Properties

Label 152.4.a.b.1.3
Level $152$
Weight $4$
Character 152.1
Self dual yes
Analytic conductor $8.968$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [152,4,Mod(1,152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("152.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(152, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 152.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.96829032087\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.3221.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 9x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.218090\) of defining polynomial
Character \(\chi\) \(=\) 152.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.73435 q^{3} -18.0754 q^{5} +0.213413 q^{7} -4.58596 q^{9} -3.39329 q^{11} -90.7156 q^{13} -85.5752 q^{15} -2.59392 q^{17} +19.0000 q^{19} +1.01037 q^{21} +26.6112 q^{23} +201.720 q^{25} -149.539 q^{27} +60.1034 q^{29} -176.070 q^{31} -16.0650 q^{33} -3.85753 q^{35} -154.115 q^{37} -429.479 q^{39} +434.137 q^{41} -365.511 q^{43} +82.8931 q^{45} +204.021 q^{47} -342.954 q^{49} -12.2805 q^{51} -135.726 q^{53} +61.3351 q^{55} +89.9526 q^{57} +759.895 q^{59} +284.941 q^{61} -0.978705 q^{63} +1639.72 q^{65} +590.922 q^{67} +125.986 q^{69} -972.291 q^{71} +368.462 q^{73} +955.013 q^{75} -0.724174 q^{77} +204.854 q^{79} -584.148 q^{81} -782.229 q^{83} +46.8861 q^{85} +284.550 q^{87} +213.620 q^{89} -19.3599 q^{91} -833.576 q^{93} -343.433 q^{95} -1219.54 q^{97} +15.5615 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 5 q^{3} + 2 q^{5} - 35 q^{7} + 48 q^{9} - 28 q^{11} - 109 q^{13} - 228 q^{15} - 123 q^{17} + 57 q^{19} + 25 q^{21} - 193 q^{23} + 187 q^{25} - 719 q^{27} - 297 q^{29} - 140 q^{31} + 30 q^{33} - 246 q^{35}+ \cdots + 86 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.73435 0.911125 0.455563 0.890204i \(-0.349438\pi\)
0.455563 + 0.890204i \(0.349438\pi\)
\(4\) 0 0
\(5\) −18.0754 −1.61671 −0.808356 0.588693i \(-0.799643\pi\)
−0.808356 + 0.588693i \(0.799643\pi\)
\(6\) 0 0
\(7\) 0.213413 0.0115232 0.00576162 0.999983i \(-0.498166\pi\)
0.00576162 + 0.999983i \(0.498166\pi\)
\(8\) 0 0
\(9\) −4.58596 −0.169850
\(10\) 0 0
\(11\) −3.39329 −0.0930106 −0.0465053 0.998918i \(-0.514808\pi\)
−0.0465053 + 0.998918i \(0.514808\pi\)
\(12\) 0 0
\(13\) −90.7156 −1.93538 −0.967692 0.252135i \(-0.918867\pi\)
−0.967692 + 0.252135i \(0.918867\pi\)
\(14\) 0 0
\(15\) −85.5752 −1.47303
\(16\) 0 0
\(17\) −2.59392 −0.0370069 −0.0185035 0.999829i \(-0.505890\pi\)
−0.0185035 + 0.999829i \(0.505890\pi\)
\(18\) 0 0
\(19\) 19.0000 0.229416
\(20\) 0 0
\(21\) 1.01037 0.0104991
\(22\) 0 0
\(23\) 26.6112 0.241253 0.120626 0.992698i \(-0.461510\pi\)
0.120626 + 0.992698i \(0.461510\pi\)
\(24\) 0 0
\(25\) 201.720 1.61376
\(26\) 0 0
\(27\) −149.539 −1.06588
\(28\) 0 0
\(29\) 60.1034 0.384859 0.192430 0.981311i \(-0.438363\pi\)
0.192430 + 0.981311i \(0.438363\pi\)
\(30\) 0 0
\(31\) −176.070 −1.02010 −0.510050 0.860145i \(-0.670373\pi\)
−0.510050 + 0.860145i \(0.670373\pi\)
\(32\) 0 0
\(33\) −16.0650 −0.0847443
\(34\) 0 0
\(35\) −3.85753 −0.0186298
\(36\) 0 0
\(37\) −154.115 −0.684768 −0.342384 0.939560i \(-0.611234\pi\)
−0.342384 + 0.939560i \(0.611234\pi\)
\(38\) 0 0
\(39\) −429.479 −1.76338
\(40\) 0 0
\(41\) 434.137 1.65368 0.826839 0.562439i \(-0.190137\pi\)
0.826839 + 0.562439i \(0.190137\pi\)
\(42\) 0 0
\(43\) −365.511 −1.29628 −0.648138 0.761523i \(-0.724452\pi\)
−0.648138 + 0.761523i \(0.724452\pi\)
\(44\) 0 0
\(45\) 82.8931 0.274599
\(46\) 0 0
\(47\) 204.021 0.633180 0.316590 0.948562i \(-0.397462\pi\)
0.316590 + 0.948562i \(0.397462\pi\)
\(48\) 0 0
\(49\) −342.954 −0.999867
\(50\) 0 0
\(51\) −12.2805 −0.0337180
\(52\) 0 0
\(53\) −135.726 −0.351763 −0.175881 0.984411i \(-0.556278\pi\)
−0.175881 + 0.984411i \(0.556278\pi\)
\(54\) 0 0
\(55\) 61.3351 0.150371
\(56\) 0 0
\(57\) 89.9526 0.209027
\(58\) 0 0
\(59\) 759.895 1.67678 0.838389 0.545072i \(-0.183498\pi\)
0.838389 + 0.545072i \(0.183498\pi\)
\(60\) 0 0
\(61\) 284.941 0.598082 0.299041 0.954240i \(-0.403333\pi\)
0.299041 + 0.954240i \(0.403333\pi\)
\(62\) 0 0
\(63\) −0.978705 −0.00195723
\(64\) 0 0
\(65\) 1639.72 3.12896
\(66\) 0 0
\(67\) 590.922 1.07750 0.538750 0.842465i \(-0.318897\pi\)
