Defining parameters
Level: | \( N \) | \(=\) | \( 152 = 2^{3} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 152.v (of order \(18\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 152 \) |
Character field: | \(\Q(\zeta_{18})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(40\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(152, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 132 | 132 | 0 |
Cusp forms | 108 | 108 | 0 |
Eisenstein series | 24 | 24 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(152, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
152.2.v.a | $12$ | $1.214$ | 12.0.\(\cdots\).1 | \(\Q(\sqrt{-2}) \) | \(0\) | \(-6\) | \(0\) | \(0\) | \(q-\beta _{11}q^{2}+(\beta _{1}+\beta _{3}-\beta _{6}-\beta _{9}+\beta _{10}+\cdots)q^{3}+\cdots\) |
152.2.v.b | $96$ | $1.214$ | None | \(-6\) | \(-6\) | \(0\) | \(0\) |