
\(403\) 6851.03 0.846834
\(404\) 0 0
\(405\) 983.965 0.120725
\(406\) 0 0
\(407\) 20217.8 2.46231
\(408\) 0 0
\(409\) −8405.57 −1.01621 −0.508103 0.861296i \(-0.669653\pi\)
−0.508103 + 0.861296i \(0.669653\pi\)
\(410\) 0 0
\(411\) 10183.9 1.22223
\(412\) 0 0
\(413\) 9915.70 1.18140
\(414\) 0 0
\(415\) 294.202 0.0347996
\(416\) 0 0
\(417\) 10353.4 1.21585
\(418\) 0 0
\(419\) 9077.31 1.05837 0.529183 0.848508i \(-0.322498\pi\)
0.529183 + 0.848508i \(0.322498\pi\)
\(420\) 0 0
\(421\) 1790.52 0.207280 0.103640 0.994615i \(-0.466951\pi\)
0.103640 + 0.994615i \(0.466951\pi\)
\(422\) 0 0
\(423\) −13080.9 −1.50359
\(424\) 0 0
\(425\) −1992.12 −0.227369
\(426\) 0 0
\(427\) 760.117 0.0861467
\(428\) 0 0
\(429\) −20943.4 −2.35701
\(430\) 0 0
\(431\) −2415.56 −0.269962 −0.134981 0.990848i \(-0.543097\pi\)
−0.134981 + 0.990848i \(0.543097\pi\)
\(432\) 0 0
\(433\) −16288.6 −1.80780 −0.903901 0.427741i \(-0.859310\pi\)
−0.903901 + 0.427741i \(0.859310\pi\)
\(434\) 0 0
\(435\) 6832.05 0.753039
\(436\) 0 0
\(437\) −1650.45 −0.180667
\(438\) 0 0
\(439\) 13844.1 1.50511 0.752555 0.658529i \(-0.228821\pi\)
0.752555 + 0.658529i \(0.228821\pi\)
\(440\) 0 0
\(441\) −10306.5 −1.11289
\(442\) 0 0
\(443\) −268.946 −0.0288442 −0.0144221 0.999896i \(-0.504591\pi\)
−0.0144221 + 0.999896i \(0.504591\pi\)
\(444\) 0 0
\(445\) −1216.97 −0.129641
\(446\) 0 0
\(447\) −2124.74 −0.224825
\(448\) 0 0
\(449\) 8651.55 0.909336 0.454668 0.890661i \(-0.349758\pi\)
0.454668 + 0.890661i \(0.349758\pi\)
\(450\) 0 0
\(451\) −10063.4 −1.05070
\(452\) 0 0
\(453\) 8194.25 0.849888
\(454\) 0 0
\(455\) 1553.56 0.160070
\(456\) 0 0
\(457\) 5394.14 0.552138 0.276069 0.961138i \(-0.410968\pi\)
0.276069 + 0.961138i \(0.410968\pi\)
\(458\) 0 0
\(459\) 3246.02 0.330090
\(460\) 0 0
\(461\) −8578.19 −0.866651 −0.433325 0.901238i \(-0.642660\pi\)
−0.433325 + 0.901238i \(0.642660\pi\)
\(462\) 0 0
\(463\) −3657.01 −0.367074 −0.183537 0.983013i \(-0.558755\pi\)
−0.183537 + 0.983013i \(0.558755\pi\)
\(464\) 0 0
\(465\) −7193.00 −0.717349
\(466\) 0 0
\(467\) −522.490 −0.0517729 −0.0258865 0.999665i \(-0.508241\pi\)
−0.0258865 + 0.999665i \(0.508241\pi\)
\(468\) 0 0
\(469\) −8271.48 −0.814374
\(470\) 0 0
\(471\) −3763.00 −0.368131
\(472\) 0 0
\(473\) −5090.81 −0.494875
\(474\) 0 0
\(475\) −2054.55 −0.198462
