Newspace parameters
Level: | \( N \) | \(=\) | \( 152 = 2^{3} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 152.o (of order \(6\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(1.21372611072\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
27.1 | −1.40620 | − | 0.150327i | −2.03079 | − | 1.17247i | 1.95480 | + | 0.422781i | 1.50560 | + | 0.869259i | 2.67944 | + | 1.95402i | − | 2.63359i | −2.68529 | − | 0.888375i | 1.24939 | + | 2.16401i | −1.98650 | − | 1.44869i | |
27.2 | −1.40330 | − | 0.175316i | 0.179130 | + | 0.103421i | 1.93853 | + | 0.492043i | 0.520463 | + | 0.300489i | −0.233242 | − | 0.176535i | 4.27429i | −2.63408 | − | 1.03034i | −1.47861 | − | 2.56102i | −0.677687 | − | 0.512924i | ||
27.3 | −1.34230 | + | 0.445227i | 0.705625 | + | 0.407393i | 1.60355 | − | 1.19526i | −3.59735 | − | 2.07693i | −1.12854 | − | 0.232681i | − | 3.24695i | −1.62028 | + | 2.31834i | −1.16806 | − | 2.02314i | 5.75343 | + | 1.18623i | |
27.4 | −0.861662 | + | 1.12140i | 2.07624 | + | 1.19872i | −0.515076 | − | 1.93254i | 0.418341 | + | 0.241529i | −3.13326 | + | 1.29541i | 1.56686i | 2.61097 | + | 1.08759i | 1.37385 | + | 2.37958i | −0.631319 | + | 0.261011i | ||
27.5 | −0.853480 | − | 1.12764i | 0.179130 | + | 0.103421i | −0.543142 | + | 1.92484i | −0.520463 | − | 0.300489i | −0.0362625 | − | 0.290261i | − | 4.27429i | 2.63408 | − | 1.03034i | −1.47861 | − | 2.56102i | 0.105361 | + | 0.843356i | |
27.6 | −0.833288 | − | 1.14264i | −2.03079 | − | 1.17247i | −0.611263 | + | 1.90430i | −1.50560 | − | 0.869259i | 0.352510 | + | 3.29747i | 2.63359i | 2.68529 | − | 0.888375i | 1.24939 | + | 2.16401i | 0.261346 | + | 2.44470i | ||
27.7 | −0.285573 | − | 1.38508i | 0.705625 | + | 0.407393i | −1.83690 | + | 0.791084i | 3.59735 | + | 2.07693i | 0.362764 | − | 1.09369i | 3.24695i | 1.62028 | + | 2.31834i | −1.16806 | − | 2.02314i | 1.84941 | − | 5.57573i | ||
27.8 | −0.151949 | + | 1.40603i | −1.05104 | − | 0.606818i | −1.95382 | − | 0.427288i | −2.45005 | − | 1.41453i | 1.01291 | − | 1.38558i | 0.450769i | 0.897660 | − | 2.68220i | −0.763544 | − | 1.32250i | 2.36116 | − | 3.22989i | ||
27.9 | 0.397742 | + | 1.35713i | 1.27630 | + | 0.736872i | −1.68360 | + | 1.07957i | 2.34524 | + | 1.35403i | −0.492393 | + | 2.02519i | − | 3.01597i | −2.13476 | − | 1.85548i | −0.414040 | − | 0.717138i | −0.904789 | + | 3.72135i | |
27.10 | 0.540330 | − | 1.30692i | 2.07624 | + | 1.19872i | −1.41609 | − | 1.41234i | −0.418341 | − | 0.241529i | 2.68848 | − | 2.06578i | − | 1.56686i | −2.61097 | + | 1.08759i | 1.37385 | + | 2.37958i | −0.541701 | + | 0.416233i | |
27.11 | 0.771641 | + | 1.18515i | −2.65547 | − | 1.53314i | −0.809140 | + | 1.82901i | 2.25688 | + | 1.30301i | −0.232080 | − | 4.33015i | 4.30088i | −2.79201 | + | 0.452395i | 3.20101 | + | 5.54431i | 0.197245 | + | 3.68018i | ||
27.12 | 1.14168 | − | 0.834605i | −1.05104 | − | 0.606818i | 0.606869 | − | 1.90570i | 2.45005 | + | 1.41453i | −1.70640 | + | 0.184411i | − | 0.450769i | −0.897660 | − | 2.68220i | −0.763544 | − | 1.32250i | 3.97775 | − | 0.429874i | |
