Properties

Label 152.4.a.d.1.3
Level $152$
Weight $4$
Character 152.1
Self dual yes
Analytic conductor $8.968$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [152,4,Mod(1,152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("152.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(152, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 152.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.96829032087\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 106x^{3} - 401x^{2} + 356x + 2112 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.22412\) of defining polynomial
Character \(\chi\) \(=\) 152.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.49563 q^{3} -15.7941 q^{5} +30.5820 q^{7} -20.7718 q^{9} +39.5545 q^{11} +80.7559 q^{13} -39.4163 q^{15} +74.9991 q^{17} +19.0000 q^{19} +76.3212 q^{21} -54.9828 q^{23} +124.455 q^{25} -119.221 q^{27} -105.853 q^{29} +245.493 q^{31} +98.7132 q^{33} -483.016 q^{35} -167.493 q^{37} +201.536 q^{39} +433.978 q^{41} +356.648 q^{43} +328.073 q^{45} -403.858 q^{47} +592.257 q^{49} +187.170 q^{51} -489.379 q^{53} -624.729 q^{55} +47.4169 q^{57} +8.75307 q^{59} -801.910 q^{61} -635.244 q^{63} -1275.47 q^{65} -917.754 q^{67} -137.216 q^{69} +104.852 q^{71} +813.135 q^{73} +310.593 q^{75} +1209.65 q^{77} -392.850 q^{79} +263.309 q^{81} -122.905 q^{83} -1184.55 q^{85} -264.169 q^{87} +15.2554 q^{89} +2469.67 q^{91} +612.659 q^{93} -300.089 q^{95} -637.620 q^{97} -821.619 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{3} + 22 q^{7} + 83 q^{9} + 6 q^{11} + 82 q^{13} + 204 q^{15} + 234 q^{17} + 95 q^{19} + 308 q^{21} - 60 q^{23} + 549 q^{25} - 190 q^{27} + 210 q^{29} - 224 q^{31} + 704 q^{33} + 42 q^{35} + 614 q^{37}+ \cdots + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.49563 0.480284 0.240142 0.970738i \(-0.422806\pi\)
0.240142 + 0.970738i \(0.422806\pi\)
\(4\) 0 0
\(5\) −15.7941 −1.41267 −0.706336 0.707877i \(-0.749653\pi\)
−0.706336 + 0.707877i \(0.749653\pi\)
\(6\) 0 0
\(7\) 30.5820 1.65127 0.825636 0.564203i \(-0.190817\pi\)
0.825636 + 0.564203i \(0.190817\pi\)
\(8\) 0 0
\(9\) −20.7718 −0.769328
\(10\) 0 0
\(11\) 39.5545 1.08419 0.542097 0.840316i \(-0.317631\pi\)
0.542097 + 0.840316i \(0.317631\pi\)
\(12\) 0 0
\(13\) 80.7559 1.72290 0.861448 0.507846i \(-0.169558\pi\)
0.861448 + 0.507846i \(0.169558\pi\)
\(14\) 0 0
\(15\) −39.4163 −0.678483
\(16\) 0 0
\(17\) 74.9991 1.07000 0.534998 0.844853i \(-0.320312\pi\)
0.534998 + 0.844853i \(0.320312\pi\)
\(18\) 0 0
\(19\) 19.0000 0.229416
\(20\) 0 0
\(21\) 76.3212 0.793079
\(22\) 0 0
\(23\) −54.9828 −0.498465 −0.249233 0.968444i \(-0.580178\pi\)
−0.249233 + 0.968444i \(0.580178\pi\)
\(24\) 0 0
\(25\) 124.455 0.995639
\(26\) 0 0
\(27\) −119.221 −0.849779
\(28\) 0 0
\(29\) −105.853 −0.677806 −0.338903 0.940821i \(-0.610056\pi\)
−0.338903 + 0.940821i \(0.610056\pi\)
\(30\) 0 0
\(31\) 245.493 1.42232 0.711159 0.703031i \(-0.248171\pi\)
0.711159 + 0.703031i \(0.248171\pi\)
\(32\) 0 0
\(33\) 98.7132 0.520720
\(34\) 0 0
\(35\) −483.016 −2.33270
\(36\) 0 0
\(37\) −167.493 −0.744208 −0.372104 0.928191i \(-0.621363\pi\)
−0.372104 + 0.928191i \(0.621363\pi\)
\(38\) 0 0
\(39\) 201.536 0.827479
\(40\) 0 0
\(41\) 433.978 1.65307 0.826536 0.562883i \(-0.190308\pi\)
0.826536 + 0.562883i \(0.190308\pi\)
\(42\) 0 0
\(43\) 356.648 1.26485 0.632423 0.774623i \(-0.282061\pi\)
0.632423 + 0.774623i \(0.282061\pi\)
\(44\) 0 0
\(45\) 328.073 1.08681
\(46\) 0 0
\(47\) −403.858 −1.25338 −0.626688 0.779270i \(-0.715590\pi\)
−0.626688 + 0.779270i \(0.715590\pi\)
\(48\) 0 0
\(49\) 592.257 1.72670
\(50\) 0 0
\(51\) 187.170 0.513902
\(52\) 0 0
\(53\) −489.379 −1.26833 −0.634163 0.773199i \(-0.718655\pi\)
−0.634163 + 0.773199i \(0.718655\pi\)
\(54\) 0 0
\(55\) −624.729 −1.53161
\(56\) 0 0
\(57\) 47.4169 0.110185
\(58\) 0 0
\(59\) 8.75307 0.0193144 0.00965722 0.999953i \(-0.496926\pi\)
0.00965722 + 0.999953i \(0.496926\pi\)
\(60\) 0 0
\(61\) −801.910 −1.68318 −0.841590 0.540117i \(-0.818380\pi\)
−0.841590 + 0.540117i \(0.818380\pi\)
\(62\) 0 0
\(63\) −635.244 −1.27037
\(64\) 0 0
\(65\) −1275.47 −2.43388
\(66\) 0 0
\(67\) −917.754 −1.67345 −0.836727 0.547619i \(-0.815534\pi\)