0.538750 + 0.842465i \(0.318897\pi\)
\(68\) 0 0
\(69\) 125.986 0.219811
\(70\) 0 0
\(71\) −972.291 −1.62521 −0.812604 0.582817i \(-0.801950\pi\)
−0.812604 + 0.582817i \(0.801950\pi\)
\(72\) 0 0
\(73\) 368.462 0.590756 0.295378 0.955380i \(-0.404554\pi\)
0.295378 + 0.955380i \(0.404554\pi\)
\(74\) 0 0
\(75\) 955.013 1.47034
\(76\) 0 0
\(77\) −0.724174 −0.00107178
\(78\) 0 0
\(79\) 204.854 0.291745 0.145873 0.989303i \(-0.453401\pi\)
0.145873 + 0.989303i \(0.453401\pi\)
\(80\) 0 0
\(81\) −584.148 −0.801300
\(82\) 0 0
\(83\) −782.229 −1.03447 −0.517234 0.855844i \(-0.673038\pi\)
−0.517234 + 0.855844i \(0.673038\pi\)
\(84\) 0 0
\(85\) 46.8861 0.0598296
\(86\) 0 0
\(87\) 284.550 0.350655
\(88\) 0 0
\(89\) 213.620 0.254423 0.127211 0.991876i \(-0.459397\pi\)
0.127211 + 0.991876i \(0.459397\pi\)
\(90\) 0 0
\(91\) −19.3599 −0.0223019
\(92\) 0 0
\(93\) −833.576 −0.929438
\(94\) 0 0
\(95\) −343.433 −0.370899
\(96\) 0 0
\(97\) −1219.54 −1.27655 −0.638274 0.769809i \(-0.720351\pi\)
−0.638274 + 0.769809i \(0.720351\pi\)
\(98\) 0 0
\(99\) 15.5615 0.0157979
\(100\) 0 0
\(101\) −53.9766 −0.0531770 −0.0265885 0.999646i \(-0.508464\pi\)
−0.0265885 + 0.999646i \(0.508464\pi\)
\(102\) 0 0
\(103\) 1987.50 1.90130 0.950652 0.310260i \(-0.100416\pi\)
0.950652 + 0.310260i \(0.100416\pi\)
\(104\) 0 0
\(105\) −18.2629 −0.0169741
\(106\) 0 0
\(107\) −1076.92 −0.972991 −0.486496 0.873683i \(-0.661725\pi\)
−0.486496 + 0.873683i \(0.661725\pi\)
\(108\) 0 0
\(109\) −1200.57 −1.05499 −0.527494 0.849559i \(-0.676868\pi\)
−0.527494 + 0.849559i \(0.676868\pi\)
\(110\) 0 0
\(111\) −729.636 −0.623910
\(112\) 0 0
\(113\) 1402.72 1.16776 0.583880 0.811840i \(-0.301534\pi\)
0.583880 + 0.811840i \(0.301534\pi\)
\(114\) 0 0
\(115\) −481.007 −0.390036
\(116\) 0 0
\(117\) 416.018 0.328726
\(118\) 0 0
\(119\) −0.553577 −0.000426440 0
\(120\) 0 0
\(121\) −1319.49 −0.991349
\(122\) 0 0
\(123\) 2055.35 1.50671
\(124\) 0 0
\(125\) −1386.75 −0.992275
\(126\) 0 0
\(127\) −1055.22 −0.737289 −0.368644 0.929570i \(-0.620178\pi\)
−0.368644 + 0.929570i \(0.620178\pi\)
\(128\) 0 0
\(129\) −1730.45 −1.18107
\(130\) 0 0
\(131\) −1026.98 −0.684944 −0.342472 0.939528i \(-0.611264\pi\)
−0.342472 + 0.939528i \(0.611264\pi\)
\(132\) 0 0
\(133\) 4.05485 0.00264361
\(134\) 0 0
\(135\) 2702.98 1.72322
\(136\) 0 0
\(137\) −1728.02 −1.07763 −0.538813 0.842425i \(-0.681127\pi\)
−0.538813 + 0.842425i \(0.681127\pi\)
\(138\) 0 0
\(139\) 624.188 0.380885 0.190442 0.981698i \(-0.439008\pi\)
0.190442 + 0.981698i \(0.439008\pi\)
\(140\) 0 0
\(141\) 965.904 0.576906
\(142\) 0 0
\(143\) 307.825 0.180011
\(144\) 0 0
\(145\) −1086.39 −0.622207
\(146\) 0 0
\(147\) −1623.67 −0.911004
\(148\) 0 0
\(149\) 57.5590 0.0316471 0.0158235 0.999875i \(-0.494963\pi\)
0.0158235 + 0.999875i \(0.494963\pi\)
\(150\) 0 0
\(151\) −2567.35 −1.38363 −0.691814 0.722076i \(-0.743188\pi\)
−0.691814 + 0.722076i \(0.743188\pi\)
\(152\) 0 0
\(153\) 11.8956 0.00628564
\(154\) 0 0
\(155\) 3182.53 1.64921
\(156\) 0 0
\(157\) −3015.67 −1.53297 −0.766486 0.642261i \(-0.777997\pi\)
−0.766486 + 0.642261i \(0.777997\pi\)
\(158\) 0 0
\(159\) −642.575 −0.320500
\(160\) 0 0
\(161\) 5.67918 0.00278001
\(162\) 0 0
\(163\) −3331.49 −1.60088 −0.800438 0.599416i \(-0.795400\pi\)
−0.800438 + 0.599416i \(0.795400\pi\)
\(164\) 0 0
\(165\) 290.382 0.137007
\(166\) 0 0
\(167\) 2465.56 1.14246 0.571229 0.820791i \(-0.306467\pi\)
0.571229 + 0.820791i \(0.306467\pi\)
\(168\) 0 0
\(169\) 6032.33 2.74571
\(170\) 0 0
\(171\) −87.1333 −0.0389664
\(172\) 0 0
\(173\) −549.111 −0.241319 −0.120659 0.992694i \(-0.538501\pi\)
−0.120659 + 0.992694i \(0.538501\pi\)
\(174\) 0 0
\(175\) 43.0498 0.0185958
\(176\) 0 0
\(177\) 3597.61 1.52776
\(178\) 0 0
\(179\) −4186.74 −1.74822 −0.874110 0.485728i \(-0.838555\pi\)
−0.874110 + 0.485728i \(0.838555\pi\)
\(180\) 0 0
\(181\) −3954.07 −1.62378 −0.811890 0.583811i \(-0.801561\pi\)
−0.811890 + 0.583811i \(0.801561\pi\)
\(182\) 0 0
\(183\) 1349.01 0.544928
\(184\) 0 0
\(185\) 2785.70 1.10707
\(186\) 0 0
\(187\) 8.80193 0.00344204
\(188\) 0 0
\(189\) −31.9136 −0.0122824
\(190\) 0 0
\(191\) −1623.62 −0.615084 −0.307542 0.951535i \(-0.599506\pi\)
−0.307542 + 0.951535i \(0.599506\pi\)
