Properties

Label 152.4.a.c
Level $152$
Weight $4$
Character orbit 152.a
Self dual yes
Analytic conductor $8.968$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [152,4,Mod(1,152)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(152, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("152.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 152.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.96829032087\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.7057.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 22x + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + 1) q^{3} + (\beta_{2} + 2 \beta_1 + 2) q^{5} + (\beta_{2} + \beta_1 + 2) q^{7} + (3 \beta_{2} - 4 \beta_1 + 6) q^{9} + ( - 5 \beta_{2} + 2 \beta_1 + 36) q^{11} + (2 \beta_{2} - 9 \beta_1 + 10) q^{13}+ \cdots + ( - 33 \beta_{2} - 104 \beta_1 - 424) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 4 q^{3} + 7 q^{5} + 7 q^{7} + 21 q^{9} + 103 q^{11} + 32 q^{13} + 122 q^{15} + 11 q^{17} - 57 q^{19} + 114 q^{21} + 316 q^{23} + 162 q^{25} + 178 q^{27} - 138 q^{29} + 420 q^{31} - 330 q^{33} + 333 q^{35}+ \cdots - 1305 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 22x + 32 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} + 3\nu - 16 ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - \nu - 14 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{2} + \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{2} + \beta _1 + 29 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.50686
4.36181
−4.86867
0 −5.61812 0 −13.8269 0 −9.22252 0 4.56325 0
1.2 0 1.33180 0 18.4427 0 10.3872 0 −25.2263 0
1.3 0 8.28632 0 2.38427 0 5.83529 0 41.6631 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(19\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 152.4.a.c 3
3.b odd 2 1 1368.4.a.d 3
4.b odd 2 1 304.4.a.g 3
8.b even 2 1 1216.4.a.r 3
8.d odd 2 1 1216.4.a.w 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
152.4.a.c 3 1.a even 1 1 trivial
304.4.a.g 3 4.b odd 2 1
1216.4.a.r 3 8.b even 2 1
1216.4.a.w 3 8.d odd 2 1
1368.4.a.d 3 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 4T_{3}^{2} - 43T_{3} + 62 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(152))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 4 T^{2} + \cdots + 62 \) Copy content Toggle raw display
$5$ \( T^{3} - 7 T^{2} + \cdots + 608 \) Copy content Toggle raw display
$7$ \( T^{3} - 7 T^{2} + \cdots + 559 \) Copy content Toggle raw display
$11$ \( T^{3} - 103 T^{2} + \cdots + 22156 \) Copy content Toggle raw display
$13$ \( T^{3} - 32 T^{2} + \cdots + 131420 \) Copy content Toggle raw display
$17$ \( T^{3} - 11 T^{2} + \cdots - 32173 \) Copy content Toggle raw display
$19$ \( (T + 19)^{3} \) Copy content Toggle raw display
$23$ \( T^{3} - 316 T^{2} + \cdots + 242336 \) Copy content Toggle raw display
$29$ \( T^{3} + 138 T^{2} + \cdots - 345766 \) Copy content Toggle raw display
$31$ \( T^{3} - 420 T^{2} + \cdots - 2336256 \) Copy content Toggle raw display
$37$ \( T^{3} - 102 T^{2} + \cdots + 15565400 \) Copy content Toggle raw display
$41$ \( T^{3} + 370 T^{2} + \cdots + 707456 \) Copy content Toggle raw display
$43$ \( T^{3} - 431 T^{2} + \cdots + 5420480 \) Copy content Toggle raw display
$47$ \( T^{3} + 199 T^{2} + \cdots - 45306112 \) Copy content Toggle raw display
$53$ \( T^{3} + 308 T^{2} + \cdots + 6630640 \) Copy content Toggle raw display
$59$ \( T^{3} + 188 T^{2} + \cdots - 1077242 \) Copy content Toggle raw display
$61$ \( T^{3} + 609 T^{2} + \cdots - 50618548 \) Copy content Toggle raw display
$67$ \( T^{3} + 246 T^{2} + \cdots - 96246632 \) Copy content Toggle raw display
$71$ \( T^{3} + 954 T^{2} + \cdots - 237273448 \) Copy content Toggle raw display
$73$ \( T^{3} + 629 T^{2} + \cdots - 417051529 \) Copy content Toggle raw display
$79$ \( T^{3} - 452 T^{2} + \cdots + 601611824 \) Copy content Toggle raw display
$83$ \( T^{3} + \cdots - 1048786960 \) Copy content Toggle raw display
$89$ \( T^{3} + 1356 T^{2} + \cdots + 71672320 \) Copy content Toggle raw display
$97$ \( T^{3} + \cdots - 2035482752 \) Copy content Toggle raw display
show more
show less