Properties

Label 152.2.q.b.137.1
Level $152$
Weight $2$
Character 152.137
Analytic conductor $1.214$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [152,2,Mod(9,152)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(152, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([0, 0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("152.9"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 152.q (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.21372611072\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 137.1
Root \(0.939693 + 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 152.137
Dual form 152.2.q.b.81.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.560307 + 3.17766i) q^{3} +(-1.93969 + 1.62760i) q^{5} +(1.93969 - 3.35965i) q^{7} +(-6.96451 + 2.53487i) q^{9} +(1.17365 + 2.03282i) q^{11} +(0.145430 - 0.824773i) q^{13} +(-6.25877 - 5.25173i) q^{15} +(0.900330 + 0.327693i) q^{17} +(4.35844 + 0.0632028i) q^{19} +(11.7626 + 4.28125i) q^{21} +(3.34730 + 2.80872i) q^{23} +(0.245100 - 1.39003i) q^{25} +(-7.11721 - 12.3274i) q^{27} +(3.25877 - 1.18610i) q^{29} +(2.31908 - 4.01676i) q^{31} +(-5.80200 + 4.86846i) q^{33} +(1.70574 + 9.67372i) q^{35} -6.22668 q^{37} +2.70233 q^{39} +(-1.63176 - 9.25417i) q^{41} +(-3.42855 + 2.87689i) q^{43} +(9.38326 - 16.2523i) q^{45} +(6.73783 - 2.45237i) q^{47} +(-4.02481 - 6.97118i) q^{49} +(-0.536837 + 3.04455i) q^{51} +(-3.24376 - 2.72183i) q^{53} +(-5.58512 - 2.03282i) q^{55} +(2.24123 + 13.8851i) q^{57} +(-7.92514 - 2.88452i) q^{59} +(-4.89440 - 4.10689i) q^{61} +(-4.99273 + 28.3152i) q^{63} +(1.06031 + 1.83651i) q^{65} +(12.7442 - 4.63852i) q^{67} +(-7.04963 + 12.2103i) q^{69} +(-6.53983 + 5.48757i) q^{71} +(1.54664 + 8.77141i) q^{73} +4.55438 q^{75} +9.10607 q^{77} +(-0.647956 - 3.67474i) q^{79} +(18.1518 - 15.2312i) q^{81} +(1.23396 - 2.13727i) q^{83} +(-2.27972 + 0.829748i) q^{85} +(5.59492 + 9.69069i) q^{87} +(-0.396459 + 2.24843i) q^{89} +(-2.48886 - 2.08840i) q^{91} +(14.0633 + 5.11862i) q^{93} +(-8.55690 + 6.97118i) q^{95} +(0.166374 + 0.0605553i) q^{97} +(-13.3268 - 11.1825i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 9 q^{3} - 6 q^{5} + 6 q^{7} - 9 q^{9} + 6 q^{11} - 15 q^{13} - 15 q^{15} - 9 q^{17} + 18 q^{19} + 24 q^{21} + 18 q^{23} - 12 q^{27} - 3 q^{29} - 3 q^{31} + 3 q^{33} - 24 q^{37} - 36 q^{39} - 15 q^{41}+ \cdots - 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/152\mathbb{Z}\right)^\times\).

\(n\) \(39\) \(77\) \(97\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.560307 + 3.17766i 0.323494 + 1.83462i 0.520056 + 0.854132i \(0.325911\pi\)
−0.196562 + 0.980491i \(0.562978\pi\)
\(4\) 0 0
\(5\) −1.93969 + 1.62760i −0.867457 + 0.727883i −0.963561 0.267489i \(-0.913806\pi\)
0.0961041 + 0.995371i \(0.469362\pi\)
\(6\) 0 0
\(7\) 1.93969 3.35965i 0.733135 1.26983i −0.222402 0.974955i \(-0.571390\pi\)
0.955537 0.294872i \(-0.0952770\pi\)
\(8\) 0 0
\(9\) −6.96451 + 2.53487i −2.32150 + 0.844958i
\(10\) 0 0
\(11\) 1.17365 + 2.03282i 0.353868 + 0.612918i 0.986924 0.161189i \(-0.0515328\pi\)
−0.633055 + 0.774107i \(0.718199\pi\)
\(12\) 0 0
\(13\) 0.145430 0.824773i 0.0403349 0.228751i −0.957976 0.286848i \(-0.907392\pi\)
0.998311 + 0.0580977i \(0.0185035\pi\)
\(14\) 0 0
\(15\) −6.25877 5.25173i −1.61601 1.35599i
\(16\) 0 0
\(17\) 0.900330 + 0.327693i 0.218362 + 0.0794773i 0.448885 0.893590i \(-0.351821\pi\)
−0.230523 + 0.973067i \(0.574044\pi\)
\(18\) 0 0
\(19\) 4.35844 + 0.0632028i 0.999895 + 0.0144997i
\(20\) 0 0
\(21\) 11.7626 + 4.28125i 2.56682 + 0.934246i
\(22\) 0 0
\(23\) 3.34730 + 2.80872i 0.697960 + 0.585658i 0.921192 0.389108i \(-0.127217\pi\)
−0.223233 + 0.974765i \(0.571661\pi\)
\(24\) 0 0
\(25\) 0.245100 1.39003i 0.0490200 0.278006i
\(26\) 0 0
\(27\) −7.11721 12.3274i −1.36971 2.37240i
\(28\) 0 0
\(29\) 3.25877 1.18610i 0.605138 0.220252i −0.0212363 0.999774i \(-0.506760\pi\)
0.626375 + 0.779522i \(0.284538\pi\)
\(30\) 0 0
\(31\) 2.31908 4.01676i 0.416519 0.721432i −0.579068 0.815279i \(-0.696583\pi\)
0.995587 + 0.0938478i \(0.0299167\pi\)
\(32\) 0 0
\(33\) −5.80200 + 4.86846i −1.01000 + 0.847490i
\(34\) 0 0
\(35\) 1.70574 + 9.67372i 0.288322 + 1.63516i
\(36\) 0 0
\(37\) −6.22668 −1.02366 −0.511830 0.859087i \(-0.671032\pi\)
−0.511830 + 0.859087i \(0.671032\pi\)
\(38\) 0 0
\(39\) 2.70233 0.432720
\(40\) 0 0
\(41\) −1.63176 9.25417i −0.254838 1.44526i −0.796488 0.604654i \(-0.793311\pi\)
0.541650 0.840604i \(-0.317800\pi\)
\(42\) 0 0
\(43\) −3.42855 + 2.87689i −0.522849 + 0.438722i −0.865624 0.500695i \(-0.833078\pi\)
0.342775 + 0.939418i \(0.388633\pi\)
\(44\) 0 0
\(45\) 9.38326 16.2523i 1.39877 2.42275i
\(46\) 0 0
\(47\) 6.73783 2.45237i 0.982813 0.357715i 0.199880 0.979820i \(-0.435945\pi\)
0.782933 + 0.622106i \(0.213723\pi\)
\(48\) 0 0
\(49\) −4.02481 6.97118i −0.574974 0.995883i
\(50\) 0 0
\(51\) −0.536837 + 3.04455i −0.0751722 + 0.426323i
\(52\) 0 0
\(53\) −3.24376 2.72183i −0.445564 0.373873i 0.392223 0.919870i \(-0.371706\pi\)
−0.837787 + 0.545998i \(0.816151\pi\)
\(54\) 0 0
\(55\) −5.58512 2.03282i −0.753098 0.274105i
\(56\) 0 0
\(57\) 2.24123 + 13.8851i 0.296858 + 1.83912i
\(58\) 0 0
\(59\) −7.92514 2.88452i −1.03177 0.375532i −0.230013 0.973188i \(-0.573877\pi\)
−0.801753 + 0.597655i \(0.796099\pi\)
\(60\) 0 0
\(61\) −4.89440 4.10689i −0.626664 0.525833i 0.273227 0.961950i \(-0.411909\pi\)
−0.899890 + 0.436116i \(0.856354\pi\)
\(62\) 0 0
\(63\) −4.99273 + 28.3152i −0.629024 + 3.56737i
\(64\) 0 0
\(65\) 1.06031 + 1.83651i 0.131515 + 0.227791i