−0.836727 + 0.547619i \(0.815534\pi\)
\(68\) 0 0
\(69\) −137.216 −0.239405
\(70\) 0 0
\(71\) 104.852 0.175263 0.0876317 0.996153i \(-0.472070\pi\)
0.0876317 + 0.996153i \(0.472070\pi\)
\(72\) 0 0
\(73\) 813.135 1.30370 0.651851 0.758347i \(-0.273993\pi\)
0.651851 + 0.758347i \(0.273993\pi\)
\(74\) 0 0
\(75\) 310.593 0.478189
\(76\) 0 0
\(77\) 1209.65 1.79030
\(78\) 0 0
\(79\) −392.850 −0.559481 −0.279741 0.960076i \(-0.590249\pi\)
−0.279741 + 0.960076i \(0.590249\pi\)
\(80\) 0 0
\(81\) 263.309 0.361193
\(82\) 0 0
\(83\) −122.905 −0.162537 −0.0812683 0.996692i \(-0.525897\pi\)
−0.0812683 + 0.996692i \(0.525897\pi\)
\(84\) 0 0
\(85\) −1184.55 −1.51155
\(86\) 0 0
\(87\) −264.169 −0.325539
\(88\) 0 0
\(89\) 15.2554 0.0181693 0.00908465 0.999959i \(-0.497108\pi\)
0.00908465 + 0.999959i \(0.497108\pi\)
\(90\) 0 0
\(91\) 2469.67 2.84497
\(92\) 0 0
\(93\) 612.659 0.683116
\(94\) 0 0
\(95\) −300.089 −0.324089
\(96\) 0 0
\(97\) −637.620 −0.667428 −0.333714 0.942674i \(-0.608302\pi\)
−0.333714 + 0.942674i \(0.608302\pi\)
\(98\) 0 0
\(99\) −821.619 −0.834100
\(100\) 0 0
\(101\) 230.764 0.227345 0.113673 0.993518i \(-0.463738\pi\)
0.113673 + 0.993518i \(0.463738\pi\)
\(102\) 0 0
\(103\) 56.5197 0.0540684 0.0270342 0.999635i \(-0.491394\pi\)
0.0270342 + 0.999635i \(0.491394\pi\)
\(104\) 0 0
\(105\) −1205.43 −1.12036
\(106\) 0 0
\(107\) 413.201 0.373324 0.186662 0.982424i \(-0.440233\pi\)
0.186662 + 0.982424i \(0.440233\pi\)
\(108\) 0 0
\(109\) 677.546 0.595387 0.297693 0.954662i \(-0.403783\pi\)
0.297693 + 0.954662i \(0.403783\pi\)
\(110\) 0 0
\(111\) −418.000 −0.357431
\(112\) 0 0
\(113\) −368.845 −0.307062 −0.153531 0.988144i \(-0.549064\pi\)
−0.153531 + 0.988144i \(0.549064\pi\)
\(114\) 0 0
\(115\) 868.406 0.704167
\(116\) 0 0
\(117\) −1677.45 −1.32547
\(118\) 0 0
\(119\) 2293.62 1.76686
\(120\) 0 0
\(121\) 233.557 0.175475
\(122\) 0 0
\(123\) 1083.05 0.793944
\(124\) 0 0
\(125\) 8.60906 0.00616014
\(126\) 0 0
\(127\) 225.445 0.157519 0.0787597 0.996894i \(-0.474904\pi\)
0.0787597 + 0.996894i \(0.474904\pi\)
\(128\) 0 0
\(129\) 890.061 0.607485
\(130\) 0 0
\(131\) −1426.63 −0.951490 −0.475745 0.879583i \(-0.657821\pi\)
−0.475745 + 0.879583i \(0.657821\pi\)
\(132\) 0 0
\(133\) 581.058 0.378828
\(134\) 0 0
\(135\) 1882.99 1.20046
\(136\) 0 0
\(137\) 2724.50 1.69905 0.849525 0.527549i \(-0.176889\pi\)
0.849525 + 0.527549i \(0.176889\pi\)
\(138\) 0 0
\(139\) −1366.68 −0.833961 −0.416980 0.908916i \(-0.636912\pi\)
−0.416980 + 0.908916i \(0.636912\pi\)
\(140\) 0 0
\(141\) −1007.88 −0.601976
\(142\) 0 0
\(143\) 3194.26 1.86795
\(144\) 0 0
\(145\) 1671.85 0.957517
\(146\) 0 0
\(147\) 1478.05 0.829305
\(148\) 0 0
\(149\) 154.205 0.0847848 0.0423924 0.999101i \(-0.486502\pi\)
0.0423924 + 0.999101i \(0.486502\pi\)
\(150\) 0 0
\(151\) 935.176 0.503997 0.251998 0.967728i \(-0.418912\pi\)
0.251998 + 0.967728i \(0.418912\pi\)
\(152\) 0 0
\(153\) −1557.87 −0.823178
\(154\) 0 0
\(155\) −3877.35 −2.00927
\(156\) 0 0
\(157\) −3229.12 −1.64148 −0.820739 0.571303i \(-0.806438\pi\)
−0.820739 + 0.571303i \(0.806438\pi\)
\(158\) 0 0
\(159\) −1221.31 −0.609157
\(160\) 0 0
\(161\) −1681.48 −0.823101
\(162\) 0 0
\(163\) 2588.37 1.24379 0.621893 0.783102i \(-0.286364\pi\)
0.621893 + 0.783102i \(0.286364\pi\)
\(164\) 0 0
\(165\) −1559.09 −0.735606
\(166\) 0 0
\(167\) −190.389 −0.0882202 −0.0441101 0.999027i \(-0.514045\pi\)
−0.0441101 + 0.999027i \(0.514045\pi\)
\(168\) 0 0
\(169\) 4324.51 1.96837
\(170\) 0 0
\(171\) −394.665 −0.176496
\(172\) 0 0
\(173\) −2375.41 −1.04393 −0.521964 0.852968i \(-0.674800\pi\)
−0.521964 + 0.852968i \(0.674800\pi\)
\(174\) 0 0
\(175\) 3806.08 1.64407
\(176\) 0 0
\(177\) 21.8444 0.00927641
\(178\) 0 0
\(179\) −2121.18 −0.885723 −0.442862 0.896590i \(-0.646037\pi\)
−0.442862 + 0.896590i \(0.646037\pi\)
\(180\) 0 0
\(181\) 2023.93 0.831148 0.415574 0.909559i \(-0.363581\pi\)
0.415574 + 0.909559i \(0.363581\pi\)
\(182\) 0 0
\(183\) −2001.27 −0.808404
\(184\) 0 0
\(185\) 2645.41 1.05132
\(186\) 0 0
\(187\) 2966.55 1.16008
\(188\) 0 0
\(189\) −3646.01 −1.40322
\(190\) 0 0
\(191\) −2328.39 −0.882074 −0.441037 0.897489i \(-0.645389\pi\)
−0.441037 + 0.897489i \(0.645389\pi\)
\(192\) 0 0