\(192\) 0 0
\(193\) 1817.44 0.677833 0.338917 0.940816i \(-0.389940\pi\)
0.338917 + 0.940816i \(0.389940\pi\)
\(194\) 0 0
\(195\) 7763.01 2.85088
\(196\) 0 0
\(197\) 151.771 0.0548894 0.0274447 0.999623i \(-0.491263\pi\)
0.0274447 + 0.999623i \(0.491263\pi\)
\(198\) 0 0
\(199\) 1229.91 0.438119 0.219060 0.975711i \(-0.429701\pi\)
0.219060 + 0.975711i \(0.429701\pi\)
\(200\) 0 0
\(201\) 2797.63 0.981738
\(202\) 0 0
\(203\) 12.8269 0.00443483
\(204\) 0 0
\(205\) −7847.20 −2.67352
\(206\) 0 0
\(207\) −122.038 −0.0409769
\(208\) 0 0
\(209\) −64.4726 −0.0213381
\(210\) 0 0
\(211\) −2998.12 −0.978194 −0.489097 0.872229i \(-0.662674\pi\)
−0.489097 + 0.872229i \(0.662674\pi\)
\(212\) 0 0
\(213\) −4603.16 −1.48077
\(214\) 0 0
\(215\) 6606.75 2.09571
\(216\) 0 0
\(217\) −37.5757 −0.0117549
\(218\) 0 0
\(219\) 1744.43 0.538253
\(220\) 0 0
\(221\) 235.309 0.0716226
\(222\) 0 0
\(223\) −781.297 −0.234617 −0.117308 0.993096i \(-0.537427\pi\)
−0.117308 + 0.993096i \(0.537427\pi\)
\(224\) 0 0
\(225\) −925.080 −0.274098
\(226\) 0 0
\(227\) −2695.16 −0.788035 −0.394017 0.919103i \(-0.628915\pi\)
−0.394017 + 0.919103i \(0.628915\pi\)
\(228\) 0 0
\(229\) 3952.95 1.14069 0.570346 0.821405i \(-0.306809\pi\)
0.570346 + 0.821405i \(0.306809\pi\)
\(230\) 0 0
\(231\) −3.42849 −0.000976529 0
\(232\) 0 0
\(233\) 4315.28 1.21332 0.606659 0.794962i \(-0.292509\pi\)
0.606659 + 0.794962i \(0.292509\pi\)
\(234\) 0 0
\(235\) −3687.75 −1.02367
\(236\) 0 0
\(237\) 969.849 0.265816
\(238\) 0 0
\(239\) 3808.38 1.03073 0.515363 0.856972i \(-0.327657\pi\)
0.515363 + 0.856972i \(0.327657\pi\)
\(240\) 0 0
\(241\) 4274.22 1.14243 0.571217 0.820799i \(-0.306471\pi\)
0.571217 + 0.820799i \(0.306471\pi\)
\(242\) 0 0
\(243\) 1271.99 0.335795
\(244\) 0 0
\(245\) 6199.04 1.61650
\(246\) 0 0
\(247\) −1723.60 −0.444008
\(248\) 0 0
\(249\) −3703.35 −0.942530
\(250\) 0 0
\(251\) 2552.20 0.641806 0.320903 0.947112i \(-0.396014\pi\)
0.320903 + 0.947112i \(0.396014\pi\)
\(252\) 0 0
\(253\) −90.2995 −0.0224390
\(254\) 0 0
\(255\) 221.975 0.0545123
\(256\) 0 0
\(257\) 2099.29 0.509533 0.254766 0.967003i \(-0.418001\pi\)
0.254766 + 0.967003i \(0.418001\pi\)
\(258\) 0 0
\(259\) −32.8903 −0.00789075
\(260\) 0 0
\(261\) −275.632 −0.0653685
\(262\) 0 0
\(263\) −7691.71 −1.80339 −0.901695 0.432374i \(-0.857676\pi\)
−0.901695 + 0.432374i \(0.857676\pi\)
\(264\) 0 0
\(265\) 2453.31 0.568700
\(266\) 0 0
\(267\) 1011.35 0.231811
\(268\) 0 0
\(269\) 1460.77 0.331096 0.165548 0.986202i \(-0.447061\pi\)
0.165548 + 0.986202i \(0.447061\pi\)
\(270\) 0 0
\(271\) 3180.10 0.712832 0.356416 0.934327i \(-0.383999\pi\)
0.356416 + 0.934327i \(0.383999\pi\)
\(272\) 0 0
\(273\) −91.6566 −0.0203198
\(274\) 0 0
\(275\) −684.495 −0.150097
\(276\) 0 0
\(277\) −1227.66 −0.266293 −0.133146 0.991096i \(-0.542508\pi\)
−0.133146 + 0.991096i \(0.542508\pi\)
\(278\) 0 0
\(279\) 807.449 0.173264
\(280\) 0 0
\(281\) 6497.13 1.37931 0.689655 0.724138i \(-0.257762\pi\)
0.689655 + 0.724138i \(0.257762\pi\)
\(282\) 0 0
\(283\) −48.1723 −0.0101185 −0.00505927 0.999987i \(-0.501610\pi\)
−0.00505927 + 0.999987i \(0.501610\pi\)
\(284\) 0 0
\(285\) −1625.93 −0.337936
\(286\) 0 0
\(287\) 92.6506 0.0190557
\(288\) 0 0
\(289\) −4906.27 −0.998630
\(290\) 0 0
\(291\) −5773.71 −1.16310
\(292\) 0 0
\(293\) 1140.74 0.227449 0.113724 0.993512i \(-0.463722\pi\)
0.113724 + 0.993512i \(0.463722\pi\)
\(294\) 0 0
\(295\) −13735.4 −2.71087
\(296\) 0 0
\(297\) 507.429 0.0991382
\(298\) 0 0
\(299\) −2414.05 −0.466916
\(300\) 0 0
\(301\) −78.0049 −0.0149373
\(302\) 0 0
\(303\) −255.544 −0.0484509
\(304\) 0 0
\(305\) −5150.43 −0.966927
\(306\) 0 0
\(307\) −6728.53 −1.25087 −0.625435 0.780276i \(-0.715079\pi\)
−0.625435 + 0.780276i \(0.715079\pi\)
\(308\) 0 0
\(309\) 9409.52 1.73233
\(310\) 0 0
\(311\) −9758.17 −1.77921 −0.889606 0.456728i \(-0.849021\pi\)
−0.889606 + 0.456728i \(0.849021\pi\)
\(312\) 0 0
\(313\) −1660.82 −0.299920 −0.149960 0.988692i \(-0.547915\pi\)
−0.149960 + 0.988692i \(0.547915\pi\)
\(314\) 0 0
\(315\) 17.6905 0.00316427
\(316\) 0 0
\(317\) 6578.84 1.16563 0.582814 0.812605i \(-0.301951\pi\)
0.582814 + 0.812605i \(0.301951\pi\)
\(318\) 0 0
\(319\) −203.948 −0.0357960
\(320\) 0 0