\(66\) 0 0
\(67\) 12.7442 4.63852i 1.55695 0.566685i 0.586919 0.809646i \(-0.300341\pi\)
0.970036 + 0.242961i \(0.0781187\pi\)
\(68\) 0 0
\(69\) −7.04963 + 12.2103i −0.848676 + 1.46995i
\(70\) 0 0
\(71\) −6.53983 + 5.48757i −0.776135 + 0.651255i −0.942272 0.334848i \(-0.891315\pi\)
0.166137 + 0.986103i \(0.446871\pi\)
\(72\) 0 0
\(73\) 1.54664 + 8.77141i 0.181020 + 1.02662i 0.930963 + 0.365114i \(0.118970\pi\)
−0.749943 + 0.661503i \(0.769919\pi\)
\(74\) 0 0
\(75\) 4.55438 0.525894
\(76\) 0 0
\(77\) 9.10607 1.03773
\(78\) 0 0
\(79\) −0.647956 3.67474i −0.0729007 0.413441i −0.999317 0.0369409i \(-0.988239\pi\)
0.926417 0.376500i \(-0.122872\pi\)
\(80\) 0 0
\(81\) 18.1518 15.2312i 2.01687 1.69235i
\(82\) 0 0
\(83\) 1.23396 2.13727i 0.135444 0.234596i −0.790323 0.612691i \(-0.790087\pi\)
0.925767 + 0.378094i \(0.123421\pi\)
\(84\) 0 0
\(85\) −2.27972 + 0.829748i −0.247270 + 0.0899989i
\(86\) 0 0
\(87\) 5.59492 + 9.69069i 0.599839 + 1.03895i
\(88\) 0 0
\(89\) −0.396459 + 2.24843i −0.0420246 + 0.238333i −0.998584 0.0532055i \(-0.983056\pi\)
0.956559 + 0.291539i \(0.0941673\pi\)
\(90\) 0 0
\(91\) −2.48886 2.08840i −0.260903 0.218924i
\(92\) 0 0
\(93\) 14.0633 + 5.11862i 1.45830 + 0.530776i
\(94\) 0 0
\(95\) −8.55690 + 6.97118i −0.877920 + 0.715228i
\(96\) 0 0
\(97\) 0.166374 + 0.0605553i 0.0168927 + 0.00614846i 0.350453 0.936580i \(-0.386028\pi\)
−0.333560 + 0.942729i \(0.608250\pi\)
\(98\) 0 0
\(99\) −13.3268 11.1825i −1.33940 1.12389i
\(100\) 0 0
\(101\) −0.680922 + 3.86170i −0.0677543 + 0.384254i 0.932008 + 0.362438i \(0.118056\pi\)
−0.999762 + 0.0218153i \(0.993055\pi\)
\(102\) 0 0
\(103\) −5.87211 10.1708i −0.578596 1.00216i −0.995641 0.0932721i \(-0.970267\pi\)
0.417044 0.908886i \(-0.363066\pi\)
\(104\) 0 0
\(105\) −29.7841 + 10.8405i −2.90663 + 1.05793i
\(106\) 0 0
\(107\) −8.04576 + 13.9357i −0.777813 + 1.34721i 0.155387 + 0.987854i \(0.450338\pi\)
−0.933200 + 0.359358i \(0.882996\pi\)
\(108\) 0 0
\(109\) 8.14337 6.83310i 0.779993 0.654492i −0.163254 0.986584i \(-0.552199\pi\)
0.943247 + 0.332092i \(0.107754\pi\)
\(110\) 0 0
\(111\) −3.48886 19.7863i −0.331148 1.87803i
\(112\) 0 0
\(113\) −5.61856 −0.528549 −0.264275 0.964447i \(-0.585133\pi\)
−0.264275 + 0.964447i \(0.585133\pi\)
\(114\) 0 0
\(115\) −11.0642 −1.03174
\(116\) 0 0
\(117\) 1.07785 + 6.11278i 0.0996471 + 0.565127i
\(118\) 0 0
\(119\) 2.84730 2.38917i 0.261011 0.219014i
\(120\) 0 0
\(121\) 2.74510 4.75465i 0.249555 0.432241i
\(122\) 0 0
\(123\) 28.4923 10.3704i 2.56907 0.935063i
\(124\) 0 0
\(125\) −4.54323 7.86911i −0.406359 0.703835i
\(126\) 0 0
\(127\) −1.03209 + 5.85327i −0.0915831 + 0.519393i 0.904158 + 0.427198i \(0.140499\pi\)
−0.995741 + 0.0921950i \(0.970612\pi\)
\(128\) 0 0
\(129\) −11.0628 9.28282i −0.974028 0.817307i
\(130\) 0 0
\(131\) −4.23783 1.54244i −0.370261 0.134764i 0.150187 0.988658i \(-0.452013\pi\)
−0.520447 + 0.853894i \(0.674235\pi\)
\(132\) 0 0
\(133\) 8.66637 14.5202i 0.751470 1.25906i
\(134\) 0 0
\(135\) 33.8692 + 12.3274i 2.91499 + 1.06097i
\(136\) 0 0
\(137\) −5.24376 4.40003i −0.448004 0.375920i 0.390690 0.920522i \(-0.372236\pi\)
−0.838695 + 0.544602i \(0.816681\pi\)
\(138\) 0 0
\(139\) 2.93717 16.6575i 0.249127 1.41287i −0.561582 0.827421i \(-0.689807\pi\)
0.810709 0.585449i \(-0.199082\pi\)
\(140\) 0 0
\(141\) 11.5680 + 20.0364i 0.974205 + 1.68737i
\(142\) 0 0
\(143\) 1.84730 0.672361i 0.154479 0.0562256i
\(144\) 0 0
\(145\) −4.39053 + 7.60462i −0.364614 + 0.631529i
\(146\) 0 0
\(147\) 19.8969 16.6955i 1.64107 1.37702i
\(148\) 0 0
\(149\) 0.00134417 + 0.00762319i 0.000110119 + 0.000624516i 0.984863 0.173336i \(-0.0554546\pi\)
−0.984753 + 0.173960i \(0.944344\pi\)
\(150\) 0 0
\(151\) −5.44831 −0.443377 −0.221689 0.975118i \(-0.571157\pi\)
−0.221689 + 0.975118i \(0.571157\pi\)
\(152\) 0 0
\(153\) −7.10101 −0.574083
\(154\) 0 0
\(155\) 2.03936 + 11.5658i 0.163806 + 0.928988i
\(156\) 0 0
\(157\) −18.0758 + 15.1674i −1.44261 + 1.21049i −0.504843 + 0.863211i \(0.668450\pi\)
−0.937762 + 0.347278i \(0.887106\pi\)
\(158\) 0 0
\(159\) 6.83157 11.8326i 0.541778 0.938388i
\(160\) 0 0
\(161\) 15.9290 5.79769i 1.25538 0.456922i
\(162\) 0 0
\(163\) 9.97431 + 17.2760i 0.781248 + 1.35316i 0.931215 + 0.364470i \(0.118750\pi\)
−0.149967 + 0.988691i \(0.547917\pi\)
\(164\) 0 0
\(165\) 3.33022 18.8866i 0.259257 1.47032i
\(166\) 0 0
\(167\) −0.418748 0.351371i −0.0324037 0.0271899i 0.626442 0.779468i \(-0.284511\pi\)
−0.658846 + 0.752278i \(0.728955\pi\)
\(168\) 0 0
\(169\) 11.5569 + 4.20637i 0.888993 + 0.323567i
\(170\) 0 0
\(171\) −30.5146 + 10.6079i −2.33351 + 0.811208i
\(172\) 0 0
\(173\) −10.6750 3.88538i −0.811605 0.295400i −0.0973181 0.995253i \(-0.531026\pi\)
−0.714287 + 0.699853i \(0.753249\pi\)
\(174\) 0 0
\(175\) −4.19459 3.51968i −0.317081 0.266063i
\(176\) 0 0
\(177\) 4.72550 26.7996i 0.355190 2.01438i
\(178\) 0 0
\(179\) 0.922618 + 1.59802i 0.0689597 + 0.119442i 0.898444 0.439089i \(-0.144699\pi\)
−0.829484 + 0.558531i \(0.811365\pi\)
\(180\) 0 0
\(181\) 4.30541 1.56704i 0.320018 0.116477i −0.177016 0.984208i \(-0.556644\pi\)
0.497034 + 0.867731i \(0.334422\pi\)
\(182\) 0 0
\(183\) 10.3079 17.8539i 0.761984 1.31980i
\(184\) 0 0
\(185\) 12.0778 10.1345i 0.887981 0.745105i
\(186\) 0 0
\(187\) 0.390530 + 2.21480i 0.0285584 + 0.161962i
\(188\) 0 0
\(189\) −55.2208 −4.01672
\(190\) 0 0
\(191\) 2.08647 0.150971 0.0754857 0.997147i \(-0.475949\pi\)
0.0754857 + 0.997147i \(0.475949\pi\)
\(192\) 0 0
\(193\) 4.36871 + 24.7762i 0.314466 + 1.78343i 0.575196 + 0.818016i \(0.304926\pi\)