\(193\) 351.034 0.130922 0.0654612 0.997855i \(-0.479148\pi\)
0.0654612 + 0.997855i \(0.479148\pi\)
\(194\) 0 0
\(195\) −3183.10 −1.16896
\(196\) 0 0
\(197\) 1820.58 0.658430 0.329215 0.944255i \(-0.393216\pi\)
0.329215 + 0.944255i \(0.393216\pi\)
\(198\) 0 0
\(199\) 94.4932 0.0336605 0.0168303 0.999858i \(-0.494643\pi\)
0.0168303 + 0.999858i \(0.494643\pi\)
\(200\) 0 0
\(201\) −2290.37 −0.803733
\(202\) 0 0
\(203\) −3237.19 −1.11924
\(204\) 0 0
\(205\) −6854.31 −2.33525
\(206\) 0 0
\(207\) 1142.09 0.383483
\(208\) 0 0
\(209\) 751.535 0.248731
\(210\) 0 0
\(211\) 1271.36 0.414805 0.207402 0.978256i \(-0.433499\pi\)
0.207402 + 0.978256i \(0.433499\pi\)
\(212\) 0 0
\(213\) 261.673 0.0841761
\(214\) 0 0
\(215\) −5632.96 −1.78681
\(216\) 0 0
\(217\) 7507.66 2.34863
\(218\) 0 0
\(219\) 2029.28 0.626147
\(220\) 0 0
\(221\) 6056.61 1.84349
\(222\) 0 0
\(223\) −804.197 −0.241493 −0.120747 0.992683i \(-0.538529\pi\)
−0.120747 + 0.992683i \(0.538529\pi\)
\(224\) 0 0
\(225\) −2585.16 −0.765973
\(226\) 0 0
\(227\) −5727.99 −1.67480 −0.837401 0.546588i \(-0.815926\pi\)
−0.837401 + 0.546588i \(0.815926\pi\)
\(228\) 0 0
\(229\) −1556.61 −0.449185 −0.224592 0.974453i \(-0.572105\pi\)
−0.224592 + 0.974453i \(0.572105\pi\)
\(230\) 0 0
\(231\) 3018.85 0.859850
\(232\) 0 0
\(233\) −4819.55 −1.35511 −0.677553 0.735474i \(-0.736959\pi\)
−0.677553 + 0.735474i \(0.736959\pi\)
\(234\) 0 0
\(235\) 6378.59 1.77061
\(236\) 0 0
\(237\) −980.406 −0.268710
\(238\) 0 0
\(239\) −5514.00 −1.49235 −0.746174 0.665751i \(-0.768111\pi\)
−0.746174 + 0.665751i \(0.768111\pi\)
\(240\) 0 0
\(241\) −213.424 −0.0570451 −0.0285225 0.999593i \(-0.509080\pi\)
−0.0285225 + 0.999593i \(0.509080\pi\)
\(242\) 0 0
\(243\) 3876.08 1.02325
\(244\) 0 0
\(245\) −9354.20 −2.43926
\(246\) 0 0
\(247\) 1534.36 0.395259
\(248\) 0 0
\(249\) −306.724 −0.0780636
\(250\) 0 0
\(251\) 1606.05 0.403876 0.201938 0.979398i \(-0.435276\pi\)
0.201938 + 0.979398i \(0.435276\pi\)
\(252\) 0 0
\(253\) −2174.81 −0.540432
\(254\) 0 0
\(255\) −2956.18 −0.725974
\(256\) 0 0
\(257\) 2127.48 0.516377 0.258188 0.966095i \(-0.416874\pi\)
0.258188 + 0.966095i \(0.416874\pi\)
\(258\) 0 0
\(259\) −5122.27 −1.22889
\(260\) 0 0
\(261\) 2198.76 0.521455
\(262\) 0 0
\(263\) −647.537 −0.151821 −0.0759103 0.997115i \(-0.524186\pi\)
−0.0759103 + 0.997115i \(0.524186\pi\)
\(264\) 0 0
\(265\) 7729.31 1.79173
\(266\) 0 0
\(267\) 38.0717 0.00872642
\(268\) 0 0
\(269\) −2967.65 −0.672642 −0.336321 0.941747i \(-0.609183\pi\)
−0.336321 + 0.941747i \(0.609183\pi\)
\(270\) 0 0
\(271\) −8060.51 −1.80679 −0.903397 0.428806i \(-0.858934\pi\)
−0.903397 + 0.428806i \(0.858934\pi\)
\(272\) 0 0
\(273\) 6163.38 1.36639
\(274\) 0 0
\(275\) 4922.75 1.07947
\(276\) 0 0
\(277\) 1297.72 0.281489 0.140745 0.990046i \(-0.455050\pi\)
0.140745 + 0.990046i \(0.455050\pi\)
\(278\) 0 0
\(279\) −5099.34 −1.09423
\(280\) 0 0
\(281\) 5629.57 1.19513 0.597566 0.801819i \(-0.296134\pi\)
0.597566 + 0.801819i \(0.296134\pi\)
\(282\) 0 0
\(283\) −6674.39 −1.40195 −0.700974 0.713187i \(-0.747251\pi\)
−0.700974 + 0.713187i \(0.747251\pi\)
\(284\) 0 0
\(285\) −748.909 −0.155655
\(286\) 0 0
\(287\) 13271.9 2.72967
\(288\) 0 0
\(289\) 711.859 0.144893
\(290\) 0 0
\(291\) −1591.26 −0.320555
\(292\) 0 0
\(293\) 4239.27 0.845259 0.422630 0.906302i \(-0.361107\pi\)
0.422630 + 0.906302i \(0.361107\pi\)
\(294\) 0 0
\(295\) −138.247 −0.0272850
\(296\) 0 0
\(297\) −4715.71 −0.921325
\(298\) 0 0
\(299\) −4440.18 −0.858803
\(300\) 0 0
\(301\) 10907.0 2.08860
\(302\) 0 0
\(303\) 575.901 0.109190
\(304\) 0 0
\(305\) 12665.5 2.37778
\(306\) 0 0
\(307\) −3884.16 −0.722087 −0.361043 0.932549i \(-0.617579\pi\)
−0.361043 + 0.932549i \(0.617579\pi\)
\(308\) 0 0
\(309\) 141.052 0.0259682
\(310\) 0 0
\(311\) −5303.28 −0.966950 −0.483475 0.875358i \(-0.660626\pi\)
−0.483475 + 0.875358i \(0.660626\pi\)
\(312\) 0 0
\(313\) −6241.98 −1.12721 −0.563607 0.826043i \(-0.690587\pi\)
−0.563607 + 0.826043i \(0.690587\pi\)
\(314\) 0 0
\(315\) 10033.1 1.79461
\(316\) 0 0
\(317\) 1307.84 0.231722 0.115861 0.993265i \(-0.463037\pi\)
0.115861 + 0.993265i \(0.463037\pi\)
\(318\) 0 0
\(319\) −4186.95 −0.734872
\(320\) 0 0
\(321\) 1031.20 0.179301