\(321\) −5098.53 −0.886517
\(322\) 0 0
\(323\) −49.2845 −0.00848997
\(324\) 0 0
\(325\) −18299.2 −3.12325
\(326\) 0 0
\(327\) −5683.91 −0.961226
\(328\) 0 0
\(329\) 43.5407 0.00729629
\(330\) 0 0
\(331\) −5522.33 −0.917024 −0.458512 0.888688i \(-0.651617\pi\)
−0.458512 + 0.888688i \(0.651617\pi\)
\(332\) 0 0
\(333\) 706.767 0.116308
\(334\) 0 0
\(335\) −10681.1 −1.74201
\(336\) 0 0
\(337\) 1350.63 0.218319 0.109159 0.994024i \(-0.465184\pi\)
0.109159 + 0.994024i \(0.465184\pi\)
\(338\) 0 0
\(339\) 6640.97 1.06398
\(340\) 0 0
\(341\) 597.457 0.0948800
\(342\) 0 0
\(343\) −146.392 −0.0230450
\(344\) 0 0
\(345\) −2277.26 −0.355372
\(346\) 0 0
\(347\) 7266.15 1.12411 0.562057 0.827099i \(-0.310010\pi\)
0.562057 + 0.827099i \(0.310010\pi\)
\(348\) 0 0
\(349\) 10360.4 1.58905 0.794524 0.607233i \(-0.207721\pi\)
0.794524 + 0.607233i \(0.207721\pi\)
\(350\) 0 0
\(351\) 13565.5 2.06289
\(352\) 0 0
\(353\) −4014.20 −0.605253 −0.302626 0.953109i \(-0.597863\pi\)
−0.302626 + 0.953109i \(0.597863\pi\)
\(354\) 0 0
\(355\) 17574.5 2.62749
\(356\) 0 0
\(357\) −2.62083 −0.000388540 0
\(358\) 0 0
\(359\) 7120.01 1.04674 0.523370 0.852106i \(-0.324675\pi\)
0.523370 + 0.852106i \(0.324675\pi\)
\(360\) 0 0
\(361\) 361.000 0.0526316
\(362\) 0 0
\(363\) −6246.90 −0.903243
\(364\) 0 0
\(365\) −6660.09 −0.955083
\(366\) 0 0
\(367\) 12447.9 1.77050 0.885251 0.465114i \(-0.153987\pi\)
0.885251 + 0.465114i \(0.153987\pi\)
\(368\) 0 0
\(369\) −1990.93 −0.280878
\(370\) 0 0
\(371\) −28.9658 −0.00405345
\(372\) 0 0
\(373\) −2379.11 −0.330257 −0.165128 0.986272i \(-0.552804\pi\)
−0.165128 + 0.986272i \(0.552804\pi\)
\(374\) 0 0
\(375\) −6565.34 −0.904087
\(376\) 0 0
\(377\) −5452.32 −0.744850
\(378\) 0 0
\(379\) 10559.0 1.43108 0.715541 0.698571i \(-0.246180\pi\)
0.715541 + 0.698571i \(0.246180\pi\)
\(380\) 0 0
\(381\) −4995.78 −0.671763
\(382\) 0 0
\(383\) 3074.48 0.410180 0.205090 0.978743i \(-0.434251\pi\)
0.205090 + 0.978743i \(0.434251\pi\)
\(384\) 0 0
\(385\) 13.0897 0.00173277
\(386\) 0 0
\(387\) 1676.22 0.220173
\(388\) 0 0
\(389\) 7437.27 0.969369 0.484684 0.874689i \(-0.338934\pi\)
0.484684 + 0.874689i \(0.338934\pi\)
\(390\) 0 0
\(391\) −69.0272 −0.00892802
\(392\) 0 0
\(393\) −4862.08 −0.624070
\(394\) 0 0
\(395\) −3702.82 −0.471668
\(396\) 0 0
\(397\) −10690.7 −1.35151 −0.675756 0.737125i \(-0.736183\pi\)
−0.675756 + 0.737125i \(0.736183\pi\)
\(398\) 0 0
\(399\) 19.1971 0.00240866
\(400\) 0 0
\(401\) −8536.44 −1.06307 −0.531533 0.847038i \(-0.678384\pi\)
−0.531533 + 0.847038i \(0.678384\pi\)
\(402\) 0 0
\(403\) 15972.3 1.97428
\(404\) 0 0
\(405\) 10558.7 1.29547
\(406\) 0 0
\(407\) 522.959 0.0636907
\(408\) 0 0
\(409\) 5072.21 0.613214 0.306607 0.951836i \(-0.400806\pi\)
0.306607 + 0.951836i \(0.400806\pi\)
\(410\) 0 0
\(411\) −8181.05 −0.981852
\(412\) 0 0
\(413\) 162.172 0.0193219
\(414\) 0 0
\(415\) 14139.1 1.67244
\(416\) 0 0
\(417\) 2955.12 0.347034
\(418\) 0 0
\(419\) −13968.1 −1.62861 −0.814306 0.580436i \(-0.802882\pi\)
−0.814306 + 0.580436i \(0.802882\pi\)
\(420\) 0 0
\(421\) 14983.2 1.73453 0.867264 0.497849i \(-0.165877\pi\)
0.867264 + 0.497849i \(0.165877\pi\)
\(422\) 0 0
\(423\) −935.630 −0.107546
\(424\) 0 0
\(425\) −523.246 −0.0597203
\(426\) 0 0
\(427\) 60.8103 0.00689184
\(428\) 0 0
\(429\) 1457.35 0.164013
\(430\) 0 0
\(431\) −9101.07 −1.01713 −0.508565 0.861023i \(-0.669824\pi\)
−0.508565 + 0.861023i \(0.669824\pi\)
\(432\) 0 0
\(433\) −8406.65 −0.933020 −0.466510 0.884516i \(-0.654489\pi\)
−0.466510 + 0.884516i \(0.654489\pi\)
\(434\) 0 0
\(435\) −5143.36 −0.566909
\(436\) 0 0
\(437\) 505.612 0.0553472
\(438\) 0 0
\(439\) 4687.92 0.509664 0.254832 0.966985i \(-0.417980\pi\)
0.254832 + 0.966985i \(0.417980\pi\)
\(440\) 0 0
\(441\) 1572.78 0.169828
\(442\) 0 0
\(443\) 9503.30 1.01922 0.509611 0.860405i \(-0.329789\pi\)
0.509611 + 0.860405i \(0.329789\pi\)
\(444\) 0 0
\(445\) −3861.26 −0.411329
\(446\) 0 0
\(447\) 272.504 0.0288345
\(448\) 0 0
\(449\) −2589.35 −0.272159 −0.136079 0.990698i \(-0.543450\pi\)
−0.136079 + 0.990698i \(0.543450\pi\)
\(450\) 0 0
\(451\) −1473.15 −0.153810
\(452\) 0 0
\(453\) −12154.7 −1.26066
\(454\) 0 0
\(455\) 349.939 0.0360558
\(456\) 0 0
\(457\) −11145.8 −1.14087 −0.570436 0.821342i \(-0.693226\pi\)