−0.260729 + 0.965412i \(0.583963\pi\)
\(194\) 0 0
\(195\) −5.24170 + 4.39831i −0.375366 + 0.314969i
\(196\) 0 0
\(197\) −12.4153 + 21.5040i −0.884557 + 1.53210i −0.0383357 + 0.999265i \(0.512206\pi\)
−0.846221 + 0.532832i \(0.821128\pi\)
\(198\) 0 0
\(199\) −11.6750 + 4.24935i −0.827618 + 0.301228i −0.720881 0.693059i \(-0.756263\pi\)
−0.106737 + 0.994287i \(0.534040\pi\)
\(200\) 0 0
\(201\) 21.8803 + 37.8978i 1.54332 + 2.67311i
\(202\) 0 0
\(203\) 2.33615 13.2490i 0.163966 0.929896i
\(204\) 0 0
\(205\) 18.2271 + 15.2944i 1.27304 + 1.06821i
\(206\) 0 0
\(207\) −30.4320 11.0763i −2.11517 0.769859i
\(208\) 0 0
\(209\) 4.98680 + 8.93410i 0.344944 + 0.617984i
\(210\) 0 0
\(211\) 1.73396 + 0.631108i 0.119370 + 0.0434473i 0.401015 0.916072i \(-0.368658\pi\)
−0.281644 + 0.959519i \(0.590880\pi\)
\(212\) 0 0
\(213\) −21.1019 17.7066i −1.44588 1.21324i
\(214\) 0 0
\(215\) 1.96791 11.1606i 0.134210 0.761145i
\(216\) 0 0
\(217\) −8.99660 15.5826i −0.610729 1.05781i
\(218\) 0 0
\(219\) −27.0060 + 9.82938i −1.82490 + 0.664208i
\(220\) 0 0
\(221\) 0.401207 0.694911i 0.0269881 0.0467448i
\(222\) 0 0
\(223\) 10.9474 9.18599i 0.733094 0.615139i −0.197879 0.980226i \(-0.563405\pi\)
0.930973 + 0.365087i \(0.118961\pi\)
\(224\) 0 0
\(225\) 1.81655 + 10.3022i 0.121103 + 0.686812i
\(226\) 0 0
\(227\) 16.7023 1.10857 0.554286 0.832326i \(-0.312991\pi\)
0.554286 + 0.832326i \(0.312991\pi\)
\(228\) 0 0
\(229\) 5.32501 0.351886 0.175943 0.984400i \(-0.443702\pi\)
0.175943 + 0.984400i \(0.443702\pi\)
\(230\) 0 0
\(231\) 5.10220 + 28.9360i 0.335700 + 1.90385i
\(232\) 0 0
\(233\) 22.5915 18.9565i 1.48002 1.24188i 0.573856 0.818956i \(-0.305447\pi\)
0.906163 0.422928i \(-0.138998\pi\)
\(234\) 0 0
\(235\) −9.07785 + 15.7233i −0.592174 + 1.02567i
\(236\) 0 0
\(237\) 11.3140 4.11797i 0.734925 0.267491i
\(238\) 0 0
\(239\) −9.33022 16.1604i −0.603522 1.04533i −0.992283 0.123992i \(-0.960430\pi\)
0.388761 0.921339i \(-0.372903\pi\)
\(240\) 0 0
\(241\) −1.87464 + 10.6316i −0.120756 + 0.684841i 0.862982 + 0.505234i \(0.168594\pi\)
−0.983738 + 0.179607i \(0.942517\pi\)
\(242\) 0 0
\(243\) 25.8576 + 21.6971i 1.65876 + 1.39187i
\(244\) 0 0
\(245\) 19.1532 + 6.97118i 1.22365 + 0.445373i
\(246\) 0 0
\(247\) 0.685975 3.58553i 0.0436475 0.228142i
\(248\) 0 0
\(249\) 7.48293 + 2.72356i 0.474211 + 0.172599i
\(250\) 0 0
\(251\) 8.11721 + 6.81115i 0.512354 + 0.429916i 0.861957 0.506982i \(-0.169239\pi\)
−0.349603 + 0.936898i \(0.613683\pi\)
\(252\) 0 0
\(253\) −1.78106 + 10.1009i −0.111974 + 0.635037i
\(254\) 0 0
\(255\) −3.91400 6.77925i −0.245104 0.424533i
\(256\) 0 0
\(257\) −1.76352 + 0.641868i −0.110005 + 0.0400386i −0.396436 0.918062i \(-0.629753\pi\)
0.286431 + 0.958101i \(0.407531\pi\)
\(258\) 0 0
\(259\) −12.0778 + 20.9194i −0.750481 + 1.29987i
\(260\) 0 0
\(261\) −19.6891 + 16.5211i −1.21873 + 1.02263i
\(262\) 0 0
\(263\) 1.44104 + 8.17253i 0.0888581 + 0.503940i 0.996457 + 0.0841015i \(0.0268020\pi\)
−0.907599 + 0.419838i \(0.862087\pi\)
\(264\) 0 0
\(265\) 10.7219 0.658643
\(266\) 0 0
\(267\) −7.36690 −0.450847
\(268\) 0 0
\(269\) −2.51872 14.2844i −0.153569 0.870935i −0.960082 0.279718i \(-0.909759\pi\)
0.806513 0.591216i \(-0.201352\pi\)
\(270\) 0 0
\(271\) 11.6702 9.79250i 0.708917 0.594852i −0.215378 0.976531i \(-0.569098\pi\)
0.924295 + 0.381679i \(0.124654\pi\)
\(272\) 0 0
\(273\) 5.24170 9.07888i 0.317242 0.549479i
\(274\) 0 0
\(275\) 3.11334 1.13316i 0.187742 0.0683323i
\(276\) 0 0
\(277\) −1.40895 2.44037i −0.0846555 0.146628i 0.820589 0.571519i \(-0.193646\pi\)
−0.905244 + 0.424891i \(0.860312\pi\)
\(278\) 0 0
\(279\) −5.96926 + 33.8533i −0.357370 + 2.02675i
\(280\) 0 0
\(281\) −5.97178 5.01092i −0.356247 0.298926i 0.447046 0.894511i \(-0.352476\pi\)
−0.803293 + 0.595585i \(0.796920\pi\)
\(282\) 0 0
\(283\) 19.6621 + 7.15642i 1.16879 + 0.425405i 0.852230 0.523168i \(-0.175250\pi\)
0.316560 + 0.948572i \(0.397472\pi\)
\(284\) 0 0
\(285\) −26.9466 23.2849i −1.59618 1.37928i
\(286\) 0 0
\(287\) −34.2558 12.4681i −2.02206 0.735969i
\(288\) 0 0
\(289\) −12.3195 10.3373i −0.724679 0.608078i
\(290\) 0 0
\(291\) −0.0992034 + 0.562610i −0.00581541 + 0.0329808i
\(292\) 0 0
\(293\) −13.9304 24.1281i −0.813820 1.40958i −0.910172 0.414231i \(-0.864051\pi\)
0.0963516 0.995347i \(-0.469283\pi\)
\(294\) 0 0
\(295\) 20.0672 7.30385i 1.16836 0.425247i
\(296\) 0 0
\(297\) 16.7062 28.9360i 0.969392 1.67904i
\(298\) 0 0
\(299\) 2.80335 2.35229i 0.162122 0.136036i
\(300\) 0 0
\(301\) 3.01501 + 17.0990i 0.173783 + 0.985570i
\(302\) 0 0
\(303\) −12.6527 −0.726879
\(304\) 0 0
\(305\) 16.1780 0.926349
\(306\) 0 0
\(307\) 2.42380 + 13.7461i 0.138334 + 0.784529i 0.972480 + 0.232986i \(0.0748496\pi\)
−0.834147 + 0.551543i \(0.814039\pi\)
\(308\) 0 0
\(309\) 29.0292 24.3584i 1.65141 1.38570i
\(310\) 0 0
\(311\) 2.48886 4.31082i 0.141130 0.244444i −0.786792 0.617218i \(-0.788260\pi\)
0.927922 + 0.372773i \(0.121593\pi\)
\(312\) 0 0
\(313\) −1.75965 + 0.640459i −0.0994612 + 0.0362009i −0.391271 0.920275i \(-0.627965\pi\)
0.291810 + 0.956476i \(0.405742\pi\)
\(314\) 0 0
\(315\) −36.4013 63.0488i −2.05098 3.55240i
\(316\) 0 0
\(317\) −5.24510 + 29.7464i −0.294594 + 1.67073i 0.374253 + 0.927327i \(0.377899\pi\)
−0.668847 + 0.743400i \(0.733212\pi\)
\(318\) 0 0
\(319\) 6.23577 + 5.23243i 0.349136 + 0.292960i
\(320\) 0 0
\(321\) −48.7909 17.7584i −2.72324 0.991180i
\(322\) 0 0
\(323\) 3.90332 + 1.48513i 0.217187 + 0.0826351i
\(324\) 0 0
\(325\) −1.11081 0.404303i −0.0616169 0.0224267i