\(322\) 0 0
\(323\) 1424.98 0.245474
\(324\) 0 0
\(325\) 10050.5 1.71538
\(326\) 0 0
\(327\) 1690.90 0.285954
\(328\) 0 0
\(329\) −12350.8 −2.06966
\(330\) 0 0
\(331\) 6829.84 1.13415 0.567073 0.823668i \(-0.308076\pi\)
0.567073 + 0.823668i \(0.308076\pi\)
\(332\) 0 0
\(333\) 3479.14 0.572540
\(334\) 0 0
\(335\) 14495.1 2.36404
\(336\) 0 0
\(337\) −2106.49 −0.340498 −0.170249 0.985401i \(-0.554457\pi\)
−0.170249 + 0.985401i \(0.554457\pi\)
\(338\) 0 0
\(339\) −920.499 −0.147477
\(340\) 0 0
\(341\) 9710.35 1.54207
\(342\) 0 0
\(343\) 7622.78 1.19998
\(344\) 0 0
\(345\) 2167.22 0.338200
\(346\) 0 0
\(347\) −1126.07 −0.174209 −0.0871046 0.996199i \(-0.527761\pi\)
−0.0871046 + 0.996199i \(0.527761\pi\)
\(348\) 0 0
\(349\) −3089.62 −0.473878 −0.236939 0.971525i \(-0.576144\pi\)
−0.236939 + 0.971525i \(0.576144\pi\)
\(350\) 0 0
\(351\) −9627.77 −1.46408
\(352\) 0 0
\(353\) −4124.98 −0.621956 −0.310978 0.950417i \(-0.600657\pi\)
−0.310978 + 0.950417i \(0.600657\pi\)
\(354\) 0 0
\(355\) −1656.06 −0.247590
\(356\) 0 0
\(357\) 5724.02 0.848592
\(358\) 0 0
\(359\) −2914.71 −0.428502 −0.214251 0.976779i \(-0.568731\pi\)
−0.214251 + 0.976779i \(0.568731\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 0 0
\(363\) 582.870 0.0842775
\(364\) 0 0
\(365\) −12842.8 −1.84170
\(366\) 0 0
\(367\) 8029.35 1.14204 0.571020 0.820936i \(-0.306548\pi\)
0.571020 + 0.820936i \(0.306548\pi\)
\(368\) 0 0
\(369\) −9014.52 −1.27175
\(370\) 0 0
\(371\) −14966.2 −2.09435
\(372\) 0 0
\(373\) 3620.93 0.502640 0.251320 0.967904i \(-0.419135\pi\)
0.251320 + 0.967904i \(0.419135\pi\)
\(374\) 0 0
\(375\) 21.4850 0.00295862
\(376\) 0 0
\(377\) −8548.23 −1.16779
\(378\) 0 0
\(379\) 4972.26 0.673899 0.336949 0.941523i \(-0.390605\pi\)
0.336949 + 0.941523i \(0.390605\pi\)
\(380\) 0 0
\(381\) 562.625 0.0756540
\(382\) 0 0
\(383\) 11226.8 1.49781 0.748905 0.662678i \(-0.230580\pi\)
0.748905 + 0.662678i \(0.230580\pi\)
\(384\) 0 0
\(385\) −19105.4 −2.52910
\(386\) 0 0
\(387\) −7408.25 −0.973081
\(388\) 0 0
\(389\) −5501.50 −0.717063 −0.358531 0.933518i \(-0.616722\pi\)
−0.358531 + 0.933518i \(0.616722\pi\)
\(390\) 0 0
\(391\) −4123.66 −0.533356
\(392\) 0 0
\(393\) −3560.33 −0.456985
\(394\) 0 0
\(395\) 6204.72 0.790363
\(396\) 0 0
\(397\) −8595.21 −1.08660 −0.543301 0.839538i \(-0.682826\pi\)
−0.543301 + 0.839538i \(0.682826\pi\)
\(398\) 0 0
\(399\) 1450.10 0.181945
\(400\) 0 0
\(401\) 8690.87 1.08230 0.541149 0.840927i \(-0.317990\pi\)
0.541149 + 0.840927i \(0.317990\pi\)
\(402\) 0 0
\(403\) 19825.0 2.45051
\(404\) 0 0
\(405\) −4158.75 −0.510246
\(406\) 0 0
\(407\) −6625.10 −0.806865
\(408\) 0 0
\(409\) 866.231 0.104725 0.0523623 0.998628i \(-0.483325\pi\)
0.0523623 + 0.998628i \(0.483325\pi\)
\(410\) 0 0
\(411\) 6799.34 0.816026
\(412\) 0 0
\(413\) 267.686 0.0318934
\(414\) 0 0
\(415\) 1941.17 0.229611
\(416\) 0 0
\(417\) −3410.73 −0.400538
\(418\) 0 0
\(419\) 3305.35 0.385387 0.192693 0.981259i \(-0.438278\pi\)
0.192693 + 0.981259i \(0.438278\pi\)
\(420\) 0 0
\(421\) −9719.31 −1.12515 −0.562577 0.826745i \(-0.690190\pi\)
−0.562577 + 0.826745i \(0.690190\pi\)
\(422\) 0 0
\(423\) 8388.87 0.964257
\(424\) 0 0
\(425\) 9334.00 1.06533
\(426\) 0 0
\(427\) −24524.0 −2.77939
\(428\) 0 0
\(429\) 7971.67 0.897147
\(430\) 0 0
\(431\) −3282.60 −0.366862 −0.183431 0.983033i \(-0.558720\pi\)
−0.183431 + 0.983033i \(0.558720\pi\)
\(432\) 0 0
\(433\) 14447.4 1.60346 0.801728 0.597690i \(-0.203915\pi\)
0.801728 + 0.597690i \(0.203915\pi\)
\(434\) 0 0
\(435\) 4172.32 0.459880
\(436\) 0 0
\(437\) −1044.67 −0.114356
\(438\) 0 0
\(439\) 13632.1 1.48206 0.741028 0.671474i \(-0.234339\pi\)
0.741028 + 0.671474i \(0.234339\pi\)
\(440\) 0 0
\(441\) −12302.3 −1.32840
\(442\) 0 0
\(443\) −4906.36 −0.526203 −0.263102 0.964768i \(-0.584745\pi\)
−0.263102 + 0.964768i \(0.584745\pi\)
\(444\) 0 0
\(445\) −240.946 −0.0256672
\(446\) 0 0
\(447\) 384.837 0.0407207
\(448\) 0 0
\(449\) 10710.2 1.12571 0.562856 0.826555i \(-0.309703\pi\)
0.562856 + 0.826555i \(0.309703\pi\)
\(450\) 0 0
\(451\) 17165.8 1.79225
\(452\) 0 0
\(453\) 2333.85 0.242061
\(454\) 0 0
\(455\) −39006.4 −4.01900
\(456\) 0 0
\(457\) −11451.2 −1.17214 −0.586069 0.810261i \(-0.699325\pi\)