−0.570436 + 0.821342i \(0.693226\pi\)
\(458\) 0 0
\(459\) 387.892 0.0394450
\(460\) 0 0
\(461\) 4634.89 0.468261 0.234131 0.972205i \(-0.424776\pi\)
0.234131 + 0.972205i \(0.424776\pi\)
\(462\) 0 0
\(463\) 8329.82 0.836112 0.418056 0.908421i \(-0.362712\pi\)
0.418056 + 0.908421i \(0.362712\pi\)
\(464\) 0 0
\(465\) 15067.2 1.50264
\(466\) 0 0
\(467\) 13878.1 1.37516 0.687582 0.726107i \(-0.258672\pi\)
0.687582 + 0.726107i \(0.258672\pi\)
\(468\) 0 0
\(469\) 126.111 0.0124163
\(470\) 0 0
\(471\) −14277.2 −1.39673
\(472\) 0 0
\(473\) 1240.29 0.120567
\(474\) 0 0
\(475\) 3832.68 0.370222
\(476\) 0 0
\(477\) 622.435 0.0597471
\(478\) 0 0
\(479\) 15896.9 1.51639 0.758194 0.652029i \(-0.226082\pi\)
0.758194 + 0.652029i \(0.226082\pi\)
\(480\) 0 0
\(481\) 13980.7 1.32529
\(482\) 0 0
\(483\) 26.8872 0.00253294
\(484\) 0 0
\(485\) 22043.6 2.06381
\(486\) 0 0
\(487\) −10987.2 −1.02233 −0.511166 0.859482i \(-0.670786\pi\)
−0.511166 + 0.859482i \(0.670786\pi\)
\(488\) 0 0
\(489\) −15772.4 −1.45860
\(490\) 0 0
\(491\) 4422.00 0.406440 0.203220 0.979133i \(-0.434859\pi\)
0.203220 + 0.979133i \(0.434859\pi\)
\(492\) 0 0
\(493\) −155.903 −0.0142425
\(494\) 0 0
\(495\) −281.281 −0.0255406
\(496\) 0 0
\(497\) −207.500 −0.0187277
\(498\) 0 0
\(499\) 9203.68 0.825678 0.412839 0.910804i \(-0.364537\pi\)
0.412839 + 0.910804i \(0.364537\pi\)
\(500\) 0 0
\(501\) 11672.8 1.04092
\(502\) 0 0
\(503\) −5394.92 −0.478226 −0.239113 0.970992i \(-0.576857\pi\)
−0.239113 + 0.970992i \(0.576857\pi\)
\(504\) 0 0
\(505\) 975.649 0.0859719
\(506\) 0 0
\(507\) 28559.1 2.50169
\(508\) 0 0
\(509\) 14409.8 1.25482 0.627410 0.778689i \(-0.284115\pi\)
0.627410 + 0.778689i \(0.284115\pi\)
\(510\) 0 0
\(511\) 78.6347 0.00680742
\(512\) 0 0
\(513\) −2841.24 −0.244530
\(514\) 0 0
\(515\) −35924.9 −3.07386
\(516\) 0 0
\(517\) −692.302 −0.0588924
\(518\) 0 0
\(519\) −2599.68 −0.219872
\(520\) 0 0
\(521\) −2249.98 −0.189201 −0.0946003 0.995515i \(-0.530157\pi\)
−0.0946003 + 0.995515i \(0.530157\pi\)
\(522\) 0 0
\(523\) −19298.1 −1.61348 −0.806738 0.590909i \(-0.798769\pi\)
−0.806738 + 0.590909i \(0.798769\pi\)
\(524\) 0 0
\(525\) 203.813 0.0169431
\(526\) 0 0
\(527\) 456.711 0.0377507
\(528\) 0 0
\(529\) −11458.8 −0.941797
\(530\) 0 0
\(531\) −3484.85 −0.284801
\(532\) 0 0
\(533\) −39383.0 −3.20050
\(534\) 0 0
\(535\) 19465.8 1.57305
\(536\) 0 0
\(537\) −19821.5 −1.59285
\(538\) 0 0
\(539\) 1163.75 0.0929982
\(540\) 0 0
\(541\) −307.192 −0.0244126 −0.0122063 0.999926i \(-0.503885\pi\)
−0.0122063 + 0.999926i \(0.503885\pi\)
\(542\) 0 0
\(543\) −18720.0 −1.47947
\(544\) 0 0
\(545\) 21700.8 1.70561
\(546\) 0 0
\(547\) −13468.0 −1.05274 −0.526371 0.850255i \(-0.676448\pi\)
−0.526371 + 0.850255i \(0.676448\pi\)
\(548\) 0 0
\(549\) −1306.73 −0.101584
\(550\) 0 0
\(551\) 1141.96 0.0882928
\(552\) 0 0
\(553\) 43.7186 0.00336185
\(554\) 0 0
\(555\) 13188.5 1.00868
\(556\) 0 0
\(557\) 3808.21 0.289693 0.144846 0.989454i \(-0.453731\pi\)
0.144846 + 0.989454i \(0.453731\pi\)
\(558\) 0 0
\(559\) 33157.5 2.50879
\(560\) 0 0
\(561\) 41.6714 0.00313613
\(562\) 0 0
\(563\) −22451.9 −1.68070 −0.840351 0.542042i \(-0.817651\pi\)
−0.840351 + 0.542042i \(0.817651\pi\)
\(564\) 0 0
\(565\) −25354.7 −1.88793
\(566\) 0 0
\(567\) −124.665 −0.00923358
\(568\) 0 0
\(569\) 21111.7 1.55545 0.777723 0.628607i \(-0.216375\pi\)
0.777723 + 0.628607i \(0.216375\pi\)
\(570\) 0 0
\(571\) −7839.51 −0.574559 −0.287279 0.957847i \(-0.592751\pi\)
−0.287279 + 0.957847i \(0.592751\pi\)
\(572\) 0 0
\(573\) −7686.78 −0.560419
\(574\) 0 0
\(575\) 5368.01 0.389324
\(576\) 0 0
\(577\) −2092.09 −0.150944 −0.0754720 0.997148i \(-0.524046\pi\)
−0.0754720 + 0.997148i \(0.524046\pi\)
\(578\) 0 0
\(579\) 8604.37 0.617591
\(580\) 0 0
\(581\) −166.938 −0.0119204
\(582\) 0 0
\(583\) 460.559 0.0327177
\(584\) 0 0
\(585\) −7519.70 −0.531455
\(586\) 0 0
\(587\) −19301.8 −1.35719 −0.678595 0.734513i \(-0.737411\pi\)
−0.678595 + 0.734513i \(0.737411\pi\)
\(588\) 0 0
\(589\) −3345.33 −0.234027
\(590\) 0 0
\(591\) 718.535 0.0500111
\(592\) 0 0
\(593\) −22422.7 −1.55276 −0.776381 0.630264i \(-0.782947\pi\)
−0.776381 + 0.630264i \(0.782947\pi\)
\(594\) 0 0
\(595\) 10.0061 0.000689431 0
\(596\) 0 0