\(326\) 0 0
\(327\) 26.2761 + 22.0482i 1.45307 + 1.21927i
\(328\) 0 0
\(329\) 4.83022 27.3936i 0.266299 1.51026i
\(330\) 0 0
\(331\) −4.86959 8.43437i −0.267657 0.463595i 0.700600 0.713555i \(-0.252916\pi\)
−0.968256 + 0.249960i \(0.919583\pi\)
\(332\) 0 0
\(333\) 43.3658 15.7838i 2.37643 0.864950i
\(334\) 0 0
\(335\) −17.1702 + 29.7397i −0.938111 + 1.62486i
\(336\) 0 0
\(337\) −14.0458 + 11.7858i −0.765121 + 0.642013i −0.939454 0.342674i \(-0.888667\pi\)
0.174333 + 0.984687i \(0.444223\pi\)
\(338\) 0 0
\(339\) −3.14812 17.8539i −0.170982 0.969689i
\(340\) 0 0
\(341\) 10.8871 0.589571
\(342\) 0 0
\(343\) −4.07192 −0.219863
\(344\) 0 0
\(345\) −6.19934 35.1582i −0.333761 1.89285i
\(346\) 0 0
\(347\) 2.61721 2.19610i 0.140499 0.117893i −0.569829 0.821763i \(-0.692991\pi\)
0.710329 + 0.703870i \(0.248546\pi\)
\(348\) 0 0
\(349\) −3.45218 + 5.97935i −0.184791 + 0.320067i −0.943506 0.331355i \(-0.892494\pi\)
0.758715 + 0.651423i \(0.225827\pi\)
\(350\) 0 0
\(351\) −11.2023 + 4.07732i −0.597936 + 0.217631i
\(352\) 0 0
\(353\) 16.5903 + 28.7353i 0.883015 + 1.52943i 0.847973 + 0.530040i \(0.177823\pi\)
0.0350420 + 0.999386i \(0.488843\pi\)
\(354\) 0 0
\(355\) 3.75372 21.2884i 0.199227 1.12987i
\(356\) 0 0
\(357\) 9.18732 + 7.70908i 0.486244 + 0.408008i
\(358\) 0 0
\(359\) 18.5680 + 6.75822i 0.979984 + 0.356685i 0.781834 0.623487i \(-0.214284\pi\)
0.198150 + 0.980172i \(0.436507\pi\)
\(360\) 0 0
\(361\) 18.9920 + 0.550931i 0.999580 + 0.0289964i
\(362\) 0 0
\(363\) 16.6468 + 6.05893i 0.873729 + 0.318011i
\(364\) 0 0
\(365\) −17.2763 14.4965i −0.904283 0.758784i
\(366\) 0 0
\(367\) −4.41581 + 25.0433i −0.230503 + 1.30725i 0.621376 + 0.783512i \(0.286574\pi\)
−0.851880 + 0.523738i \(0.824537\pi\)
\(368\) 0 0
\(369\) 34.8225 + 60.3144i 1.81279 + 3.13984i
\(370\) 0 0
\(371\) −15.4363 + 5.61835i −0.801412 + 0.291690i
\(372\) 0 0
\(373\) 4.44222 7.69415i 0.230009 0.398388i −0.727801 0.685788i \(-0.759458\pi\)
0.957811 + 0.287400i \(0.0927910\pi\)
\(374\) 0 0
\(375\) 22.4598 18.8460i 1.15982 0.973202i
\(376\) 0 0
\(377\) −0.504337 2.86024i −0.0259747 0.147310i
\(378\) 0 0
\(379\) −11.3327 −0.582124 −0.291062 0.956704i \(-0.594009\pi\)
−0.291062 + 0.956704i \(0.594009\pi\)
\(380\) 0 0
\(381\) −19.1780 −0.982518
\(382\) 0 0
\(383\) −6.42309 36.4271i −0.328204 1.86134i −0.486128 0.873888i \(-0.661591\pi\)
0.157923 0.987451i \(-0.449520\pi\)
\(384\) 0 0
\(385\) −17.6630 + 14.8210i −0.900188 + 0.755348i
\(386\) 0 0
\(387\) 16.5856 28.7271i 0.843093 1.46028i
\(388\) 0 0
\(389\) −16.9500 + 6.16928i −0.859397 + 0.312795i −0.733866 0.679295i \(-0.762286\pi\)
−0.125531 + 0.992090i \(0.540064\pi\)
\(390\) 0 0
\(391\) 2.09327 + 3.62566i 0.105861 + 0.183357i
\(392\) 0 0
\(393\) 2.52687 14.3306i 0.127464 0.722884i
\(394\) 0 0
\(395\) 7.23783 + 6.07326i 0.364175 + 0.305579i
\(396\) 0 0
\(397\) 6.16297 + 2.24314i 0.309311 + 0.112580i 0.492012 0.870589i \(-0.336262\pi\)
−0.182701 + 0.983169i \(0.558484\pi\)
\(398\) 0 0
\(399\) 50.9962 + 19.4030i 2.55300 + 0.971366i
\(400\) 0 0
\(401\) −26.5929 9.67901i −1.32798 0.483347i −0.421976 0.906607i \(-0.638663\pi\)
−0.906008 + 0.423260i \(0.860886\pi\)
\(402\) 0 0
\(403\) −2.97565 2.49687i −0.148228 0.124378i
\(404\) 0 0
\(405\) −10.4187 + 59.0877i −0.517712 + 2.93609i
\(406\) 0 0
\(407\) −7.30793 12.6577i −0.362241 0.627419i
\(408\) 0 0
\(409\) −18.4153 + 6.70264i −0.910580 + 0.331424i −0.754485 0.656318i \(-0.772113\pi\)
−0.156096 + 0.987742i \(0.549891\pi\)
\(410\) 0 0
\(411\) 11.0437 19.1282i 0.544746 0.943527i
\(412\) 0 0
\(413\) −25.0633 + 21.0306i −1.23328 + 1.03485i
\(414\) 0 0
\(415\) 1.08512 + 6.15403i 0.0532666 + 0.302090i
\(416\) 0 0
\(417\) 54.5776 2.67268
\(418\) 0 0
\(419\) −7.94450 −0.388114 −0.194057 0.980990i \(-0.562165\pi\)
−0.194057 + 0.980990i \(0.562165\pi\)
\(420\) 0 0
\(421\) −2.26857 12.8657i −0.110563 0.627036i −0.988852 0.148904i \(-0.952425\pi\)
0.878288 0.478132i \(-0.158686\pi\)
\(422\) 0 0
\(423\) −40.7092 + 34.1591i −1.97935 + 1.66087i
\(424\) 0 0
\(425\) 0.676174 1.17117i 0.0327993 0.0568100i
\(426\) 0 0
\(427\) −23.2913 + 8.47735i −1.12715 + 0.410248i
\(428\) 0 0
\(429\) 3.17159 + 5.49335i 0.153126 + 0.265222i
\(430\) 0 0
\(431\) 2.09879 11.9028i 0.101095 0.573340i −0.891613 0.452798i \(-0.850426\pi\)
0.992708 0.120542i \(-0.0384631\pi\)
\(432\) 0 0
\(433\) −16.0929 13.5035i −0.773374 0.648938i 0.168197 0.985753i \(-0.446206\pi\)
−0.941571 + 0.336816i \(0.890650\pi\)
\(434\) 0 0
\(435\) −26.6250 9.69069i −1.27657 0.464633i
\(436\) 0 0
\(437\) 14.4115 + 12.4532i 0.689394 + 0.595716i
\(438\) 0 0
\(439\) 2.84477 + 1.03541i 0.135773 + 0.0494175i 0.409013 0.912528i \(-0.365873\pi\)
−0.273240 + 0.961946i \(0.588095\pi\)
\(440\) 0 0
\(441\) 45.7019 + 38.3485i 2.17628 + 1.82612i
\(442\) 0 0
\(443\) 1.48680 8.43204i 0.0706398 0.400618i −0.928901 0.370327i \(-0.879246\pi\)
0.999541 0.0302910i \(-0.00964338\pi\)
\(444\) 0 0
\(445\) −2.89053 5.00654i −0.137024 0.237333i
\(446\) 0 0
\(447\) −0.0234708 + 0.00854266i −0.00111013 + 0.000404054i
\(448\) 0 0
\(449\) 11.5312 19.9726i 0.544192 0.942567i −0.454466 0.890764i \(-0.650170\pi\)
0.998657 0.0518032i \(-0.0164968\pi\)
\(450\) 0 0
\(451\) 16.8969 14.1782i 0.795645 0.667626i
\(452\) 0 0
\(453\) −3.05273 17.3129i −0.143430 0.813430i
\(454\) 0 0
\(455\) 8.22668 0.385673
\(456\) 0 0
\(457\) −25.4953 −1.19262 −0.596309 0.802755i \(-0.703367\pi\)
−0.596309 + 0.802755i \(0.703367\pi\)
\(458\) 0 0
\(459\) −2.36824 13.4310i −0.110540 0.626904i
\(460\) 0 0