\(476\) 0 0
\(477\) 14042.9 1.34797
\(478\) 0 0
\(479\) 1053.20 0.100464 0.0502318 0.998738i \(-0.484004\pi\)
0.0502318 + 0.998738i \(0.484004\pi\)
\(480\) 0 0
\(481\) −9483.10 −0.898945
\(482\) 0 0
\(483\) 8400.94 0.791420
\(484\) 0 0
\(485\) −117.187 −0.0109716
\(486\) 0 0
\(487\) 1658.43 0.154314 0.0771568 0.997019i \(-0.475416\pi\)
0.0771568 + 0.997019i \(0.475416\pi\)
\(488\) 0 0
\(489\) 2790.52 0.258061
\(490\) 0 0
\(491\) −13223.7 −1.21543 −0.607714 0.794156i \(-0.707913\pi\)
−0.607714 + 0.794156i \(0.707913\pi\)
\(492\) 0 0
\(493\) 3552.59 0.324545
\(494\) 0 0
\(495\) 14011.6 1.27227
\(496\) 0 0
\(497\) 7847.91 0.708304
\(498\) 0 0
\(499\) −17102.5 −1.53429 −0.767145 0.641474i \(-0.778323\pi\)
−0.767145 + 0.641474i \(0.778323\pi\)
\(500\) 0 0
\(501\) 29574.2 2.63728
\(502\) 0 0
\(503\) 15576.3 1.38074 0.690369 0.723457i \(-0.257448\pi\)
0.690369 + 0.723457i \(0.257448\pi\)
\(504\) 0 0
\(505\) 738.600 0.0650837
\(506\) 0 0
\(507\) −9129.94 −0.799753
\(508\) 0 0
\(509\) 12121.3 1.05554 0.527769 0.849388i \(-0.323029\pi\)
0.527769 + 0.849388i \(0.323029\pi\)
\(510\) 0 0
\(511\) 1023.79 0.0886293
\(512\) 0 0
\(513\) 3347.76 0.288123
\(514\) 0 0
\(515\) −7920.28 −0.677688
\(516\) 0 0
\(517\) −19843.9 −1.68807
\(518\) 0 0
\(519\) −28200.1 −2.38506
\(520\) 0 0
\(521\) 9281.30 0.780463 0.390232 0.920717i \(-0.372395\pi\)
0.390232 + 0.920717i \(0.372395\pi\)
\(522\) 0 0
\(523\) 67.9208 0.00567872 0.00283936 0.999996i \(-0.499096\pi\)
0.00283936 + 0.999996i \(0.499096\pi\)
\(524\) 0 0
\(525\) 10457.9 0.869371
\(526\) 0 0
\(527\) −3740.27 −0.309163
\(528\) 0 0
\(529\) −4621.38 −0.379829
\(530\) 0 0
\(531\) −41946.8 −3.42813
\(532\) 0 0
\(533\) 4720.20 0.383592
\(534\) 0 0
\(535\) 7283.70 0.588601
\(536\) 0 0
\(537\) −33650.5 −2.70415
\(538\) 0 0
\(539\) −15635.0 −1.24944
\(540\) 0 0
\(541\) −15455.6 −1.22826 −0.614130 0.789205i \(-0.710493\pi\)
−0.614130 + 0.789205i \(0.710493\pi\)
\(542\) 0 0
\(543\) 26985.5 2.13270
\(544\) 0 0
\(545\) 4730.00 0.371763
\(546\) 0 0
\(547\) 2401.02 0.187679 0.0938393 0.995587i \(-0.470086\pi\)
0.0938393 + 0.995587i \(0.470086\pi\)
\(548\) 0 0
\(549\) −3215.56 −0.249976
\(550\) 0 0
\(551\) 3663.93 0.283283
\(552\) 0 0
\(553\) 12771.3 0.982081
\(554\) 0 0
\(555\) 9956.45 0.761491
\(556\) 0 0