\(597\) 5822.80 0.399182
\(598\) 0 0
\(599\) −6779.52 −0.462443 −0.231222 0.972901i \(-0.574272\pi\)
−0.231222 + 0.972901i \(0.574272\pi\)
\(600\) 0 0
\(601\) 13065.1 0.886746 0.443373 0.896337i \(-0.353782\pi\)
0.443373 + 0.896337i \(0.353782\pi\)
\(602\) 0 0
\(603\) −2709.94 −0.183014
\(604\) 0 0
\(605\) 23850.2 1.60273
\(606\) 0 0
\(607\) −17590.3 −1.17622 −0.588112 0.808780i \(-0.700128\pi\)
−0.588112 + 0.808780i \(0.700128\pi\)
\(608\) 0 0
\(609\) 60.7268 0.00404068
\(610\) 0 0
\(611\) −18507.9 −1.22545
\(612\) 0 0
\(613\) 10723.1 0.706530 0.353265 0.935523i \(-0.385071\pi\)
0.353265 + 0.935523i \(0.385071\pi\)
\(614\) 0 0
\(615\) −37151.4 −2.43591
\(616\) 0 0
\(617\) −2406.12 −0.156997 −0.0784983 0.996914i \(-0.525013\pi\)
−0.0784983 + 0.996914i \(0.525013\pi\)
\(618\) 0 0
\(619\) 5375.50 0.349046 0.174523 0.984653i \(-0.444162\pi\)
0.174523 + 0.984653i \(0.444162\pi\)
\(620\) 0 0
\(621\) −3979.40 −0.257146
\(622\) 0 0
\(623\) 45.5893 0.00293178
\(624\) 0 0
\(625\) −149.015 −0.00953698
\(626\) 0 0
\(627\) −305.236 −0.0194417
\(628\) 0 0
\(629\) 399.763 0.0253412
\(630\) 0 0
\(631\) −16557.2 −1.04458 −0.522291 0.852767i \(-0.674923\pi\)
−0.522291 + 0.852767i \(0.674923\pi\)
\(632\) 0 0
\(633\) −14194.1 −0.891258
\(634\) 0 0
\(635\) 19073.5 1.19198
\(636\) 0 0
\(637\) 31111.3 1.93513
\(638\) 0 0
\(639\) 4458.89 0.276042
\(640\) 0 0
\(641\) −1184.92 −0.0730131 −0.0365066 0.999333i \(-0.511623\pi\)
−0.0365066 + 0.999333i \(0.511623\pi\)
\(642\) 0 0
\(643\) −8126.38 −0.498403 −0.249202 0.968452i \(-0.580168\pi\)
−0.249202 + 0.968452i \(0.580168\pi\)
\(644\) 0 0
\(645\) 31278.7 1.90945
\(646\) 0 0
\(647\) 16438.6 0.998868 0.499434 0.866352i \(-0.333541\pi\)
0.499434 + 0.866352i \(0.333541\pi\)
\(648\) 0 0
\(649\) −2578.55 −0.155958
\(650\) 0 0
\(651\) −177.896 −0.0107101
\(652\) 0 0
\(653\) −10561.8 −0.632947 −0.316473 0.948601i \(-0.602499\pi\)
−0.316473 + 0.948601i \(0.602499\pi\)
\(654\) 0 0
\(655\) 18563.1 1.10736
\(656\) 0 0
\(657\) −1689.75 −0.100340
\(658\) 0 0
\(659\) −28057.4 −1.65851 −0.829257 0.558868i \(-0.811236\pi\)
−0.829257 + 0.558868i \(0.811236\pi\)
\(660\) 0 0
\(661\) 16123.6 0.948769 0.474385 0.880318i \(-0.342671\pi\)
0.474385 + 0.880318i \(0.342671\pi\)
\(662\) 0 0
\(663\) 1114.03 0.0652572
\(664\) 0 0
\(665\) −73.2931 −0.00427396
\(666\) 0 0
\(667\) 1599.42 0.0928483
\(668\) 0 0
\(669\) −3698.93 −0.213765
\(670\) 0 0
\(671\) −966.889 −0.0556279
\(672\) 0 0
\(673\) −31833.0 −1.82329 −0.911643 0.410982i \(-0.865186\pi\)
−0.911643 + 0.410982i \(0.865186\pi\)
\(674\) 0 0
\(675\) −30165.0 −1.72008
\(676\) 0 0
\(677\) −18505.4 −1.05055 −0.525273 0.850934i \(-0.676037\pi\)
−0.525273 + 0.850934i \(0.676037\pi\)
\(678\) 0 0
\(679\) −260.266 −0.0147100
\(680\) 0 0
\(681\) −12759.8 −0.717999
\(682\) 0 0
\(683\) 2660.37 0.149043 0.0745213 0.997219i \(-0.476257\pi\)
0.0745213 + 0.997219i \(0.476257\pi\)
\(684\) 0 0
\(685\) 31234.7 1.74221
\(686\) 0 0
\(687\) 18714.6 1.03931
\(688\) 0 0
\(689\) 12312.5 0.680796
\(690\) 0 0
\(691\) 23883.5 1.31487 0.657433 0.753513i \(-0.271642\pi\)
0.657433 + 0.753513i \(0.271642\pi\)
\(692\) 0 0
\(693\) 3.32103 0.000182043 0
\(694\) 0 0
\(695\) −11282.5 −0.615781
\(696\) 0 0
\(697\) −1126.12 −0.0611975
\(698\) 0 0
\(699\) 20430.0 1.10549
\(700\) 0 0
\(701\) 25949.8 1.39816 0.699079 0.715044i \(-0.253594\pi\)
0.699079 + 0.715044i \(0.253594\pi\)
\(702\) 0 0
\(703\) −2928.19 −0.157097
\(704\) 0 0
\(705\) −17459.1 −0.932692
\(706\) 0 0
\(707\) −11.5193 −0.000612771 0
\(708\) 0 0
\(709\) 12320.8 0.652633 0.326316 0.945261i \(-0.394193\pi\)
0.326316 + 0.945261i \(0.394193\pi\)
\(710\) 0 0
\(711\) −939.452 −0.0495530
\(712\) 0 0
\(713\) −4685.42 −0.246102
\(714\) 0 0
\(715\) −5564.06 −0.291026
\(716\) 0 0
\(717\) 18030.2 0.939120
\(718\) 0 0
\(719\) −27252.6 −1.41356 −0.706781 0.707432i \(-0.749854\pi\)
−0.706781 + 0.707432i \(0.749854\pi\)
\(720\) 0 0
\(721\) 424.159 0.0219092
\(722\) 0 0
\(723\) 20235.6 1.04090
\(724\) 0 0
\(725\) 12124.1 0.621071
\(726\) 0 0
\(727\) 24073.8 1.22813 0.614063 0.789257i \(-0.289534\pi\)
0.614063 + 0.789257i \(0.289534\pi\)
\(728\) 0 0
\(729\) 21794.0 1.10725
\(730\) 0 0
\(731\) 948.105 0.0479712
\(732\) 0 0