\(461\) −27.6446 + 23.1965i −1.28754 + 1.08037i −0.295377 + 0.955381i \(0.595445\pi\)
−0.992158 + 0.124990i \(0.960110\pi\)
\(462\) 0 0
\(463\) −20.7695 + 35.9738i −0.965241 + 1.67185i −0.256274 + 0.966604i \(0.582495\pi\)
−0.708967 + 0.705242i \(0.750838\pi\)
\(464\) 0 0
\(465\) −35.6095 + 12.9608i −1.65135 + 0.601043i
\(466\) 0 0
\(467\) −3.25537 5.63846i −0.150640 0.260917i 0.780823 0.624753i \(-0.214800\pi\)
−0.931463 + 0.363836i \(0.881467\pi\)
\(468\) 0 0
\(469\) 9.13610 51.8134i 0.421866 2.39252i
\(470\) 0 0
\(471\) −58.3248 48.9403i −2.68747 2.25505i
\(472\) 0 0
\(473\) −9.87211 3.59315i −0.453920 0.165213i
\(474\) 0 0
\(475\) 1.15611 6.04288i 0.0530458 0.277266i
\(476\) 0 0
\(477\) 29.4907 + 10.7337i 1.35028 + 0.491463i
\(478\) 0 0
\(479\) 14.0856 + 11.8192i 0.643587 + 0.540034i 0.905117 0.425162i \(-0.139783\pi\)
−0.261530 + 0.965195i \(0.584227\pi\)
\(480\) 0 0
\(481\) −0.905544 + 5.13560i −0.0412893 + 0.234163i
\(482\) 0 0
\(483\) 27.3482 + 47.3685i 1.24439 + 2.15534i
\(484\) 0 0
\(485\) −0.421274 + 0.153331i −0.0191291 + 0.00696242i
\(486\) 0 0
\(487\) −16.8662 + 29.2131i −0.764280 + 1.32377i 0.176347 + 0.984328i \(0.443572\pi\)
−0.940627 + 0.339443i \(0.889761\pi\)
\(488\) 0 0
\(489\) −49.3086 + 41.3748i −2.22981 + 1.87104i
\(490\) 0 0
\(491\) 2.41859 + 13.7165i 0.109149 + 0.619016i 0.989482 + 0.144659i \(0.0462084\pi\)
−0.880332 + 0.474357i \(0.842680\pi\)
\(492\) 0 0
\(493\) 3.32264 0.149644
\(494\) 0 0
\(495\) 44.0506 1.97993
\(496\) 0 0
\(497\) 5.75103 + 32.6157i 0.257969 + 1.46301i
\(498\) 0 0
\(499\) −25.9978 + 21.8147i −1.16382 + 0.976561i −0.999951 0.00992074i \(-0.996842\pi\)
−0.163870 + 0.986482i \(0.552398\pi\)
\(500\) 0 0
\(501\) 0.881911 1.52752i 0.0394009 0.0682444i
\(502\) 0 0
\(503\) 8.25372 3.00411i 0.368015 0.133947i −0.151391 0.988474i \(-0.548375\pi\)
0.519406 + 0.854527i \(0.326153\pi\)
\(504\) 0 0
\(505\) −4.96451 8.59878i −0.220918 0.382641i
\(506\) 0 0
\(507\) −6.89100 + 39.0808i −0.306040 + 1.73564i
\(508\) 0 0
\(509\) −18.6327 15.6347i −0.825880 0.692995i 0.128461 0.991715i \(-0.458996\pi\)
−0.954341 + 0.298719i \(0.903441\pi\)
\(510\) 0 0
\(511\) 32.4688 + 11.8177i 1.43634 + 0.522784i
\(512\) 0 0
\(513\) −30.2408 54.1779i −1.33516 2.39201i
\(514\) 0 0
\(515\) 27.9440 + 10.1708i 1.23136 + 0.448179i
\(516\) 0 0
\(517\) 12.8931 + 10.8186i 0.567036 + 0.475800i
\(518\) 0 0
\(519\) 6.36514 36.0985i 0.279399 1.58455i
\(520\) 0 0
\(521\) −2.06418 3.57526i −0.0904333 0.156635i 0.817260 0.576269i \(-0.195492\pi\)
−0.907694 + 0.419634i \(0.862159\pi\)
\(522\) 0 0
\(523\) 36.4752 13.2759i 1.59495 0.580515i 0.616565 0.787304i \(-0.288524\pi\)
0.978386 + 0.206789i \(0.0663014\pi\)
\(524\) 0 0
\(525\) 8.83409 15.3011i 0.385551 0.667795i
\(526\) 0 0
\(527\) 3.40420 2.85646i 0.148289 0.124429i
\(528\) 0 0
\(529\) −0.678396 3.84737i −0.0294955 0.167277i
\(530\) 0 0
\(531\) 62.5066 2.71256
\(532\) 0 0
\(533\) −7.86989 −0.340883
\(534\) 0 0
\(535\) −7.07532 40.1261i −0.305893 1.73480i
\(536\) 0 0
\(537\) −4.56102 + 3.82715i −0.196823 + 0.165154i
\(538\) 0 0
\(539\) 9.44743 16.3634i 0.406930 0.704823i
\(540\) 0 0
\(541\) 34.7622 12.6524i 1.49455 0.543970i 0.539903 0.841727i \(-0.318461\pi\)
0.954642 + 0.297757i \(0.0962386\pi\)
\(542\) 0 0
\(543\) 7.39187 + 12.8031i 0.317216 + 0.549434i
\(544\) 0 0
\(545\) −4.67412 + 26.5082i −0.200217 + 1.13549i
\(546\) 0 0
\(547\) −17.9394 15.0530i −0.767035 0.643619i 0.172913 0.984937i \(-0.444682\pi\)
−0.939948 + 0.341318i \(0.889127\pi\)
\(548\) 0 0
\(549\) 44.4975 + 16.1958i 1.89911 + 0.691219i
\(550\) 0 0
\(551\) 14.2781 4.96356i 0.608268 0.211455i
\(552\) 0 0
\(553\) −13.6027 4.95096i −0.578444 0.210536i
\(554\) 0 0
\(555\) 38.9714 + 32.7009i 1.65424 + 1.38807i
\(556\) 0 0
\(557\) −3.35086 + 19.0037i −0.141981 + 0.805212i 0.827761 + 0.561080i \(0.189614\pi\)
−0.969742 + 0.244132i \(0.921497\pi\)
\(558\) 0 0
\(559\) 1.87417 + 3.24616i 0.0792690 + 0.137298i
\(560\) 0 0
\(561\) −6.81908 + 2.48194i −0.287902 + 0.104788i
\(562\) 0 0
\(563\) 7.93763 13.7484i 0.334531 0.579425i −0.648863 0.760905i \(-0.724755\pi\)
0.983395 + 0.181480i \(0.0580887\pi\)
\(564\) 0 0
\(565\) 10.8983 9.14473i 0.458494 0.384722i
\(566\) 0 0
\(567\) −15.9624 90.5275i −0.670360 3.80180i
\(568\) 0 0
\(569\) 11.8571 0.497075 0.248538 0.968622i \(-0.420050\pi\)
0.248538 + 0.968622i \(0.420050\pi\)
\(570\) 0 0
\(571\) 12.0291 0.503402 0.251701 0.967805i \(-0.419010\pi\)
0.251701 + 0.967805i \(0.419010\pi\)
\(572\) 0 0
\(573\) 1.16906 + 6.63008i 0.0488383 + 0.276976i
\(574\) 0 0
\(575\) 4.72462 3.96443i 0.197030 0.165328i
\(576\) 0 0
\(577\) 14.1163 24.4502i 0.587671 1.01788i −0.406866 0.913488i \(-0.633378\pi\)
0.994537 0.104388i \(-0.0332883\pi\)
\(578\) 0 0
\(579\) −76.2825 + 27.7645i −3.17019 + 1.15386i
\(580\) 0 0
\(581\) −4.78699 8.29131i −0.198598 0.343981i
\(582\) 0 0
\(583\) 1.72597 9.78844i 0.0714822 0.405396i
\(584\) 0 0
\(585\) −12.0398 10.1026i −0.497786 0.417692i
\(586\) 0 0
\(587\) −29.4069 10.7032i −1.21375 0.441770i −0.345748 0.938327i \(-0.612375\pi\)
−0.868004 + 0.496558i \(0.834597\pi\)
\(588\) 0 0
\(589\) 10.3614 17.3602i 0.426935 0.715316i
\(590\) 0 0
\(591\) −75.2889 27.4029i −3.09697 1.12720i
\(592\) 0 0
\(593\) −8.83481 7.41328i −0.362802 0.304427i 0.443104 0.896470i \(-0.353877\pi\)
−0.805906 + 0.592043i \(0.798322\pi\)
\(594\) 0 0
\(595\) −1.63429 + 9.26849i −0.0669992 + 0.379971i
\(596\) 0 0
\(597\) −20.0446 34.7182i −0.820370 1.42092i
\(598\) 0 0
\(599\) 2.53374 0.922205i 0.103526 0.0376803i −0.289738 0.957106i \(-0.593568\pi\)