27.13 | 1.37418 | − | 0.334110i | 1.27630 | + | 0.736872i | 1.77674 | − | 0.918256i | −2.34524 | − | 1.35403i | 2.00006 | + | 0.586169i | 3.01597i | 2.13476 | − | 1.85548i | −0.414040 | − | 0.717138i | −3.67518 | − | 1.07711i | ||
27.14 | 1.41219 | + | 0.0756882i | −2.65547 | − | 1.53314i | 1.98854 | + | 0.213772i | −2.25688 | − | 1.30301i | −3.63398 | − | 2.36606i | − | 4.30088i | 2.79201 | + | 0.452395i | 3.20101 | + | 5.54431i | −3.08851 | − | 2.01091i | |
107.1 | −1.40620 | + | 0.150327i | −2.03079 | + | 1.17247i | 1.95480 | − | 0.422781i | 1.50560 | − | 0.869259i | 2.67944 | − | 1.95402i | 2.63359i | −2.68529 | + | 0.888375i | 1.24939 | − | 2.16401i | −1.98650 | + | 1.44869i | ||
107.2 | −1.40330 | + | 0.175316i | 0.179130 | − | 0.103421i | 1.93853 | − | 0.492043i | 0.520463 | − | 0.300489i | −0.233242 | + | 0.176535i | − | 4.27429i | −2.63408 | + | 1.03034i | −1.47861 | + | 2.56102i | −0.677687 | + | 0.512924i | |
107.3 | −1.34230 | − | 0.445227i | 0.705625 | − | 0.407393i | 1.60355 | + | 1.19526i | −3.59735 | + | 2.07693i | −1.12854 | + | 0.232681i | 3.24695i | −1.62028 | − | 2.31834i | −1.16806 | + | 2.02314i | 5.75343 | − | 1.18623i | ||
107.4 | −0.861662 | − | 1.12140i | 2.07624 | − | 1.19872i | −0.515076 | + | 1.93254i | 0.418341 | − | 0.241529i | −3.13326 | − | 1.29541i | − | 1.56686i | 2.61097 | − | 1.08759i | 1.37385 | − | 2.37958i | −0.631319 | − | 0.261011i | |
107.5 | −0.853480 | + | 1.12764i | 0.179130 | − | 0.103421i | −0.543142 | − | 1.92484i | −0.520463 | + | 0.300489i | −0.0362625 | + | 0.290261i | 4.27429i | 2.63408 | + | 1.03034i | −1.47861 | + | 2.56102i | 0.105361 | − | 0.843356i | ||
107.6 | −0.833288 | + | 1.14264i | −2.03079 | + | 1.17247i | −0.611263 | − | 1.90430i | −1.50560 | + | 0.869259i | 0.352510 | − | 3.29747i | − | 2.63359i | 2.68529 | + | 0.888375i | 1.24939 | − | 2.16401i | 0.261346 | − | 2.44470i | |
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | inner |
19.d | odd | 6 | 1 | inner |
152.o | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 152.2.o.c | ✓ | 28 |
4.b | odd | 2 | 1 | 608.2.s.c | 28 | ||
8.b | even | 2 | 1 | 608.2.s.c | 28 | ||
8.d | odd | 2 | 1 | inner | 152.2.o.c | ✓ | 28 |
19.d | odd | 6 | 1 | inner | 152.2.o.c | ✓ | 28 |
76.f | even | 6 | 1 | 608.2.s.c | 28 | ||
152.l | odd | 6 | 1 | 608.2.s.c | 28 | ||
152.o | even | 6 | 1 | inner | 152.2.o.c | ✓ | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
152.2.o.c | ✓ | 28 | 1.a | even | 1 | 1 | trivial |
152.2.o.c | ✓ | 28 | 8.d | odd | 2 | 1 | inner |
152.2.o.c | ✓ | 28 | 19.d | odd | 6 | 1 | inner |
152.2.o.c | ✓ | 28 | 152.o | even | 6 | 1 | inner |
608.2.s.c | 28 | 4.b | odd | 2 | 1 | ||
608.2.s.c | 28 | 8.b | even | 2 | 1 | ||
608.2.s.c | 28 | 76.f | even | 6 | 1 | ||
608.2.s.c | 28 | 152.l | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{14} + 3 T_{3}^{13} - 8 T_{3}^{12} - 33 T_{3}^{11} + 65 T_{3}^{10} + 210 T_{3}^{9} - 201 T_{3}^{8} + \cdots + 27 \)
acting on \(S_{2}^{\mathrm{new}}(152, [\chi])\).