\(733\) 10232.2 0.515600 0.257800 0.966198i \(-0.417002\pi\)
0.257800 + 0.966198i \(0.417002\pi\)
\(734\) 0 0
\(735\) 29348.4 1.47283
\(736\) 0 0
\(737\) −2005.17 −0.100219
\(738\) 0 0
\(739\) 5327.77 0.265203 0.132602 0.991169i \(-0.457667\pi\)
0.132602 + 0.991169i \(0.457667\pi\)
\(740\) 0 0
\(741\) −8160.11 −0.404547
\(742\) 0 0
\(743\) 20416.6 1.00809 0.504046 0.863677i \(-0.331844\pi\)
0.504046 + 0.863677i \(0.331844\pi\)
\(744\) 0 0
\(745\) −1040.40 −0.0511642
\(746\) 0 0
\(747\) 3587.27 0.175705
\(748\) 0 0
\(749\) −229.830 −0.0112120
\(750\) 0 0
\(751\) 11444.8 0.556092 0.278046 0.960568i \(-0.410313\pi\)
0.278046 + 0.960568i \(0.410313\pi\)
\(752\) 0 0
\(753\) 12083.0 0.584766
\(754\) 0 0
\(755\) 46405.8 2.23693
\(756\) 0 0
\(757\) 31158.8 1.49602 0.748009 0.663689i \(-0.231010\pi\)
0.748009 + 0.663689i \(0.231010\pi\)
\(758\) 0 0
\(759\) −427.509 −0.0204448
\(760\) 0 0
\(761\) −8933.92 −0.425564 −0.212782 0.977100i \(-0.568252\pi\)
−0.212782 + 0.977100i \(0.568252\pi\)
\(762\) 0 0
\(763\) −256.217 −0.0121569
\(764\) 0 0
\(765\) −215.018 −0.0101621
\(766\) 0 0
\(767\) −68934.4 −3.24521
\(768\) 0 0
\(769\) 29688.6 1.39220 0.696099 0.717946i \(-0.254918\pi\)
0.696099 + 0.717946i \(0.254918\pi\)
\(770\) 0 0
\(771\) 9938.75 0.464248
\(772\) 0 0
\(773\) −35704.1 −1.66130 −0.830651 0.556793i \(-0.812032\pi\)
−0.830651 + 0.556793i \(0.812032\pi\)
\(774\) 0 0
\(775\) −35516.8 −1.64620
\(776\) 0 0
\(777\) −155.714 −0.00718946
\(778\) 0 0
\(779\) 8248.60 0.379380
\(780\) 0 0
\(781\) 3299.27 0.151161
\(782\) 0 0
\(783\) −8987.79 −0.410214
\(784\) 0 0
\(785\) 54509.4 2.47838
\(786\) 0 0
\(787\) −26828.3 −1.21515 −0.607577 0.794261i \(-0.707858\pi\)
−0.607577 + 0.794261i \(0.707858\pi\)
\(788\) 0 0
\(789\) −36415.2 −1.64311
\(790\) 0 0
\(791\) 299.360 0.0134564
\(792\) 0 0
\(793\) −25848.6 −1.15752
\(794\) 0 0
\(795\) 11614.8 0.518157
\(796\) 0 0
\(797\) −42689.8 −1.89730 −0.948650 0.316327i \(-0.897550\pi\)
−0.948650 + 0.316327i \(0.897550\pi\)
\(798\) 0 0
\(799\) −529.213 −0.0234320
\(800\) 0 0
\(801\) −979.651 −0.0432138
\(802\) 0 0
\(803\) −1250.30 −0.0549465
\(804\) 0 0
\(805\) −102.653 −0.00449448
\(806\) 0 0
\(807\) 6915.81 0.301670
\(808\) 0 0
\(809\) −21486.1 −0.933759 −0.466880 0.884321i \(-0.654622\pi\)
−0.466880 + 0.884321i \(0.654622\pi\)
\(810\) 0 0
\(811\) 3074.32 0.133112 0.0665560 0.997783i \(-0.478799\pi\)
0.0665560 + 0.997783i \(0.478799\pi\)
\(812\) 0 0
\(813\) 15055.7 0.649480
\(814\) 0 0
\(815\) 60218.1 2.58816
\(816\) 0 0
\(817\) −6944.70 −0.297386
\(818\) 0 0
\(819\) 88.7839 0.00378799
\(820\) 0 0
\(821\) −32460.2 −1.37987 −0.689933 0.723873i \(-0.742360\pi\)
−0.689933 + 0.723873i \(0.742360\pi\)
\(822\) 0 0
\(823\) −25382.1 −1.07505 −0.537523 0.843249i \(-0.680640\pi\)
−0.537523 + 0.843249i \(0.680640\pi\)
\(824\) 0 0
\(825\) −3240.64 −0.136757
\(826\) 0 0
\(827\) −9830.51 −0.413350 −0.206675 0.978410i \(-0.566264\pi\)
−0.206675 + 0.978410i \(0.566264\pi\)
\(828\) 0 0
\(829\) 47474.0 1.98895 0.994476 0.104968i \(-0.0334739\pi\)
0.994476 + 0.104968i \(0.0334739\pi\)
\(830\) 0 0
\(831\) −5812.18 −0.242626
\(832\) 0 0
\(833\) 889.596 0.0370020
\(834\) 0 0
\(835\) −44565.9 −1.84703
\(836\) 0 0
\(837\) 26329.3 1.08730
\(838\) 0 0
\(839\) 29050.3 1.19539 0.597693 0.801725i \(-0.296084\pi\)
0.597693 + 0.801725i \(0.296084\pi\)
\(840\) 0 0
\(841\) −20776.6 −0.851883
\(842\) 0 0
\(843\) 30759.7 1.25673
\(844\) 0 0
\(845\) −109037. −4.43903
\(846\) 0 0
\(847\) −281.596 −0.0114236
\(848\) 0 0
\(849\) −228.064 −0.00921926
\(850\) 0 0
\(851\) −4101.19 −0.165202
\(852\) 0 0
\(853\) 21804.2 0.875217 0.437609 0.899166i \(-0.355826\pi\)
0.437609 + 0.899166i \(0.355826\pi\)
\(854\) 0 0
\(855\) 1574.97 0.0629974
\(856\) 0 0
\(857\) 30879.5 1.23083 0.615416 0.788203i \(-0.288988\pi\)
0.615416 + 0.788203i \(0.288988\pi\)
\(858\) 0 0
\(859\) 6065.94 0.240940 0.120470 0.992717i \(-0.461560\pi\)
0.120470 + 0.992717i \(0.461560\pi\)
\(860\) 0 0
\(861\) 438.640 0.0173622
\(862\) 0 0
\(863\) −1527.39 −0.0602467 −0.0301233 0.999546i \(-0.509590\pi\)
−0.0301233 + 0.999546i \(0.509590\pi\)
\(864\) 0 0
\(865\) 9925.40 0.390143
\(866\) 0 0
\(867\) −23228.0 −0.909878
\(868\) 0 0
\(869\) −695.129 −0.0271354
\(870\) 0 0