\(557\) −10802.4 −0.821743 −0.410871 0.911693i \(-0.634775\pi\)
−0.410871 + 0.911693i \(0.634775\pi\)
\(558\) 0 0
\(559\) 2387.83 0.180670
\(560\) 0 0
\(561\) 11433.9 0.860499
\(562\) 0 0
\(563\) 4215.18 0.315540 0.157770 0.987476i \(-0.449570\pi\)
0.157770 + 0.987476i \(0.449570\pi\)
\(564\) 0 0
\(565\) 6155.58 0.458349
\(566\) 0 0
\(567\) −2685.98 −0.198943
\(568\) 0 0
\(569\) 22102.0 1.62841 0.814205 0.580577i \(-0.197173\pi\)
0.814205 + 0.580577i \(0.197173\pi\)
\(570\) 0 0
\(571\) 10430.8 0.764475 0.382238 0.924064i \(-0.375154\pi\)
0.382238 + 0.924064i \(0.375154\pi\)
\(572\) 0 0
\(573\) 24831.8 1.81040
\(574\) 0 0
\(575\) 9393.16 0.681255
\(576\) 0 0
\(577\) −4064.22 −0.293234 −0.146617 0.989193i \(-0.546838\pi\)
−0.146617 + 0.989193i \(0.546838\pi\)
\(578\) 0 0
\(579\) −5324.47 −0.382172
\(580\) 0 0
\(581\) −803.098 −0.0573462
\(582\) 0 0
\(583\) 21303.2 1.51336
\(584\) 0 0
\(585\) −6572.09 −0.464483
\(586\) 0 0
\(587\) −2114.64 −0.148689 −0.0743444 0.997233i \(-0.523686\pi\)
−0.0743444 + 0.997233i \(0.523686\pi\)
\(588\) 0 0
\(589\) −3857.50 −0.269857
\(590\) 0 0
\(591\) 24588.4 1.71139
\(592\) 0 0
\(593\) −9666.66 −0.669414 −0.334707 0.942322i \(-0.608637\pi\)
−0.334707 + 0.942322i \(0.608637\pi\)
\(594\) 0 0
\(595\) −848.155 −0.0584386
\(596\) 0 0
\(597\) 8523.95 0.584359
\(598\) 0 0
\(599\) 12610.6 0.860195 0.430097 0.902783i \(-0.358479\pi\)
0.430097 + 0.902783i \(0.358479\pi\)
\(600\) 0 0
\(601\) 14326.9 0.972389 0.486194 0.873851i \(-0.338385\pi\)
0.486194 + 0.873851i \(0.338385\pi\)
\(602\) 0 0
\(603\) 34991.2 2.36311
\(604\) 0 0
\(605\) 15789.5 1.06105
\(606\) 0 0
\(607\) 9058.13 0.605697 0.302848 0.953039i \(-0.402062\pi\)
0.302848 + 0.953039i \(0.402062\pi\)
\(608\) 0 0
\(609\) −18649.8 −1.24093
\(610\) 0 0
\(611\) 9307.72 0.616285
\(612\) 0 0
\(613\) 25609.2 1.68735 0.843674 0.536856i \(-0.180388\pi\)
0.843674 + 0.536856i \(0.180388\pi\)
\(614\) 0 0
\(615\) −4955.81 −0.324939
\(616\) 0 0
\(617\) −13536.5 −0.883238 −0.441619 0.897203i \(-0.645596\pi\)
−0.441619 + 0.897203i \(0.645596\pi\)
\(618\) 0 0
\(619\) −3618.91 −0.234986 −0.117493 0.993074i \(-0.537486\pi\)
−0.117493 + 0.993074i \(0.537486\pi\)
\(620\) 0 0
\(621\) −15305.5 −0.989032
\(622\) 0 0
\(623\) 3322.03 0.213635
\(624\) 0 0
\(625\) 9584.85 0.613431
\(626\) 0 0
\(627\) 11792.3 0.751097