−0.586069 + 0.810261i \(0.699325\pi\)
\(458\) 0 0
\(459\) −8941.44 −0.909261
\(460\) 0 0
\(461\) 9681.27 0.978095 0.489047 0.872257i \(-0.337345\pi\)
0.489047 + 0.872257i \(0.337345\pi\)
\(462\) 0 0
\(463\) −10252.5 −1.02911 −0.514553 0.857459i \(-0.672042\pi\)
−0.514553 + 0.857459i \(0.672042\pi\)
\(464\) 0 0
\(465\) −9676.42 −0.965018
\(466\) 0 0
\(467\) 3693.37 0.365972 0.182986 0.983116i \(-0.441424\pi\)
0.182986 + 0.983116i \(0.441424\pi\)
\(468\) 0 0
\(469\) −28066.7 −2.76333
\(470\) 0 0
\(471\) −8058.69 −0.788375
\(472\) 0 0
\(473\) 14107.0 1.37134
\(474\) 0 0
\(475\) 2364.64 0.228415
\(476\) 0 0
\(477\) 10165.3 0.975759
\(478\) 0 0
\(479\) −1875.00 −0.178854 −0.0894271 0.995993i \(-0.528504\pi\)
−0.0894271 + 0.995993i \(0.528504\pi\)
\(480\) 0 0
\(481\) −13526.0 −1.28219
\(482\) 0 0
\(483\) −4196.35 −0.395322
\(484\) 0 0
\(485\) 10070.7 0.942857
\(486\) 0 0
\(487\) −11284.2 −1.04997 −0.524986 0.851111i \(-0.675929\pi\)
−0.524986 + 0.851111i \(0.675929\pi\)
\(488\) 0 0
\(489\) 6459.61 0.597370
\(490\) 0 0
\(491\) 1073.04 0.0986261 0.0493130 0.998783i \(-0.484297\pi\)
0.0493130 + 0.998783i \(0.484297\pi\)
\(492\) 0 0
\(493\) −7938.86 −0.725250
\(494\) 0 0
\(495\) 12976.8 1.17831
\(496\) 0 0
\(497\) 3206.60 0.289407
\(498\) 0 0
\(499\) −7055.10 −0.632925 −0.316462 0.948605i \(-0.602495\pi\)
−0.316462 + 0.948605i \(0.602495\pi\)
\(500\) 0 0
\(501\) −475.141 −0.0423707
\(502\) 0 0
\(503\) 31.3527 0.00277922 0.00138961 0.999999i \(-0.499558\pi\)
0.00138961 + 0.999999i \(0.499558\pi\)
\(504\) 0 0
\(505\) −3644.72 −0.321164
\(506\) 0 0
\(507\) 10792.4 0.945376
\(508\) 0 0
\(509\) −11355.8 −0.988875 −0.494437 0.869213i \(-0.664626\pi\)
−0.494437 + 0.869213i \(0.664626\pi\)
\(510\) 0 0
\(511\) 24867.3 2.15277
\(512\) 0 0
\(513\) −2265.19 −0.194953
\(514\) 0 0
\(515\) −892.680 −0.0763809
\(516\) 0 0
\(517\) −15974.4 −1.35890
\(518\) 0 0
\(519\) −5928.15 −0.501381
\(520\) 0 0
\(521\) −21111.7 −1.77528 −0.887640 0.460539i \(-0.847656\pi\)
−0.887640 + 0.460539i \(0.847656\pi\)
\(522\) 0 0
\(523\) 2439.98 0.204002 0.102001 0.994784i \(-0.467476\pi\)
0.102001 + 0.994784i \(0.467476\pi\)
\(524\) 0 0
\(525\) 9498.55 0.789620
\(526\) 0 0
\(527\) 18411.7 1.52188
\(528\) 0 0
\(529\) −9143.90 −0.751533
\(530\) 0 0
\(531\) −181.817 −0.0148591
\(532\) 0 0
\(533\) 35046.3 2.84807
\(534\) 0 0
\(535\) −6526.15 −0.527383
\(536\) 0 0
\(537\) −5293.68 −0.425398
\(538\) 0 0
\(539\) 23426.4 1.87207
\(540\) 0 0
\(541\) 15539.3 1.23491 0.617456 0.786605i \(-0.288163\pi\)
0.617456 + 0.786605i \(0.288163\pi\)
\(542\) 0 0
\(543\) 5050.98 0.399187
\(544\) 0 0
\(545\) −10701.3 −0.841085
\(546\) 0 0
\(547\) −10699.1 −0.836306 −0.418153 0.908377i \(-0.637322\pi\)
−0.418153 + 0.908377i \(0.637322\pi\)
\(548\) 0 0
\(549\) 16657.1 1.29492
\(550\) 0 0
\(551\) −2011.20 −0.155499
\(552\) 0 0
\(553\) −12014.1 −0.923856
\(554\) 0 0
\(555\) 6601.95 0.504932
\(556\) 0 0
\(557\) 12253.5 0.932129 0.466064 0.884751i \(-0.345672\pi\)
0.466064 + 0.884751i \(0.345672\pi\)
\(558\) 0 0
\(559\) 28801.4 2.17920
\(560\) 0 0
\(561\) 7403.40 0.557169
\(562\) 0 0
\(563\) 2109.18 0.157889 0.0789445 0.996879i \(-0.474845\pi\)
0.0789445 + 0.996879i \(0.474845\pi\)
\(564\) 0 0
\(565\) 5825.59 0.433778
\(566\) 0 0
\(567\) 8052.52 0.596427
\(568\) 0 0
\(569\) 3099.14 0.228335 0.114167 0.993462i \(-0.463580\pi\)
0.114167 + 0.993462i \(0.463580\pi\)
\(570\) 0 0
\(571\) 6643.00 0.486867 0.243433 0.969918i \(-0.421726\pi\)
0.243433 + 0.969918i \(0.421726\pi\)
\(572\) 0 0
\(573\) −5810.79 −0.423646
\(574\) 0 0
\(575\) −6842.87 −0.496291
\(576\) 0 0
\(577\) −6116.00 −0.441269 −0.220635 0.975357i \(-0.570813\pi\)
−0.220635 + 0.975357i \(0.570813\pi\)
\(578\) 0 0
\(579\) 876.051 0.0628799
\(580\) 0 0
\(581\) −3758.67 −0.268392
\(582\) 0 0
\(583\) −19357.1 −1.37511
\(584\) 0 0
\(585\) 26493.9 1.87245
\(586\) 0 0
\(587\) −19056.8 −1.33996 −0.669981 0.742378i \(-0.733698\pi\)
−0.669981 + 0.742378i \(0.733698\pi\)
\(588\) 0 0
\(589\) 4664.37 0.326302
\(590\) 0 0
\(591\) 4543.48 0.316233
\(592\) 0 0
\(593\) 22651.4 1.56860 0.784301 0.620380i \(-0.213022\pi\)
0.784301 + 0.620380i \(0.213022\pi\)
\(594\) 0 0
\(595\) −36225.8 −2.49599