0.393264 + 0.919426i \(0.371346\pi\)
\(600\) 0 0
\(601\) −2.88026 + 4.98876i −0.117488 + 0.203496i −0.918772 0.394789i \(-0.870818\pi\)
0.801283 + 0.598285i \(0.204151\pi\)
\(602\) 0 0
\(603\) −76.9992 + 64.6100i −3.13565 + 2.63112i
\(604\) 0 0
\(605\) 2.41400 + 13.6905i 0.0981431 + 0.556597i
\(606\) 0 0
\(607\) −11.7510 −0.476960 −0.238480 0.971147i \(-0.576649\pi\)
−0.238480 + 0.971147i \(0.576649\pi\)
\(608\) 0 0
\(609\) 43.4097 1.75905
\(610\) 0 0
\(611\) −1.04277 5.91382i −0.0421858 0.239248i
\(612\) 0 0
\(613\) −10.9554 + 9.19269i −0.442485 + 0.371289i −0.836638 0.547755i \(-0.815482\pi\)
0.394153 + 0.919045i \(0.371038\pi\)
\(614\) 0 0
\(615\) −38.3876 + 66.4893i −1.54794 + 2.68111i
\(616\) 0 0
\(617\) 29.4440 10.7168i 1.18537 0.431440i 0.327276 0.944929i \(-0.393869\pi\)
0.858096 + 0.513489i \(0.171647\pi\)
\(618\) 0 0
\(619\) −7.65776 13.2636i −0.307791 0.533110i 0.670088 0.742282i \(-0.266256\pi\)
−0.977879 + 0.209172i \(0.932923\pi\)
\(620\) 0 0
\(621\) 10.8007 61.2536i 0.433416 2.45802i
\(622\) 0 0
\(623\) 6.78493 + 5.69323i 0.271832 + 0.228095i
\(624\) 0 0
\(625\) 28.2520 + 10.2829i 1.13008 + 0.411315i
\(626\) 0 0
\(627\) −25.5954 + 20.8522i −1.02218 + 0.832756i
\(628\) 0 0
\(629\) −5.60607 2.04044i −0.223529 0.0813577i
\(630\) 0 0
\(631\) 1.55438 + 1.30428i 0.0618788 + 0.0519225i 0.673203 0.739458i \(-0.264918\pi\)
−0.611324 + 0.791381i \(0.709363\pi\)
\(632\) 0 0
\(633\) −1.03390 + 5.86354i −0.0410938 + 0.233055i
\(634\) 0 0
\(635\) −7.52481 13.0334i −0.298613 0.517213i
\(636\) 0 0
\(637\) −6.33497 + 2.30574i −0.251001 + 0.0913568i
\(638\) 0 0
\(639\) 31.6364 54.7959i 1.25152 2.16769i
\(640\) 0 0
\(641\) −2.97178 + 2.49362i −0.117378 + 0.0984921i −0.699588 0.714547i \(-0.746633\pi\)
0.582209 + 0.813039i \(0.302188\pi\)
\(642\) 0 0
\(643\) −3.01872 17.1200i −0.119047 0.675148i −0.984667 0.174446i \(-0.944186\pi\)
0.865620 0.500702i \(-0.166925\pi\)
\(644\) 0 0
\(645\) 36.5672 1.43983
\(646\) 0 0
\(647\) 27.3414 1.07490 0.537451 0.843295i \(-0.319387\pi\)
0.537451 + 0.843295i \(0.319387\pi\)
\(648\) 0 0
\(649\) −3.43763 19.4958i −0.134939 0.765277i
\(650\) 0 0
\(651\) 44.4752 37.3192i 1.74312 1.46265i
\(652\) 0 0
\(653\) −14.5351 + 25.1755i −0.568802 + 0.985193i 0.427883 + 0.903834i \(0.359259\pi\)
−0.996685 + 0.0813594i \(0.974074\pi\)
\(654\) 0 0
\(655\) 10.7306 3.90560i 0.419277 0.152604i
\(656\) 0 0
\(657\) −33.0060 57.1680i −1.28769 2.23034i
\(658\) 0 0
\(659\) 5.58125 31.6529i 0.217415 1.23302i −0.659252 0.751922i \(-0.729127\pi\)
0.876667 0.481098i \(-0.159762\pi\)
\(660\) 0 0
\(661\) 29.7290 + 24.9456i 1.15632 + 0.970270i 0.999848 0.0174123i \(-0.00554278\pi\)
0.156474 + 0.987682i \(0.449987\pi\)
\(662\) 0 0
\(663\) 2.43299 + 0.885536i 0.0944896 + 0.0343914i
\(664\) 0 0
\(665\) 6.82295 + 42.2701i 0.264583 + 1.63917i
\(666\) 0 0
\(667\) 14.2395 + 5.18274i 0.551355 + 0.200677i
\(668\) 0 0
\(669\) 35.3239 + 29.6403i 1.36570 + 1.14596i
\(670\) 0 0
\(671\) 2.60426 14.7695i 0.100536 0.570169i
\(672\) 0 0
\(673\) −5.58512 9.67372i −0.215291 0.372894i 0.738072 0.674722i \(-0.235737\pi\)
−0.953362 + 0.301828i \(0.902403\pi\)
\(674\) 0 0
\(675\) −18.8799 + 6.87170i −0.726686 + 0.264492i
\(676\) 0 0
\(677\) 14.3466 24.8490i 0.551384 0.955025i −0.446791 0.894638i \(-0.647433\pi\)
0.998175 0.0603867i \(-0.0192334\pi\)
\(678\) 0 0
\(679\) 0.526159 0.441500i 0.0201921 0.0169432i
\(680\) 0 0
\(681\) 9.35844 + 53.0744i 0.358616 + 2.03381i
\(682\) 0 0
\(683\) −12.3550 −0.472752 −0.236376 0.971662i \(-0.575960\pi\)
−0.236376 + 0.971662i \(0.575960\pi\)
\(684\) 0 0
\(685\) 17.3327 0.662250
\(686\) 0 0
\(687\) 2.98364 + 16.9211i 0.113833 + 0.645579i
\(688\) 0 0
\(689\) −2.71663 + 2.27953i −0.103495 + 0.0868430i
\(690\) 0 0
\(691\) −5.34998 + 9.26645i −0.203523 + 0.352512i −0.949661 0.313279i \(-0.898573\pi\)
0.746138 + 0.665791i \(0.231906\pi\)
\(692\) 0 0
\(693\) −63.4193 + 23.0827i −2.40910 + 0.876840i
\(694\) 0 0
\(695\) 21.4145 + 37.0909i 0.812297 + 1.40694i
\(696\) 0 0
\(697\) 1.56341 8.86652i 0.0592182 0.335843i
\(698\) 0 0
\(699\) 72.8956 + 61.1667i 2.75717 + 2.31354i
\(700\) 0 0
\(701\) −18.6065 6.77222i −0.702759 0.255783i −0.0341706 0.999416i \(-0.510879\pi\)
−0.668588 + 0.743633i \(0.733101\pi\)
\(702\) 0 0
\(703\) −27.1386 0.393544i −1.02355 0.0148428i
\(704\) 0 0
\(705\) −55.0497 20.0364i −2.07329 0.754616i
\(706\) 0 0
\(707\) 11.6532 + 9.77817i 0.438263 + 0.367746i
\(708\) 0 0
\(709\) 2.06893 11.7335i 0.0777001 0.440659i −0.920994 0.389576i \(-0.872622\pi\)
0.998694 0.0510832i \(-0.0162674\pi\)
\(710\) 0 0
\(711\) 13.8277 + 23.9503i 0.518579 + 0.898205i
\(712\) 0 0
\(713\) 19.0446 6.93166i 0.713225 0.259593i
\(714\) 0 0
\(715\) −2.48886 + 4.31082i −0.0930779 + 0.161216i
\(716\) 0 0
\(717\) 46.1245 38.7031i 1.72255 1.44539i
\(718\) 0 0
\(719\) 8.13799 + 46.1529i 0.303496 + 1.72121i 0.630501 + 0.776188i \(0.282849\pi\)
−0.327005 + 0.945023i \(0.606039\pi\)
\(720\) 0 0
\(721\) −45.5604 −1.69676
\(722\) 0 0
\(723\) −34.8340 −1.29549
\(724\) 0 0
\(725\) −0.849985 4.82050i −0.0315676 0.179029i
\(726\) 0 0
\(727\) −12.5496 + 10.5304i −0.465440 + 0.390551i −0.845128 0.534564i \(-0.820476\pi\)
0.379688 + 0.925115i \(0.376031\pi\)
\(728\) 0 0
\(729\) −18.9145 + 32.7608i −0.700536 + 1.21336i
\(730\) 0 0
\(731\) −4.02956 + 1.46664i −0.149039 + 0.0542457i
\(732\) 0 0
\(733\) −13.3503 23.1234i −0.493104 0.854082i 0.506864 0.862026i \(-0.330805\pi\)
−0.999968 + 0.00794438i \(0.997471\pi\)
\(734\) 0 0
\(735\) −11.4204 + 64.7683i −0.421248 + 2.38901i