\(628\) 0 0
\(629\) 5177.24 0.328187
\(630\) 0 0
\(631\) −15012.4 −0.947125 −0.473562 0.880760i \(-0.657032\pi\)
−0.473562 + 0.880760i \(0.657032\pi\)
\(632\) 0 0
\(633\) 19402.2 1.21827
\(634\) 0 0
\(635\) 6946.95 0.434144
\(636\) 0 0
\(637\) 7333.55 0.456147
\(638\) 0 0
\(639\) −33199.4 −2.05532
\(640\) 0 0
\(641\) 13969.4 0.860778 0.430389 0.902644i \(-0.358376\pi\)
0.430389 + 0.902644i \(0.358376\pi\)
\(642\) 0 0
\(643\) −22659.9 −1.38977 −0.694883 0.719122i \(-0.744544\pi\)
−0.694883 + 0.719122i \(0.744544\pi\)
\(644\) 0 0
\(645\) −2507.02 −0.153045
\(646\) 0 0
\(647\) −15175.9 −0.922145 −0.461073 0.887362i \(-0.652535\pi\)
−0.461073 + 0.887362i \(0.652535\pi\)
\(648\) 0 0
\(649\) −63633.6 −3.84875
\(650\) 0 0
\(651\) 19635.1 1.18212
\(652\) 0 0
\(653\) 17656.6 1.05813 0.529063 0.848582i \(-0.322543\pi\)
0.529063 + 0.848582i \(0.322543\pi\)
\(654\) 0 0
\(655\) −10350.6 −0.617453
\(656\) 0 0
\(657\) −4330.96 −0.257180
\(658\) 0 0
\(659\) −22595.1 −1.33563 −0.667815 0.744327i \(-0.732770\pi\)
−0.667815 + 0.744327i \(0.732770\pi\)
\(660\) 0 0
\(661\) 6333.17 0.372665 0.186333 0.982487i \(-0.440340\pi\)
0.186333 + 0.982487i \(0.440340\pi\)
\(662\) 0 0
\(663\) −5363.04 −0.314153
\(664\) 0 0
\(665\) −874.738 −0.0510088
\(666\) 0 0
\(667\) −16751.0 −0.972417
\(668\) 0 0
\(669\) 46644.5 2.69564
\(670\) 0 0
\(671\) −4878.02 −0.280647
\(672\) 0 0
\(673\) −8536.63 −0.488949 −0.244475 0.969656i \(-0.578615\pi\)
−0.244475 + 0.969656i \(0.578615\pi\)
\(674\) 0 0
\(675\) −19053.0 −1.08645
\(676\) 0 0
\(677\) −8711.29 −0.494538 −0.247269 0.968947i \(-0.579533\pi\)
−0.247269 + 0.968947i \(0.579533\pi\)
\(678\) 0 0
\(679\) 319.892 0.0180800
\(680\) 0 0
\(681\) −3045.03 −0.171345
\(682\) 0 0
\(683\) 14190.3 0.794987 0.397493 0.917605i \(-0.369880\pi\)
0.397493 + 0.917605i \(0.369880\pi\)
\(684\) 0 0
\(685\) 4847.96 0.270410
\(686\) 0 0
\(687\) 6620.59 0.367673
\(688\) 0 0
\(689\) −9992.23 −0.552502
\(690\) 0 0
\(691\) 222.886 0.0122706 0.00613530 0.999981i \(-0.498047\pi\)
0.00613530 + 0.999981i \(0.498047\pi\)
\(692\) 0 0
\(693\) −38248.1 −2.09657
\(694\) 0 0
\(695\) 4928.64 0.268999
\(696\) 0 0
\(697\) −2576.96 −0.140042
\(698\) 0 0
\(699\) −6516.92 −0.352636
\(700\) 0 0
\(701\) 17181.5 0.925727 0.462864 0.886430i \(-0.346822\pi\)