\(596\) 0 0
\(597\) 235.820 0.0161666
\(598\) 0 0
\(599\) −22822.3 −1.55675 −0.778377 0.627797i \(-0.783957\pi\)
−0.778377 + 0.627797i \(0.783957\pi\)
\(600\) 0 0
\(601\) 22694.1 1.54028 0.770141 0.637873i \(-0.220186\pi\)
0.770141 + 0.637873i \(0.220186\pi\)
\(602\) 0 0
\(603\) 19063.4 1.28744
\(604\) 0 0
\(605\) −3688.83 −0.247888
\(606\) 0 0
\(607\) 14021.1 0.937561 0.468781 0.883315i \(-0.344693\pi\)
0.468781 + 0.883315i \(0.344693\pi\)
\(608\) 0 0
\(609\) −8078.81 −0.537553
\(610\) 0 0
\(611\) −32613.9 −2.15944
\(612\) 0 0
\(613\) −4842.03 −0.319034 −0.159517 0.987195i \(-0.550994\pi\)
−0.159517 + 0.987195i \(0.550994\pi\)
\(614\) 0 0
\(615\) −17105.8 −1.12158
\(616\) 0 0
\(617\) 10369.8 0.676616 0.338308 0.941035i \(-0.390145\pi\)
0.338308 + 0.941035i \(0.390145\pi\)
\(618\) 0 0
\(619\) −21706.1 −1.40944 −0.704720 0.709485i \(-0.748928\pi\)
−0.704720 + 0.709485i \(0.748928\pi\)
\(620\) 0 0
\(621\) 6555.08 0.423585
\(622\) 0 0
\(623\) 466.540 0.0300024
\(624\) 0 0
\(625\) −15692.8 −1.00434
\(626\) 0 0
\(627\) 1875.55 0.119461
\(628\) 0 0
\(629\) −12561.8 −0.796300
\(630\) 0 0
\(631\) 2159.37 0.136233 0.0681167 0.997677i \(-0.478301\pi\)
0.0681167 + 0.997677i \(0.478301\pi\)
\(632\) 0 0
\(633\) 3172.83 0.199224
\(634\) 0 0
\(635\) −3560.70 −0.222523
\(636\) 0 0
\(637\) 47828.3 2.97492
\(638\) 0 0
\(639\) −2177.98 −0.134835
\(640\) 0 0
\(641\) 13128.4 0.808956 0.404478 0.914548i \(-0.367453\pi\)
0.404478 + 0.914548i \(0.367453\pi\)
\(642\) 0 0
\(643\) 19778.4 1.21304 0.606520 0.795068i \(-0.292565\pi\)
0.606520 + 0.795068i \(0.292565\pi\)
\(644\) 0 0
\(645\) −14057.8 −0.858176
\(646\) 0 0
\(647\) 25540.6 1.55194 0.775969 0.630771i \(-0.217261\pi\)
0.775969 + 0.630771i \(0.217261\pi\)
\(648\) 0 0
\(649\) 346.223 0.0209406
\(650\) 0 0
\(651\) 18736.3 1.12801
\(652\) 0 0
\(653\) 28195.4 1.68969 0.844847 0.535008i \(-0.179691\pi\)
0.844847 + 0.535008i \(0.179691\pi\)
\(654\) 0 0
\(655\) 22532.4 1.34414
\(656\) 0 0
\(657\) −16890.3 −1.00297
\(658\) 0 0
\(659\) 12042.9 0.711876 0.355938 0.934510i \(-0.384161\pi\)
0.355938 + 0.934510i \(0.384161\pi\)
\(660\) 0 0
\(661\) 20530.6 1.20809 0.604044 0.796951i \(-0.293555\pi\)
0.604044 + 0.796951i \(0.293555\pi\)
\(662\) 0 0
\(663\) 15115.0 0.885399
\(664\) 0 0
\(665\) −9177.31 −0.535159
\(666\) 0 0
\(667\) 5820.08 0.337863
\(668\) 0 0
\(669\) −2006.98 −0.115985
\(670\) 0 0
\(671\) −31719.1 −1.82489
\(672\) 0 0
\(673\) −13865.1 −0.794143 −0.397072 0.917788i \(-0.629974\pi\)
−0.397072 + 0.917788i \(0.629974\pi\)
\(674\) 0 0
\(675\) −14837.6 −0.846074
\(676\) 0 0
\(677\) 33998.6 1.93009 0.965047 0.262077i \(-0.0844076\pi\)
0.965047 + 0.262077i \(0.0844076\pi\)
\(678\) 0 0
\(679\) −19499.7 −1.10211
\(680\) 0 0
\(681\) −14294.9 −0.804380
\(682\) 0 0
\(683\) 12811.9 0.717767 0.358884 0.933382i \(-0.383158\pi\)
0.358884 + 0.933382i \(0.383158\pi\)
\(684\) 0 0
\(685\) −43031.2 −2.40020
\(686\) 0 0
\(687\) −3884.71 −0.215736
\(688\) 0 0
\(689\) −39520.2 −2.18519
\(690\) 0 0
\(691\) −18409.1 −1.01348 −0.506739 0.862099i \(-0.669149\pi\)
−0.506739 + 0.862099i \(0.669149\pi\)
\(692\) 0 0
\(693\) −25126.7 −1.37733
\(694\) 0 0
\(695\) 21585.6 1.17811
\(696\) 0 0
\(697\) 32547.9 1.76878
\(698\) 0 0
\(699\) −12027.8 −0.650835
\(700\) 0 0
\(701\) −5403.16 −0.291119 −0.145560 0.989349i \(-0.546498\pi\)
−0.145560 + 0.989349i \(0.546498\pi\)
\(702\) 0 0
\(703\) −3182.37 −0.170733
\(704\) 0 0
\(705\) 15918.6 0.850394
\(706\) 0 0
\(707\) 7057.22 0.375409
\(708\) 0 0
\(709\) −10920.3 −0.578448 −0.289224 0.957261i \(-0.593397\pi\)
−0.289224 + 0.957261i \(0.593397\pi\)
\(710\) 0 0
\(711\) 8160.21 0.430425
\(712\) 0 0
\(713\) −13497.9 −0.708976
\(714\) 0 0
\(715\) −50450.5 −2.63880
\(716\) 0 0
\(717\) −13760.9 −0.716750
\(718\) 0 0
\(719\) −13208.7 −0.685121 −0.342560 0.939496i \(-0.611294\pi\)
−0.342560 + 0.939496i \(0.611294\pi\)
\(720\) 0 0
\(721\) 1728.48 0.0892817
\(722\) 0 0
\(723\) −532.627 −0.0273978
\(724\) 0 0
\(725\) −13173.9 −0.674850
\(726\) 0 0
\(727\) −36346.1 −1.85420 −0.927099 0.374818i \(-0.877705\pi\)
−0.927099 + 0.374818i \(0.877705\pi\)
\(728\) 0 0
\(729\) 2563.90 0.130260
\(730\) 0 0
\(731\) 26748.3 1.35338
\(732\) 0 0
