Properties

Label 152.3.e.a
Level $152$
Weight $3$
Character orbit 152.e
Analytic conductor $4.142$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 152.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.14170001828\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Defining polynomial: \(x^{2} + 2\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4\sqrt{-2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} + 7 q^{5} + 11 q^{7} -23 q^{9} +O(q^{10})\) \( q + \beta q^{3} + 7 q^{5} + 11 q^{7} -23 q^{9} + 3 q^{11} -2 \beta q^{13} + 7 \beta q^{15} -17 q^{17} -19 q^{19} + 11 \beta q^{21} + 2 q^{23} + 24 q^{25} -14 \beta q^{27} -7 \beta q^{29} + \beta q^{31} + 3 \beta q^{33} + 77 q^{35} -7 \beta q^{37} + 64 q^{39} + 7 \beta q^{41} -21 q^{43} -161 q^{45} -5 q^{47} + 72 q^{49} -17 \beta q^{51} + \beta q^{53} + 21 q^{55} -19 \beta q^{57} + 6 \beta q^{59} + 23 q^{61} -253 q^{63} -14 \beta q^{65} + 7 \beta q^{67} + 2 \beta q^{69} + 16 \beta q^{71} + 39 q^{73} + 24 \beta q^{75} + 33 q^{77} -17 \beta q^{79} + 241 q^{81} -6 q^{83} -119 q^{85} + 224 q^{87} + 21 \beta q^{89} -22 \beta q^{91} -32 q^{93} -133 q^{95} -30 \beta q^{97} -69 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 14q^{5} + 22q^{7} - 46q^{9} + O(q^{10}) \) \( 2q + 14q^{5} + 22q^{7} - 46q^{9} + 6q^{11} - 34q^{17} - 38q^{19} + 4q^{23} + 48q^{25} + 154q^{35} + 128q^{39} - 42q^{43} - 322q^{45} - 10q^{47} + 144q^{49} + 42q^{55} + 46q^{61} - 506q^{63} + 78q^{73} + 66q^{77} + 482q^{81} - 12q^{83} - 238q^{85} + 448q^{87} - 64q^{93} - 266q^{95} - 138q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/152\mathbb{Z}\right)^\times\).

\(n\) \(39\) \(77\) \(97\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
113.1
1.41421i
1.41421i
0 5.65685i 0 7.00000 0 11.0000 0 −23.0000 0
113.2 0 5.65685i 0 7.00000 0 11.0000 0 −23.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
19.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 152.3.e.a 2
3.b odd 2 1 1368.3.o.a 2
4.b odd 2 1 304.3.e.f 2
8.b even 2 1 1216.3.e.d 2
8.d odd 2 1 1216.3.e.c 2
12.b even 2 1 2736.3.o.b 2
19.b odd 2 1 inner 152.3.e.a 2
57.d even 2 1 1368.3.o.a 2
76.d even 2 1 304.3.e.f 2
152.b even 2 1 1216.3.e.c 2
152.g odd 2 1 1216.3.e.d 2
228.b odd 2 1 2736.3.o.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
152.3.e.a 2 1.a even 1 1 trivial
152.3.e.a 2 19.b odd 2 1 inner
304.3.e.f 2 4.b odd 2 1
304.3.e.f 2 76.d even 2 1
1216.3.e.c 2 8.d odd 2 1
1216.3.e.c 2 152.b even 2 1
1216.3.e.d 2 8.b even 2 1
1216.3.e.d 2 152.g odd 2 1
1368.3.o.a 2 3.b odd 2 1
1368.3.o.a 2 57.d even 2 1
2736.3.o.b 2 12.b even 2 1
2736.3.o.b 2 228.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 32 \) acting on \(S_{3}^{\mathrm{new}}(152, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 32 + T^{2} \)
$5$ \( ( -7 + T )^{2} \)
$7$ \( ( -11 + T )^{2} \)
$11$ \( ( -3 + T )^{2} \)
$13$ \( 128 + T^{2} \)
$17$ \( ( 17 + T )^{2} \)
$19$ \( ( 19 + T )^{2} \)
$23$ \( ( -2 + T )^{2} \)
$29$ \( 1568 + T^{2} \)
$31$ \( 32 + T^{2} \)
$37$ \( 1568 + T^{2} \)
$41$ \( 1568 + T^{2} \)
$43$ \( ( 21 + T )^{2} \)
$47$ \( ( 5 + T )^{2} \)
$53$ \( 32 + T^{2} \)
$59$ \( 1152 + T^{2} \)
$61$ \( ( -23 + T )^{2} \)
$67$ \( 1568 + T^{2} \)
$71$ \( 8192 + T^{2} \)
$73$ \( ( -39 + T )^{2} \)
$79$ \( 9248 + T^{2} \)
$83$ \( ( 6 + T )^{2} \)
$89$ \( 14112 + T^{2} \)
$97$ \( 28800 + T^{2} \)
show more
show less