\(736\) 0 0
\(737\) 24.3865 + 20.4627i 0.898288 + 0.753753i
\(738\) 0 0
\(739\) 12.3598 + 4.49859i 0.454662 + 0.165483i 0.559192 0.829038i \(-0.311112\pi\)
−0.104530 + 0.994522i \(0.533334\pi\)
\(740\) 0 0
\(741\) 11.7780 + 0.170795i 0.432674 + 0.00627431i
\(742\) 0 0
\(743\) −1.08765 0.395872i −0.0399020 0.0145231i 0.321992 0.946742i \(-0.395648\pi\)
−0.361894 + 0.932219i \(0.617870\pi\)
\(744\) 0 0
\(745\) −0.0150147 0.0125989i −0.000550098 0.000461587i
\(746\) 0 0
\(747\) −3.17617 + 18.0130i −0.116210 + 0.659060i
\(748\) 0 0
\(749\) 31.2126 + 54.0618i 1.14048 + 1.97538i
\(750\) 0 0
\(751\) 43.1045 15.6887i 1.57290 0.572490i 0.599259 0.800555i \(-0.295462\pi\)
0.973646 + 0.228065i \(0.0732399\pi\)
\(752\) 0 0
\(753\) −17.0954 + 29.6101i −0.622991 + 1.07905i
\(754\) 0 0
\(755\) 10.5680 8.86765i 0.384611 0.322727i
\(756\) 0 0
\(757\) −8.20398 46.5271i −0.298179 1.69106i −0.653994 0.756500i \(-0.726908\pi\)
0.355815 0.934556i \(-0.384203\pi\)
\(758\) 0 0
\(759\) −33.0951 −1.20128
\(760\) 0 0
\(761\) −18.9495 −0.686921 −0.343460 0.939167i \(-0.611599\pi\)
−0.343460 + 0.939167i \(0.611599\pi\)
\(762\) 0 0
\(763\) −7.16116 40.6130i −0.259251 1.47029i
\(764\) 0 0
\(765\) 13.7738 11.5576i 0.497992 0.417865i
\(766\) 0 0
\(767\) −3.53162 + 6.11695i −0.127519 + 0.220870i
\(768\) 0 0
\(769\) 47.3858 17.2470i 1.70878 0.621944i 0.712001 0.702178i \(-0.247789\pi\)
0.996776 + 0.0802345i \(0.0255669\pi\)
\(770\) 0 0
\(771\) −3.02775 5.24422i −0.109042 0.188866i
\(772\) 0 0
\(773\) −7.31299 + 41.4740i −0.263030 + 1.49172i 0.511557 + 0.859249i \(0.329069\pi\)
−0.774587 + 0.632467i \(0.782042\pi\)
\(774\) 0 0
\(775\) −5.01501 4.20810i −0.180145 0.151159i
\(776\) 0 0
\(777\) −73.2422 26.6580i −2.62755 0.956350i
\(778\) 0 0
\(779\) −6.52704 40.4369i −0.233855 1.44880i
\(780\) 0 0
\(781\) −18.8307 6.85381i −0.673815 0.245249i
\(782\) 0 0
\(783\) −37.8148 31.7304i −1.35139 1.13395i
\(784\) 0 0
\(785\) 10.3751 58.8401i 0.370303 2.10009i
\(786\) 0 0
\(787\) 4.57832 + 7.92987i 0.163199 + 0.282669i 0.936014 0.351962i \(-0.114485\pi\)
−0.772815 + 0.634631i \(0.781152\pi\)
\(788\) 0 0
\(789\) −25.1621 + 9.15825i −0.895794 + 0.326042i
\(790\) 0 0
\(791\) −10.8983 + 18.8764i −0.387498 + 0.671166i
\(792\) 0 0
\(793\) −4.09904 + 3.43950i −0.145561 + 0.122140i
\(794\) 0 0
\(795\) 6.00758 + 34.0707i 0.213067 + 1.20836i
\(796\) 0 0
\(797\) 31.8708 1.12892 0.564461 0.825460i \(-0.309084\pi\)
0.564461 + 0.825460i \(0.309084\pi\)
\(798\) 0 0
\(799\) 6.86989 0.243039
\(800\) 0 0
\(801\) −2.93835 16.6642i −0.103821 0.588801i
\(802\) 0 0
\(803\) −16.0155 + 13.4386i −0.565174 + 0.474237i
\(804\) 0 0
\(805\) −21.4611 + 37.1717i −0.756405 + 1.31013i
\(806\) 0 0
\(807\) 43.9797 16.0073i 1.54816 0.563484i
\(808\) 0 0
\(809\) −7.05051 12.2118i −0.247883 0.429345i 0.715055 0.699068i \(-0.246401\pi\)
−0.962938 + 0.269722i \(0.913068\pi\)
\(810\) 0 0
\(811\) 2.76423 15.6767i 0.0970654 0.550485i −0.897030 0.441971i \(-0.854280\pi\)
0.994095 0.108514i \(-0.0346094\pi\)
\(812\) 0 0
\(813\) 37.6562 + 31.5973i 1.32066 + 1.10816i
\(814\) 0 0
\(815\) −47.4654 17.2760i −1.66264 0.605152i
\(816\) 0 0
\(817\) −15.1250 + 12.3221i −0.529155 + 0.431095i
\(818\) 0 0
\(819\) 22.6275 + 8.23573i 0.790668 + 0.287780i
\(820\) 0 0
\(821\) 13.3680 + 11.2171i 0.466546 + 0.391479i 0.845533 0.533923i \(-0.179283\pi\)
−0.378987 + 0.925402i \(0.623727\pi\)
\(822\) 0 0
\(823\) −5.44949 + 30.9056i −0.189957 + 1.07730i 0.729461 + 0.684022i \(0.239771\pi\)
−0.919419 + 0.393280i \(0.871340\pi\)
\(824\) 0 0
\(825\) 5.34524 + 9.25822i 0.186097 + 0.322330i
\(826\) 0 0
\(827\) −17.0021 + 6.18826i −0.591221 + 0.215187i −0.620267 0.784391i \(-0.712976\pi\)
0.0290451 + 0.999578i \(0.490753\pi\)
\(828\) 0 0
\(829\) −10.3145 + 17.8652i −0.358237 + 0.620485i −0.987666 0.156573i \(-0.949955\pi\)
0.629429 + 0.777058i \(0.283289\pi\)
\(830\) 0 0
\(831\) 6.96522 5.84452i 0.241621 0.202744i
\(832\) 0 0
\(833\) −1.33925 7.59527i −0.0464023 0.263160i
\(834\) 0 0
\(835\) 1.38413 0.0478999
\(836\) 0 0
\(837\) −66.0215 −2.28204
\(838\) 0 0
\(839\) 8.44760 + 47.9087i 0.291643 + 1.65399i 0.680540 + 0.732711i \(0.261745\pi\)
−0.388897 + 0.921281i \(0.627144\pi\)
\(840\) 0 0
\(841\) −13.0025 + 10.9104i −0.448363 + 0.376221i
\(842\) 0 0
\(843\) 12.5770 21.7840i 0.433174 0.750279i
\(844\) 0 0
\(845\) −29.2631 + 10.6509i −1.00668 + 0.366402i
\(846\) 0 0
\(847\) −10.6493 18.4451i −0.365914 0.633782i
\(848\) 0 0
\(849\) −11.7239 + 66.4893i −0.402362 + 2.28191i
\(850\) 0 0
\(851\) −20.8425 17.4890i −0.714473 0.599514i
\(852\) 0 0
\(853\) 29.3748 + 10.6916i 1.00577 + 0.366072i 0.791809 0.610769i \(-0.209140\pi\)
0.213965 + 0.976841i \(0.431362\pi\)
\(854\) 0 0
\(855\) 41.9236 70.2415i 1.43376 2.40221i
\(856\) 0 0
\(857\) 12.2049 + 4.44221i 0.416910 + 0.151743i 0.541954 0.840408i \(-0.317685\pi\)
−0.125044 + 0.992151i \(0.539907\pi\)
\(858\) 0 0
\(859\) −33.7380 28.3096i −1.15113 0.965910i −0.151382 0.988475i \(-0.548372\pi\)
−0.999745 + 0.0225649i \(0.992817\pi\)
\(860\) 0 0
\(861\) 20.4256 115.839i 0.696103 3.94780i
\(862\) 0 0
\(863\) −0.625829 1.08397i −0.0213035 0.0368987i 0.855177 0.518336i \(-0.173448\pi\)
−0.876481 + 0.481437i \(0.840115\pi\)
\(864\) 0 0
\(865\) 27.0300 9.83813i 0.919049 0.334506i
\(866\) 0 0
\(867\) 25.9458 44.9394i 0.881165 1.52622i
\(868\) 0 0
\(869\) 6.70961 5.63003i 0.227608 0.190986i
\(870\) 0 0
\(871\) −1.97233 11.1857i −0.0668300 0.379012i
\(872\) 0 0
\(873\) −1.31221 −0.0444117
\(874\) 0 0
\(875\) −35.2499 −1.19166