0.462864 + 0.886430i \(0.346822\pi\)
\(702\) 0 0
\(703\) 5339.50 0.286462
\(704\) 0 0
\(705\) −9772.31 −0.522052
\(706\) 0 0
\(707\) −2016.19 −0.107251
\(708\) 0 0
\(709\) 12842.1 0.680247 0.340124 0.940381i \(-0.389531\pi\)
0.340124 + 0.940381i \(0.389531\pi\)
\(710\) 0 0
\(711\) −54027.0 −2.84975
\(712\) 0 0
\(713\) 17636.0 0.926330
\(714\) 0 0
\(715\) −9969.91 −0.521473
\(716\) 0 0
\(717\) −45353.4 −2.36228
\(718\) 0 0
\(719\) 25006.6 1.29706 0.648532 0.761187i \(-0.275383\pi\)
0.648532 + 0.761187i \(0.275383\pi\)
\(720\) 0 0
\(721\) 21620.4 1.11676
\(722\) 0 0
\(723\) −5553.64 −0.285674
\(724\) 0 0
\(725\) −20852.5 −1.06820
\(726\) 0 0
\(727\) −17760.1 −0.906030 −0.453015 0.891503i \(-0.649652\pi\)
−0.453015 + 0.891503i \(0.649652\pi\)
\(728\) 0 0
\(729\) −29678.7 −1.50783
\(730\) 0 0
\(731\) −1303.62 −0.0659592
\(732\) 0 0
\(733\) 1998.35 0.100697 0.0503483 0.998732i \(-0.483967\pi\)
0.0503483 + 0.998732i \(0.483967\pi\)
\(734\) 0 0
\(735\) −7699.60 −0.386400
\(736\) 0 0
\(737\) 53081.9 2.65305
\(738\) 0 0
\(739\) −24084.1 −1.19885 −0.599423 0.800433i \(-0.704603\pi\)
−0.599423 + 0.800433i \(0.704603\pi\)
\(740\) 0 0
\(741\) −5531.13 −0.274212
\(742\) 0 0
\(743\) −21478.3 −1.06051 −0.530257 0.847837i \(-0.677905\pi\)
−0.530257 + 0.847837i \(0.677905\pi\)
\(744\) 0 0
\(745\) −1011.46 −0.0497411
\(746\) 0 0
\(747\) 3397.38 0.166404
\(748\) 0 0
\(749\) −19882.7 −0.969956
\(750\) 0 0
\(751\) −14198.0 −0.689868 −0.344934 0.938627i \(-0.612099\pi\)
−0.344934 + 0.938627i \(0.612099\pi\)
\(752\) 0 0
\(753\) 29889.2 1.44651
\(754\) 0 0
\(755\) 3900.79 0.188032
\(756\) 0 0
\(757\) 36489.7 1.75197 0.875984 0.482339i \(-0.160213\pi\)
0.875984 + 0.482339i \(0.160213\pi\)
\(758\) 0 0
\(759\) −53912.7 −2.57827
\(760\) 0 0
\(761\) −785.209 −0.0374032 −0.0187016 0.999825i \(-0.505953\pi\)
−0.0187016 + 0.999825i \(0.505953\pi\)
\(762\) 0 0
\(763\) −12911.7 −0.612628
\(764\) 0 0
\(765\) 3587.99 0.169574
\(766\) 0 0
\(767\) 29847.2 1.40511
\(768\) 0 0
\(769\) −535.416 −0.0251074 −0.0125537 0.999921i \(-0.503996\pi\)
−0.0125537 + 0.999921i \(0.503996\pi\)
\(770\) 0 0
\(771\) 28499.6 1.33124
\(772\) 0 0
\(773\) 7042.02 0.327664 0.163832 0.986488i \(-0.447615\pi\)
0.163832 + 0.986488i \(0.447615\pi\)
\(774\) 0 0
\(775\) 21954.1 1.01757
\(776\) 0 0
\(777\) −27178.6 −1.25486