\(733\) 14611.4 0.736267 0.368134 0.929773i \(-0.379997\pi\)
0.368134 + 0.929773i \(0.379997\pi\)
\(734\) 0 0
\(735\) −23344.6 −1.17153
\(736\) 0 0
\(737\) −36301.3 −1.81435
\(738\) 0 0
\(739\) −29945.8 −1.49063 −0.745314 0.666714i \(-0.767700\pi\)
−0.745314 + 0.666714i \(0.767700\pi\)
\(740\) 0 0
\(741\) 3829.19 0.189837
\(742\) 0 0
\(743\) 30613.4 1.51157 0.755784 0.654820i \(-0.227256\pi\)
0.755784 + 0.654820i \(0.227256\pi\)
\(744\) 0 0
\(745\) −2435.53 −0.119773
\(746\) 0 0
\(747\) 2552.96 0.125044
\(748\) 0 0
\(749\) 12636.5 0.616459
\(750\) 0 0
\(751\) −18280.7 −0.888247 −0.444123 0.895966i \(-0.646485\pi\)
−0.444123 + 0.895966i \(0.646485\pi\)
\(752\) 0 0
\(753\) 4008.10 0.193975
\(754\) 0 0
\(755\) −14770.3 −0.711982
\(756\) 0 0
\(757\) 24217.6 1.16275 0.581377 0.813635i \(-0.302514\pi\)
0.581377 + 0.813635i \(0.302514\pi\)
\(758\) 0 0
\(759\) −5427.53 −0.259561
\(760\) 0 0
\(761\) 12065.7 0.574745 0.287372 0.957819i \(-0.407218\pi\)
0.287372 + 0.957819i \(0.407218\pi\)
\(762\) 0 0
\(763\) 20720.7 0.983145
\(764\) 0 0
\(765\) 24605.2 1.16288
\(766\) 0 0
\(767\) 706.861 0.0332768
\(768\) 0 0
\(769\) −26520.6 −1.24364 −0.621819 0.783161i \(-0.713606\pi\)
−0.621819 + 0.783161i \(0.713606\pi\)
\(770\) 0 0
\(771\) 5309.41 0.248007
\(772\) 0 0
\(773\) −29188.7 −1.35814 −0.679072 0.734072i \(-0.737617\pi\)
−0.679072 + 0.734072i \(0.737617\pi\)
\(774\) 0 0
\(775\) 30552.8 1.41612
\(776\) 0 0
\(777\) −12783.3 −0.590215
\(778\) 0 0
\(779\) 8245.58 0.379241
\(780\) 0 0
\(781\) 4147.39 0.190019
\(782\) 0 0
\(783\) 12619.8 0.575985
\(784\) 0 0
\(785\) 51001.2 2.31887
\(786\) 0 0
\(787\) −14545.4 −0.658814 −0.329407 0.944188i \(-0.606849\pi\)
−0.329407 + 0.944188i \(0.606849\pi\)
\(788\) 0 0
\(789\) −1616.01 −0.0729170
\(790\) 0 0
\(791\) −11280.0 −0.507043
\(792\) 0 0
\(793\) −64758.9 −2.89994
\(794\) 0 0
\(795\) 19289.5 0.860538
\(796\) 0 0
\(797\) 14218.4 0.631922 0.315961 0.948772i \(-0.397673\pi\)
0.315961 + 0.948772i \(0.397673\pi\)
\(798\) 0 0
\(799\) −30288.9 −1.34111
\(800\) 0 0
\(801\) −316.882 −0.0139781
\(802\) 0 0
\(803\) 32163.1 1.41346
\(804\) 0 0
\(805\) 26557.6 1.16277
\(806\) 0 0
\(807\) −7406.15 −0.323059
\(808\) 0 0
\(809\) −6707.25 −0.291489 −0.145744 0.989322i \(-0.546558\pi\)
−0.145744 + 0.989322i \(0.546558\pi\)
\(810\) 0 0
\(811\) 29240.1 1.26604 0.633021 0.774135i \(-0.281815\pi\)
0.633021 + 0.774135i \(0.281815\pi\)
\(812\) 0 0
\(813\) −20116.0 −0.867773
\(814\) 0 0
\(815\) −40881.1 −1.75706
\(816\) 0 0
\(817\) 6776.32 0.290176
\(818\) 0 0
\(819\) −51299.7 −2.18871
\(820\) 0 0
\(821\) 16904.2 0.718586 0.359293 0.933225i \(-0.383018\pi\)
0.359293 + 0.933225i \(0.383018\pi\)
\(822\) 0 0
\(823\) 25386.1 1.07522 0.537609 0.843194i \(-0.319328\pi\)
0.537609 + 0.843194i \(0.319328\pi\)
\(824\) 0 0
\(825\) 12285.3 0.518450
\(826\) 0 0
\(827\) 12343.1 0.518996 0.259498 0.965744i \(-0.416443\pi\)
0.259498 + 0.965744i \(0.416443\pi\)
\(828\) 0 0
\(829\) −73.2483 −0.00306878 −0.00153439 0.999999i \(-0.500488\pi\)
−0.00153439 + 0.999999i \(0.500488\pi\)
\(830\) 0 0
\(831\) 3238.63 0.135195
\(832\) 0 0
\(833\) 44418.7 1.84756
\(834\) 0 0
\(835\) 3007.04 0.124626
\(836\) 0 0
\(837\) −29267.9 −1.20866
\(838\) 0 0
\(839\) 31028.4 1.27678 0.638391 0.769713i \(-0.279600\pi\)
0.638391 + 0.769713i \(0.279600\pi\)
\(840\) 0 0
\(841\) −13184.2 −0.540579
\(842\) 0 0
\(843\) 14049.3 0.574003
\(844\) 0 0
\(845\) −68301.9 −2.78066
\(846\) 0 0
\(847\) 7142.62 0.289756
\(848\) 0 0
\(849\) −16656.8 −0.673333
\(850\) 0 0
\(851\) 9209.23 0.370962
\(852\) 0 0
\(853\) −15219.0 −0.610891 −0.305445 0.952210i \(-0.598805\pi\)
−0.305445 + 0.952210i \(0.598805\pi\)
\(854\) 0 0
\(855\) 6233.40 0.249331
\(856\) 0 0
\(857\) −16775.1 −0.668644 −0.334322 0.942459i \(-0.608507\pi\)
−0.334322 + 0.942459i \(0.608507\pi\)
\(858\) 0 0
\(859\) 40428.7 1.60583 0.802917 0.596091i \(-0.203280\pi\)
0.802917 + 0.596091i \(0.203280\pi\)
\(860\) 0 0
\(861\) 33121.7 1.31102
\(862\) 0 0
\(863\) 28177.2 1.11143 0.555715 0.831373i \(-0.312445\pi\)
0.555715 + 0.831373i \(0.312445\pi\)
\(864\) 0 0
\(865\) 37517.6 1.47473
\(866\) 0 0
\(867\) 1776.54 0.0695897
\(868\) 0 0
\(869\) −15539.0 −0.606586
\(870\) 0 0