\(871\) −53605.8 −2.08538
\(872\) 0 0
\(873\) 5592.75 0.216822
\(874\) 0 0
\(875\) −295.950 −0.0114342
\(876\) 0 0
\(877\) −565.469 −0.0217725 −0.0108863 0.999941i \(-0.503465\pi\)
−0.0108863 + 0.999941i \(0.503465\pi\)
\(878\) 0 0
\(879\) 5400.64 0.207234
\(880\) 0 0
\(881\) −28897.8 −1.10510 −0.552549 0.833481i \(-0.686345\pi\)
−0.552549 + 0.833481i \(0.686345\pi\)
\(882\) 0 0
\(883\) 26073.0 0.993687 0.496844 0.867840i \(-0.334492\pi\)
0.496844 + 0.867840i \(0.334492\pi\)
\(884\) 0 0
\(885\) −65028.2 −2.46994
\(886\) 0 0
\(887\) −859.344 −0.0325298 −0.0162649 0.999868i \(-0.505178\pi\)
−0.0162649 + 0.999868i \(0.505178\pi\)
\(888\) 0 0
\(889\) −225.198 −0.00849596
\(890\) 0 0
\(891\) 1982.19 0.0745294
\(892\) 0 0
\(893\) 3876.39 0.145261
\(894\) 0 0
\(895\) 75676.9 2.82637
\(896\) 0 0
\(897\) −11428.9 −0.425419
\(898\) 0 0
\(899\) −10582.4 −0.392595
\(900\) 0 0
\(901\) 352.063 0.0130177
\(902\) 0 0
\(903\) −369.302 −0.0136098
\(904\) 0 0
\(905\) 71471.5 2.62519
\(906\) 0 0
\(907\) 36272.4 1.32790 0.663951 0.747776i \(-0.268878\pi\)
0.663951 + 0.747776i \(0.268878\pi\)
\(908\) 0 0
\(909\) 247.535 0.00903213
\(910\) 0 0
\(911\) −20484.7 −0.744993 −0.372497 0.928034i \(-0.621498\pi\)
−0.372497 + 0.928034i \(0.621498\pi\)
\(912\) 0 0
\(913\) 2654.33 0.0962165
\(914\) 0 0
\(915\) −24383.9 −0.880992
\(916\) 0 0
\(917\) −219.171 −0.00789277
\(918\) 0 0
\(919\) 6354.25 0.228082 0.114041 0.993476i \(-0.463620\pi\)
0.114041 + 0.993476i \(0.463620\pi\)
\(920\) 0 0
\(921\) −31855.2 −1.13970
\(922\) 0 0
\(923\) 88202.0 3.14540
\(924\) 0 0
\(925\) −31088.2 −1.10505
\(926\) 0 0
\(927\) −9114.60 −0.322937
\(928\) 0 0
\(929\) 33316.3 1.17661 0.588307 0.808638i \(-0.299795\pi\)
0.588307 + 0.808638i \(0.299795\pi\)
\(930\) 0 0
\(931\) −6516.13 −0.229385
\(932\) 0 0
\(933\) −46198.6 −1.62109
\(934\) 0 0
\(935\) −159.098 −0.00556478
\(936\) 0 0
\(937\) −6181.13 −0.215506 −0.107753 0.994178i \(-0.534365\pi\)
−0.107753 + 0.994178i \(0.534365\pi\)
\(938\) 0 0
\(939\) −7862.89 −0.273265
\(940\) 0 0
\(941\) 609.315 0.0211085 0.0105543 0.999944i \(-0.496640\pi\)
0.0105543 + 0.999944i \(0.496640\pi\)
\(942\) 0 0
\(943\) 11552.9 0.398954
\(944\) 0 0
\(945\) 576.851 0.0198571
\(946\) 0 0
\(947\) −9348.71 −0.320794 −0.160397 0.987053i \(-0.551278\pi\)
−0.160397 + 0.987053i \(0.551278\pi\)
\(948\) 0 0
\(949\) −33425.2 −1.14334
\(950\) 0 0
\(951\) 31146.5 1.06203
\(952\) 0 0
\(953\) −36990.5 −1.25734 −0.628668 0.777674i \(-0.716399\pi\)
−0.628668 + 0.777674i \(0.716399\pi\)
\(954\) 0 0
\(955\) 29347.6 0.994414
\(956\) 0 0
\(957\) −965.563 −0.0326146
\(958\) 0 0
\(959\) −368.783 −0.0124177
\(960\) 0 0
\(961\) 1209.59 0.0406027
\(962\) 0 0
\(963\) 4938.73 0.165263
\(964\) 0 0
\(965\) −32850.9 −1.09586
\(966\) 0 0
\(967\) −48806.2 −1.62306 −0.811532 0.584308i \(-0.801366\pi\)
−0.811532 + 0.584308i \(0.801366\pi\)
\(968\) 0 0
\(969\) −233.330 −0.00773543
\(970\) 0 0
\(971\) 401.490 0.0132692 0.00663462 0.999978i \(-0.497888\pi\)
0.00663462 + 0.999978i \(0.497888\pi\)
\(972\) 0 0
\(973\) 133.210 0.00438903
\(974\) 0 0
\(975\) −86634.6 −2.84567
\(976\) 0 0
\(977\) 6786.27 0.222223 0.111112 0.993808i \(-0.464559\pi\)
0.111112 + 0.993808i \(0.464559\pi\)
\(978\) 0 0
\(979\) −724.874 −0.0236640
\(980\) 0 0
\(981\) 5505.76 0.179190
\(982\) 0 0
\(983\) −17163.1 −0.556884 −0.278442 0.960453i \(-0.589818\pi\)
−0.278442 + 0.960453i \(0.589818\pi\)
\(984\) 0 0
\(985\) −2743.31 −0.0887404
\(986\) 0 0
\(987\) 206.137 0.00664783
\(988\) 0 0
\(989\) −9726.67 −0.312730
\(990\) 0 0
\(991\) 9323.61 0.298864 0.149432 0.988772i \(-0.452255\pi\)
0.149432 + 0.988772i \(0.452255\pi\)
\(992\) 0 0
\(993\) −26144.6 −0.835524
\(994\) 0 0
\(995\) −22231.0 −0.708313
\(996\) 0 0
\(997\) 14764.7 0.469011 0.234506 0.972115i \(-0.424653\pi\)
0.234506 + 0.972115i \(0.424653\pi\)
\(998\) 0 0
\(999\) 23046.3 0.729881
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.4.a.b.1.3 3
3.2 odd 2 1368.4.a.e.1.3 3
4.3 odd 2 304.4.a.j.1.1 3
8.3 odd 2 1216.4.a.q.1.3 3
8.5 even 2 1216.4.a.x.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.4.a.b.1.3 3 1.1 even 1 trivial
304.4.a.j.1.1 3 4.3 odd 2
1216.4.a.q.1.3 3 8.3 odd 2
1216.4.a.x.1.1 3 8.5 even 2
1368.4.a.e.1.3 3 3.2 odd 2