\(778\) 0 0
\(779\) −2657.73 −0.122237
\(780\) 0 0
\(781\) −50363.7 −2.30749
\(782\) 0 0
\(783\) 33977.7 1.55078
\(784\) 0 0
\(785\) −1791.34 −0.0814466
\(786\) 0 0
\(787\) 12781.6 0.578927 0.289463 0.957189i \(-0.406523\pi\)
0.289463 + 0.957189i \(0.406523\pi\)
\(788\) 0 0
\(789\) 5284.93 0.238464
\(790\) 0 0
\(791\) −16803.2 −0.755313
\(792\) 0 0
\(793\) 2288.02 0.102459
\(794\) 0 0
\(795\) 10491.0 0.468022
\(796\) 0 0
\(797\) 8827.50 0.392329 0.196164 0.980571i \(-0.437151\pi\)
0.196164 + 0.980571i \(0.437151\pi\)
\(798\) 0 0
\(799\) −5081.48 −0.224994
\(800\) 0 0
\(801\) −14053.3 −0.619913
\(802\) 0 0
\(803\) −6570.10 −0.288735
\(804\) 0 0
\(805\) 3999.19 0.175097
\(806\) 0 0
\(807\) 40400.8 1.76230
\(808\) 0 0
\(809\) 30681.6 1.33338 0.666691 0.745334i \(-0.267710\pi\)
0.666691 + 0.745334i \(0.267710\pi\)
\(810\) 0 0
\(811\) 17311.7 0.749565 0.374783 0.927113i \(-0.377717\pi\)
0.374783 + 0.927113i \(0.377717\pi\)
\(812\) 0 0
\(813\) 32928.2 1.42047
\(814\) 0 0
\(815\) 1328.40 0.0570944
\(816\) 0 0
\(817\) −1344.48 −0.0575733
\(818\) 0 0
\(819\) 17940.2 0.765421
\(820\) 0 0
\(821\) −13869.9 −0.589602 −0.294801 0.955559i \(-0.595253\pi\)
−0.294801 + 0.955559i \(0.595253\pi\)
\(822\) 0 0
\(823\) −30858.5 −1.30700 −0.653499 0.756928i \(-0.726699\pi\)
−0.653499 + 0.756928i \(0.726699\pi\)
\(824\) 0 0
\(825\) −67113.1 −2.83222
\(826\) 0 0
\(827\) −10118.6 −0.425462 −0.212731 0.977111i \(-0.568236\pi\)
−0.212731 + 0.977111i \(0.568236\pi\)
\(828\) 0 0
\(829\) 19625.2 0.822210 0.411105 0.911588i \(-0.365143\pi\)
0.411105 + 0.911588i \(0.365143\pi\)
\(830\) 0 0
\(831\) 74094.2 3.09302
\(832\) 0 0
\(833\) −4003.70 −0.166531
\(834\) 0 0
\(835\) 14078.5 0.583481
\(836\) 0 0
\(837\) −35772.8 −1.47728
\(838\) 0 0
\(839\) −19083.0 −0.785241 −0.392621 0.919701i \(-0.628431\pi\)
−0.392621 + 0.919701i \(0.628431\pi\)
\(840\) 0 0
\(841\) 12797.7 0.524731
\(842\) 0 0
\(843\) 36522.4 1.49217
\(844\) 0 0
\(845\) −4346.22 −0.176940
\(846\) 0 0
\(847\) −43101.4 −1.74850
\(848\) 0 0
\(849\) 68599.0 2.77304
\(850\) 0 0
\(851\) −24411.5 −0.983332
\(852\) 0 0
\(853\) −26666.7 −1.07040 −0.535200 0.844726i \(-0.679764\pi\)
−0.535200 + 0.844726i \(0.679764\pi\)
\(854\) 0 0
\(855\) 3700.44 0.148015
\(856\) 0 0
\(857\) 12467.5 0.496944 0.248472 0.968639i \(-0.420072\pi\)