\(871\) −74114.0 −2.88319
\(872\) 0 0
\(873\) 13244.6 0.513471
\(874\) 0 0
\(875\) 263.282 0.0101721
\(876\) 0 0
\(877\) 31702.0 1.22064 0.610319 0.792156i \(-0.291041\pi\)
0.610319 + 0.792156i \(0.291041\pi\)
\(878\) 0 0
\(879\) 10579.6 0.405964
\(880\) 0 0
\(881\) 17767.5 0.679457 0.339728 0.940524i \(-0.389665\pi\)
0.339728 + 0.940524i \(0.389665\pi\)
\(882\) 0 0
\(883\) −4318.69 −0.164593 −0.0822964 0.996608i \(-0.526225\pi\)
−0.0822964 + 0.996608i \(0.526225\pi\)
\(884\) 0 0
\(885\) −345.013 −0.0131045
\(886\) 0 0
\(887\) 38999.6 1.47630 0.738150 0.674637i \(-0.235700\pi\)
0.738150 + 0.674637i \(0.235700\pi\)
\(888\) 0 0
\(889\) 6894.54 0.260107
\(890\) 0 0
\(891\) 10415.1 0.391602
\(892\) 0 0
\(893\) −7673.30 −0.287544
\(894\) 0 0
\(895\) 33502.2 1.25124
\(896\) 0 0
\(897\) −11081.0 −0.412469
\(898\) 0 0
\(899\) −25986.1 −0.964055
\(900\) 0 0
\(901\) −36702.9 −1.35711
\(902\) 0 0
\(903\) 27219.8 1.00312
\(904\) 0 0
\(905\) −31966.3 −1.17414
\(906\) 0 0
\(907\) 40814.6 1.49419 0.747093 0.664719i \(-0.231449\pi\)
0.747093 + 0.664719i \(0.231449\pi\)
\(908\) 0 0
\(909\) −4793.40 −0.174903
\(910\) 0 0
\(911\) −11344.0 −0.412560 −0.206280 0.978493i \(-0.566136\pi\)
−0.206280 + 0.978493i \(0.566136\pi\)
\(912\) 0 0
\(913\) −4861.43 −0.176221
\(914\) 0 0
\(915\) 31608.3 1.14201
\(916\) 0 0
\(917\) −43629.1 −1.57117
\(918\) 0 0
\(919\) −8806.92 −0.316119 −0.158060 0.987430i \(-0.550524\pi\)
−0.158060 + 0.987430i \(0.550524\pi\)
\(920\) 0 0
\(921\) −9693.41 −0.346807
\(922\) 0 0
\(923\) 8467.45 0.301961
\(924\) 0 0
\(925\) −20845.3 −0.740963
\(926\) 0 0
\(927\) −1174.02 −0.0415963
\(928\) 0 0
\(929\) 37674.2 1.33052 0.665258 0.746614i \(-0.268322\pi\)
0.665258 + 0.746614i \(0.268322\pi\)
\(930\) 0 0
\(931\) 11252.9 0.396132
\(932\) 0 0
\(933\) −13235.0 −0.464410
\(934\) 0 0
\(935\) −46854.1 −1.63882
\(936\) 0 0
\(937\) 28079.1 0.978979 0.489490 0.872009i \(-0.337183\pi\)
0.489490 + 0.872009i \(0.337183\pi\)
\(938\) 0 0
\(939\) −15577.7 −0.541382
\(940\) 0 0
\(941\) −55220.4 −1.91300 −0.956500 0.291731i \(-0.905769\pi\)
−0.956500 + 0.291731i \(0.905769\pi\)
\(942\) 0 0
\(943\) −23861.3 −0.823999
\(944\) 0 0
\(945\) 57585.5 1.98228
\(946\) 0 0
\(947\) 13657.5 0.468647 0.234323 0.972159i \(-0.424713\pi\)
0.234323 + 0.972159i \(0.424713\pi\)
\(948\) 0 0
\(949\) 65665.4 2.24614
\(950\) 0 0
\(951\) 3263.89 0.111292
\(952\) 0 0
\(953\) 9373.39 0.318609 0.159304 0.987230i \(-0.449075\pi\)
0.159304 + 0.987230i \(0.449075\pi\)
\(954\) 0 0
\(955\) 36774.9 1.24608
\(956\) 0 0
\(957\) −10449.1 −0.352947
\(958\) 0 0
\(959\) 83320.6 2.80559
\(960\) 0 0
\(961\) 30475.8 1.02299
\(962\) 0 0
\(963\) −8582.94 −0.287208
\(964\) 0 0
\(965\) −5544.29 −0.184950
\(966\) 0 0
\(967\) −50513.6 −1.67984 −0.839921 0.542709i \(-0.817399\pi\)
−0.839921 + 0.542709i \(0.817399\pi\)
\(968\) 0 0
\(969\) 3556.22 0.117897
\(970\) 0 0
\(971\) 21215.2 0.701162 0.350581 0.936532i \(-0.385984\pi\)
0.350581 + 0.936532i \(0.385984\pi\)
\(972\) 0 0
\(973\) −41795.9 −1.37710
\(974\) 0 0
\(975\) 25082.2 0.823870
\(976\) 0 0
\(977\) −10649.2 −0.348720 −0.174360 0.984682i \(-0.555786\pi\)
−0.174360 + 0.984682i \(0.555786\pi\)
\(978\) 0 0
\(979\) 603.419 0.0196990
\(980\) 0 0
\(981\) −14073.9 −0.458047
\(982\) 0 0
\(983\) −43021.6 −1.39591 −0.697953 0.716143i \(-0.745906\pi\)
−0.697953 + 0.716143i \(0.745906\pi\)
\(984\) 0 0
\(985\) −28754.4 −0.930145
\(986\) 0 0
\(987\) −30822.9 −0.994026
\(988\) 0 0
\(989\) −19609.5 −0.630482
\(990\) 0 0
\(991\) 1894.52 0.0607278 0.0303639 0.999539i \(-0.490333\pi\)
0.0303639 + 0.999539i \(0.490333\pi\)
\(992\) 0 0
\(993\) 17044.7 0.544711
\(994\) 0 0
\(995\) −1492.44 −0.0475513
\(996\) 0 0
\(997\) 48718.3 1.54757 0.773784 0.633450i \(-0.218362\pi\)
0.773784 + 0.633450i \(0.218362\pi\)
\(998\) 0 0
\(999\) 19968.6 0.632412
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.4.a.d.1.3 5
3.2 odd 2 1368.4.a.m.1.4 5
4.3 odd 2 304.4.a.k.1.3 5
8.3 odd 2 1216.4.a.bb.1.3 5
8.5 even 2 1216.4.a.ba.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.4.a.d.1.3 5 1.1 even 1 trivial
304.4.a.k.1.3 5 4.3 odd 2
1216.4.a.ba.1.3 5 8.5 even 2
1216.4.a.bb.1.3 5 8.3 odd 2
1368.4.a.m.1.4 5 3.2 odd 2