\(876\) 0 0
\(877\) 1.83124 + 10.3855i 0.0618367 + 0.350693i 0.999990 + 0.00447306i \(0.00142382\pi\)
−0.938153 + 0.346220i \(0.887465\pi\)
\(878\) 0 0
\(879\) 68.8656 57.7851i 2.32278 1.94904i
\(880\) 0 0
\(881\) 5.34864 9.26412i 0.180200 0.312116i −0.761748 0.647873i \(-0.775659\pi\)
0.941949 + 0.335757i \(0.108992\pi\)
\(882\) 0 0
\(883\) 26.9111 9.79483i 0.905629 0.329622i 0.153123 0.988207i \(-0.451067\pi\)
0.752506 + 0.658585i \(0.228845\pi\)
\(884\) 0 0
\(885\) 34.4530 + 59.6743i 1.15812 + 2.00593i
\(886\) 0 0
\(887\) −2.78405 + 15.7891i −0.0934793 + 0.530148i 0.901723 + 0.432313i \(0.142303\pi\)
−0.995203 + 0.0978342i \(0.968809\pi\)
\(888\) 0 0
\(889\) 17.6630 + 14.8210i 0.592397 + 0.497080i
\(890\) 0 0
\(891\) 52.2661 + 19.0233i 1.75098 + 0.637305i
\(892\) 0 0
\(893\) 29.5214 10.2627i 0.987896 0.343427i
\(894\) 0 0
\(895\) −4.39053 1.59802i −0.146759 0.0534160i
\(896\) 0 0
\(897\) 9.04551 + 7.59008i 0.302021 + 0.253426i
\(898\) 0 0
\(899\) 2.79308 15.8403i 0.0931545 0.528305i
\(900\) 0 0
\(901\) −2.02852 3.51351i −0.0675799 0.117052i
\(902\) 0 0
\(903\) −52.6455 + 19.1614i −1.75193 + 0.637651i
\(904\) 0 0
\(905\) −5.80066 + 10.0470i −0.192820 + 0.333975i
\(906\) 0 0
\(907\) 7.70027 6.46130i 0.255683 0.214544i −0.505932 0.862574i \(-0.668851\pi\)
0.761615 + 0.648030i \(0.224407\pi\)
\(908\) 0 0
\(909\) −5.04664 28.6209i −0.167386 0.949295i
\(910\) 0 0
\(911\) −3.46379 −0.114761 −0.0573803 0.998352i \(-0.518275\pi\)
−0.0573803 + 0.998352i \(0.518275\pi\)
\(912\) 0 0
\(913\) 5.79292 0.191718
\(914\) 0 0
\(915\) 9.06464 + 51.4082i 0.299668 + 1.69950i
\(916\) 0 0
\(917\) −13.4021 + 11.2457i −0.442578 + 0.371367i
\(918\) 0 0
\(919\) 2.28400 3.95600i 0.0753421 0.130496i −0.825893 0.563827i \(-0.809328\pi\)
0.901235 + 0.433331i \(0.142662\pi\)
\(920\) 0 0
\(921\) −42.3222 + 15.4040i −1.39456 + 0.507580i
\(922\) 0 0
\(923\) 3.57491 + 6.19193i 0.117670 + 0.203810i
\(924\) 0 0
\(925\) −1.52616 + 8.65528i −0.0501798 + 0.284584i
\(926\) 0 0
\(927\) 66.6780 + 55.9495i 2.18999 + 1.83762i
\(928\) 0 0
\(929\) 33.6279 + 12.2396i 1.10330 + 0.401567i 0.828531 0.559944i \(-0.189177\pi\)
0.274766 + 0.961511i \(0.411399\pi\)
\(930\) 0 0
\(931\) −17.1013 30.6379i −0.560473 1.00412i
\(932\) 0 0
\(933\) 15.0929 + 5.49335i 0.494118 + 0.179844i
\(934\) 0 0
\(935\) −4.36231 3.66041i −0.142663 0.119708i
\(936\) 0 0
\(937\) −6.70170 + 38.0073i −0.218935 + 1.24164i 0.655011 + 0.755620i \(0.272664\pi\)
−0.873946 + 0.486023i \(0.838447\pi\)
\(938\) 0 0
\(939\) −3.02111 5.23271i −0.0985901 0.170763i
\(940\) 0 0
\(941\) −11.0954 + 4.03839i −0.361699 + 0.131648i −0.516476 0.856302i \(-0.672756\pi\)
0.154777 + 0.987949i \(0.450534\pi\)
\(942\) 0 0
\(943\) 20.5303 35.5596i 0.668560 1.15798i
\(944\) 0 0
\(945\) 107.111 89.8771i 3.48433 2.92370i
\(946\) 0 0
\(947\) −3.06267 17.3693i −0.0995235 0.564426i −0.993267 0.115847i \(-0.963042\pi\)
0.893744 0.448578i \(-0.148069\pi\)
\(948\) 0 0
\(949\) 7.45935 0.242141
\(950\) 0 0
\(951\) −97.4630 −3.16045
\(952\) 0 0
\(953\) 7.80082 + 44.2407i 0.252693 + 1.43310i 0.801925 + 0.597425i \(0.203809\pi\)
−0.549231 + 0.835670i \(0.685079\pi\)
\(954\) 0 0
\(955\) −4.04710 + 3.39592i −0.130961 + 0.109889i
\(956\) 0 0
\(957\) −13.1329 + 22.7469i −0.424528 + 0.735304i
\(958\) 0 0
\(959\) −24.9538 + 9.08245i −0.805801 + 0.293288i
\(960\) 0 0
\(961\) 4.74376 + 8.21643i 0.153024 + 0.265046i
\(962\) 0 0
\(963\) 20.7096 117.450i 0.667358 3.78477i
\(964\) 0 0
\(965\) −48.7995 40.9477i −1.57091 1.31815i
\(966\) 0 0
\(967\) −25.4884 9.27704i −0.819653 0.298329i −0.102048 0.994779i \(-0.532540\pi\)
−0.717605 + 0.696450i \(0.754762\pi\)
\(968\) 0 0
\(969\) −2.53219 + 13.2356i −0.0813458 + 0.425188i
\(970\) 0 0
\(971\) −48.0232 17.4790i −1.54114 0.560929i −0.574821 0.818280i \(-0.694928\pi\)
−0.966318 + 0.257351i \(0.917150\pi\)
\(972\) 0 0
\(973\) −50.2661 42.1783i −1.61146 1.35217i
\(974\) 0 0
\(975\) 0.662342 3.75633i 0.0212119 0.120299i
\(976\) 0 0
\(977\) 7.28106 + 12.6112i 0.232942 + 0.403467i 0.958673 0.284512i \(-0.0918315\pi\)
−0.725731 + 0.687979i \(0.758498\pi\)
\(978\) 0 0
\(979\) −5.03596 + 1.83294i −0.160950 + 0.0585810i
\(980\) 0 0
\(981\) −39.3935 + 68.2316i −1.25774 + 2.17847i
\(982\) 0 0
\(983\) 30.1132 25.2680i 0.960461 0.805923i −0.0205668 0.999788i \(-0.506547\pi\)
0.981028 + 0.193866i \(0.0621026\pi\)
\(984\) 0 0
\(985\) −10.9179 61.9183i −0.347872 1.97288i
\(986\) 0 0
\(987\) 89.7538 2.85690
\(988\) 0 0
\(989\) −19.5567 −0.621868
\(990\) 0 0
\(991\) 8.39709 + 47.6223i 0.266742 + 1.51277i 0.764028 + 0.645184i \(0.223219\pi\)
−0.497285 + 0.867587i \(0.665670\pi\)
\(992\) 0 0
\(993\) 24.0731 20.1997i 0.763937 0.641019i
\(994\) 0 0
\(995\) 15.7297 27.2446i 0.498664 0.863712i
\(996\) 0 0
\(997\) −21.3414 + 7.76762i −0.675888 + 0.246003i −0.657081 0.753820i \(-0.728209\pi\)
−0.0188070 + 0.999823i \(0.505987\pi\)
\(998\) 0 0
\(999\) 44.3166 + 76.7586i 1.40212 + 2.42854i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.2.q.b.137.1 yes 6
4.3 odd 2 304.2.u.a.289.1 6
19.5 even 9 inner 152.2.q.b.81.1 6
19.9 even 9 2888.2.a.s.1.3 3
19.10 odd 18 2888.2.a.m.1.1 3
76.43 odd 18 304.2.u.a.81.1 6
76.47 odd 18 5776.2.a.bj.1.1 3
76.67 even 18 5776.2.a.bs.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.q.b.81.1 6 19.5 even 9 inner
152.2.q.b.137.1 yes 6 1.1 even 1 trivial
304.2.u.a.81.1 6 76.43 odd 18
304.2.u.a.289.1 6 4.3 odd 2
2888.2.a.m.1.1 3 19.10 odd 18
2888.2.a.s.1.3 3 19.9 even 9
5776.2.a.bj.1.1 3 76.47 odd 18
5776.2.a.bs.1.3 3 76.67 even 18