0.248472 + 0.968639i \(0.420072\pi\)
\(858\) 0 0
\(859\) 31848.1 1.26501 0.632505 0.774557i \(-0.282027\pi\)
0.632505 + 0.774557i \(0.282027\pi\)
\(860\) 0 0
\(861\) 13528.1 0.535467
\(862\) 0 0
\(863\) 12043.9 0.475064 0.237532 0.971380i \(-0.423662\pi\)
0.237532 + 0.971380i \(0.423662\pi\)
\(864\) 0 0
\(865\) −13424.4 −0.527679
\(866\) 0 0
\(867\) −39456.2 −1.54556
\(868\) 0 0
\(869\) −81959.3 −3.19940
\(870\) 0 0
\(871\) −24897.9 −0.968582
\(872\) 0 0
\(873\) −1353.25 −0.0524636
\(874\) 0 0
\(875\) 10733.2 0.414685
\(876\) 0 0
\(877\) −1833.06 −0.0705792 −0.0352896 0.999377i \(-0.511235\pi\)
−0.0352896 + 0.999377i \(0.511235\pi\)
\(878\) 0 0
\(879\) 74981.2 2.87719
\(880\) 0 0
\(881\) −11322.0 −0.432970 −0.216485 0.976286i \(-0.569459\pi\)
−0.216485 + 0.976286i \(0.569459\pi\)
\(882\) 0 0
\(883\) 41569.1 1.58427 0.792136 0.610345i \(-0.208969\pi\)
0.792136 + 0.610345i \(0.208969\pi\)
\(884\) 0 0
\(885\) −31337.0 −1.19026
\(886\) 0 0
\(887\) −1082.37 −0.0409723 −0.0204862 0.999790i \(-0.506521\pi\)
−0.0204862 + 0.999790i \(0.506521\pi\)
\(888\) 0 0
\(889\) −18963.4 −0.715425
\(890\) 0 0
\(891\) 17237.2 0.648111
\(892\) 0 0
\(893\) −5240.75 −0.196388
\(894\) 0 0
\(895\) −16019.0 −0.598276
\(896\) 0 0
\(897\) 25287.6 0.941281
\(898\) 0 0
\(899\) −39151.3 −1.45247
\(900\) 0 0
\(901\) 5455.19 0.201708
\(902\) 0 0
\(903\) 6843.54 0.252202
\(904\) 0 0
\(905\) 12846.2 0.471847
\(906\) 0 0
\(907\) 42893.6 1.57030 0.785148 0.619308i \(-0.212587\pi\)
0.785148 + 0.619308i \(0.212587\pi\)
\(908\) 0 0
\(909\) 8529.19 0.311216
\(910\) 0 0
\(911\) 11952.0 0.434672 0.217336 0.976097i \(-0.430263\pi\)
0.217336 + 0.976097i \(0.430263\pi\)
\(912\) 0 0
\(913\) 5153.85 0.186821
\(914\) 0 0
\(915\) −2402.23 −0.0867927
\(916\) 0 0
\(917\) 28254.6 1.01750
\(918\) 0 0
\(919\) 15304.8 0.549356 0.274678 0.961536i \(-0.411429\pi\)
0.274678 + 0.961536i \(0.411429\pi\)
\(920\) 0 0
\(921\) 15668.3 0.560575
\(922\) 0 0
\(923\) 23622.9 0.842426
\(924\) 0 0
\(925\) −30388.6 −1.08019
\(926\) 0 0
\(927\) −91461.6 −3.24056
\(928\) 0 0
\(929\) −25079.2 −0.885707 −0.442854 0.896594i \(-0.646034\pi\)
−0.442854 + 0.896594i \(0.646034\pi\)
\(930\) 0 0
\(931\) −4129.19 −0.145358
\(932\) 0 0
\(933\) −90610.4 −3.17948
\(934\) 0 0
\(935\) 5443.00 0.190380
\(936\) 0 0
