Defining parameters
| Level: | \( N \) | \(=\) | \( 152 = 2^{3} \cdot 19 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 152.i (of order \(3\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 19 \) |
| Character field: | \(\Q(\zeta_{3})\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(40\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(152, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 48 | 10 | 38 |
| Cusp forms | 32 | 10 | 22 |
| Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(152, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 152.2.i.a | $2$ | $1.214$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-1\) | \(-3\) | \(0\) | \(q+(-1+\zeta_{6})q^{3}+(-3+3\zeta_{6})q^{5}+2\zeta_{6}q^{9}+\cdots\) |
| 152.2.i.b | $2$ | $1.214$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-1\) | \(4\) | \(0\) | \(q+(-1+\zeta_{6})q^{3}+(4-4\zeta_{6})q^{5}+2\zeta_{6}q^{9}+\cdots\) |
| 152.2.i.c | $6$ | $1.214$ | 6.0.2696112.1 | None | \(0\) | \(-1\) | \(-1\) | \(-4\) | \(q+(-\beta _{1}+\beta _{5})q^{3}-\beta _{1}q^{5}+(-1-\beta _{2}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(152, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(152, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(38, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(76, [\chi])\)\(^{\oplus 2}\)