\(937\) 24930.3 0.869196 0.434598 0.900625i \(-0.356890\pi\)
0.434598 + 0.900625i \(0.356890\pi\)
\(938\) 0 0
\(939\) 39837.6 1.38451
\(940\) 0 0
\(941\) −13315.9 −0.461302 −0.230651 0.973037i \(-0.574086\pi\)
−0.230651 + 0.973037i \(0.574086\pi\)
\(942\) 0 0
\(943\) 12150.8 0.419601
\(944\) 0 0
\(945\) −8111.93 −0.279239
\(946\) 0 0
\(947\) 14215.0 0.487776 0.243888 0.969803i \(-0.421577\pi\)
0.243888 + 0.969803i \(0.421577\pi\)
\(948\) 0 0
\(949\) 3081.69 0.105412
\(950\) 0 0
\(951\) −8619.44 −0.293906
\(952\) 0 0
\(953\) −32263.0 −1.09664 −0.548321 0.836268i \(-0.684733\pi\)
−0.548321 + 0.836268i \(0.684733\pi\)
\(954\) 0 0
\(955\) 11820.9 0.400541
\(956\) 0 0
\(957\) 119684. 4.04268
\(958\) 0 0
\(959\) −13233.7 −0.445609
\(960\) 0 0
\(961\) 11428.7 0.383628
\(962\) 0 0
\(963\) 84110.5 2.81456
\(964\) 0 0
\(965\) −2534.66 −0.0845530
\(966\) 0 0
\(967\) −12881.5 −0.428377 −0.214188 0.976792i \(-0.568711\pi\)
−0.214188 + 0.976792i \(0.568711\pi\)
\(968\) 0 0
\(969\) 3019.68 0.100110
\(970\) 0 0
\(971\) −7956.70 −0.262969 −0.131484 0.991318i \(-0.541974\pi\)
−0.131484 + 0.991318i \(0.541974\pi\)
\(972\) 0 0
\(973\) −13454.0 −0.443282
\(974\) 0 0
\(975\) 31479.2 1.03399
\(976\) 0 0
\(977\) −31419.9 −1.02888 −0.514438 0.857528i \(-0.671999\pi\)
−0.514438 + 0.857528i \(0.671999\pi\)
\(978\) 0 0
\(979\) −21319.0 −0.695974
\(980\) 0 0
\(981\) 54620.9 1.77769
\(982\) 0 0
\(983\) 12250.4 0.397484 0.198742 0.980052i \(-0.436314\pi\)
0.198742 + 0.980052i \(0.436314\pi\)
\(984\) 0 0
\(985\) 11705.1 0.378634
\(986\) 0 0
\(987\) 26675.9 0.860289
\(988\) 0 0
\(989\) 6146.78 0.197630
\(990\) 0 0
\(991\) 25270.1 0.810022 0.405011 0.914312i \(-0.367268\pi\)
0.405011 + 0.914312i \(0.367268\pi\)
\(992\) 0 0
\(993\) −71480.3 −2.28435
\(994\) 0 0
\(995\) 4057.75 0.129286
\(996\) 0 0
\(997\) 43576.2 1.38422 0.692112 0.721790i \(-0.256680\pi\)
0.692112 + 0.721790i \(0.256680\pi\)
\(998\) 0 0
\(999\) 49516.2 1.56819
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.4.a.d.1.5 5
3.2 odd 2 1368.4.a.m.1.3 5
4.3 odd 2 304.4.a.k.1.1 5
8.3 odd 2 1216.4.a.bb.1.5 5
8.5 even 2 1216.4.a.ba.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.4.a.d.1.5 5 1.1 even 1 trivial
304.4.a.k.1.1 5 4.3 odd 2
1216.4.a.ba.1.1 5 8.5 even 2
1216.4.a.bb.1.5 5 8.3 odd 2
1368.4.a.m.1.3 5 3.2 odd 2