# Properties

 Label 152.2.a.c Level $152$ Weight $2$ Character orbit 152.a Self dual yes Analytic conductor $1.214$ Analytic rank $0$ Dimension $3$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [152,2,Mod(1,152)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(152, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("152.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$152 = 2^{3} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 152.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$1.21372611072$$ Analytic rank: $$0$$ Dimension: $$3$$ Coefficient field: 3.3.961.1 comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{3} - x^{2} - 10x + 8$$ x^3 - x^2 - 10*x + 8 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_1 q^{3} - \beta_{2} q^{5} + (\beta_{2} - \beta_1 + 2) q^{7} + (2 \beta_{2} - \beta_1 + 5) q^{9}+O(q^{10})$$ q + b1 * q^3 - b2 * q^5 + (b2 - b1 + 2) * q^7 + (2*b2 - b1 + 5) * q^9 $$q + \beta_1 q^{3} - \beta_{2} q^{5} + (\beta_{2} - \beta_1 + 2) q^{7} + (2 \beta_{2} - \beta_1 + 5) q^{9} + ( - \beta_{2} - 2) q^{11} + ( - \beta_1 + 2) q^{13} + ( - 2 \beta_{2} - 4) q^{15} + ( - \beta_{2} + \beta_1) q^{17} - q^{19} + (3 \beta_1 - 4) q^{21} + (2 \beta_{2} - 3 \beta_1) q^{23} + ( - \beta_{2} + 2 \beta_1 + 1) q^{25} + (2 \beta_{2} + 3 \beta_1) q^{27} + (2 \beta_{2} - \beta_1 - 2) q^{29} + ( - 2 \beta_{2} - 2 \beta_1 - 4) q^{33} + (\beta_{2} - 2 \beta_1 - 2) q^{35} - 2 q^{37} + ( - 2 \beta_{2} + 3 \beta_1 - 8) q^{39} + (2 \beta_1 + 2) q^{41} + ( - \beta_{2} - 2 \beta_1 + 6) q^{43} + ( - \beta_{2} - 4 \beta_1 - 8) q^{45} + ( - 3 \beta_{2} + 2 \beta_1 - 2) q^{47} + (\beta_{2} - 3 \beta_1 + 3) q^{49} + ( - \beta_1 + 4) q^{51} + (4 \beta_{2} - \beta_1 + 2) q^{53} + (\beta_{2} + 2 \beta_1 + 6) q^{55} - \beta_1 q^{57} + (\beta_1 - 8) q^{59} + ( - \beta_{2} + 2 \beta_1) q^{61} + (3 \beta_{2} - 4 \beta_1 + 18) q^{63} + 4 q^{65} + ( - 2 \beta_{2} + \beta_1 + 4) q^{67} + ( - 2 \beta_{2} + 3 \beta_1 - 16) q^{69} + (2 \beta_{2} + 2 \beta_1 - 4) q^{71} + ( - \beta_{2} + 3 \beta_1) q^{73} + (2 \beta_{2} - \beta_1 + 12) q^{75} + ( - \beta_{2} - 6) q^{77} + (2 \beta_1 + 8) q^{79} + (4 \beta_{2} + 17) q^{81} + ( - 4 \beta_{2} + 2 \beta_1 - 4) q^{83} + ( - 3 \beta_{2} + 2 \beta_1 + 2) q^{85} + (2 \beta_{2} - \beta_1) q^{87} + ( - 2 \beta_{2} - 2 \beta_1 + 6) q^{89} + (2 \beta_{2} - 5 \beta_1 + 8) q^{91} + \beta_{2} q^{95} + (2 \beta_{2} - 2) q^{97} + ( - 5 \beta_{2} - 2 \beta_1 - 18) q^{99}+O(q^{100})$$ q + b1 * q^3 - b2 * q^5 + (b2 - b1 + 2) * q^7 + (2*b2 - b1 + 5) * q^9 + (-b2 - 2) * q^11 + (-b1 + 2) * q^13 + (-2*b2 - 4) * q^15 + (-b2 + b1) * q^17 - q^19 + (3*b1 - 4) * q^21 + (2*b2 - 3*b1) * q^23 + (-b2 + 2*b1 + 1) * q^25 + (2*b2 + 3*b1) * q^27 + (2*b2 - b1 - 2) * q^29 + (-2*b2 - 2*b1 - 4) * q^33 + (b2 - 2*b1 - 2) * q^35 - 2 * q^37 + (-2*b2 + 3*b1 - 8) * q^39 + (2*b1 + 2) * q^41 + (-b2 - 2*b1 + 6) * q^43 + (-b2 - 4*b1 - 8) * q^45 + (-3*b2 + 2*b1 - 2) * q^47 + (b2 - 3*b1 + 3) * q^49 + (-b1 + 4) * q^51 + (4*b2 - b1 + 2) * q^53 + (b2 + 2*b1 + 6) * q^55 - b1 * q^57 + (b1 - 8) * q^59 + (-b2 + 2*b1) * q^61 + (3*b2 - 4*b1 + 18) * q^63 + 4 * q^65 + (-2*b2 + b1 + 4) * q^67 + (-2*b2 + 3*b1 - 16) * q^69 + (2*b2 + 2*b1 - 4) * q^71 + (-b2 + 3*b1) * q^73 + (2*b2 - b1 + 12) * q^75 + (-b2 - 6) * q^77 + (2*b1 + 8) * q^79 + (4*b2 + 17) * q^81 + (-4*b2 + 2*b1 - 4) * q^83 + (-3*b2 + 2*b1 + 2) * q^85 + (2*b2 - b1) * q^87 + (-2*b2 - 2*b1 + 6) * q^89 + (2*b2 - 5*b1 + 8) * q^91 + b2 * q^95 + (2*b2 - 2) * q^97 + (-5*b2 - 2*b1 - 18) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q + q^{3} + q^{5} + 4 q^{7} + 12 q^{9}+O(q^{10})$$ 3 * q + q^3 + q^5 + 4 * q^7 + 12 * q^9 $$3 q + q^{3} + q^{5} + 4 q^{7} + 12 q^{9} - 5 q^{11} + 5 q^{13} - 10 q^{15} + 2 q^{17} - 3 q^{19} - 9 q^{21} - 5 q^{23} + 6 q^{25} + q^{27} - 9 q^{29} - 12 q^{33} - 9 q^{35} - 6 q^{37} - 19 q^{39} + 8 q^{41} + 17 q^{43} - 27 q^{45} - q^{47} + 5 q^{49} + 11 q^{51} + q^{53} + 19 q^{55} - q^{57} - 23 q^{59} + 3 q^{61} + 47 q^{63} + 12 q^{65} + 15 q^{67} - 43 q^{69} - 12 q^{71} + 4 q^{73} + 33 q^{75} - 17 q^{77} + 26 q^{79} + 47 q^{81} - 6 q^{83} + 11 q^{85} - 3 q^{87} + 18 q^{89} + 17 q^{91} - q^{95} - 8 q^{97} - 51 q^{99}+O(q^{100})$$ 3 * q + q^3 + q^5 + 4 * q^7 + 12 * q^9 - 5 * q^11 + 5 * q^13 - 10 * q^15 + 2 * q^17 - 3 * q^19 - 9 * q^21 - 5 * q^23 + 6 * q^25 + q^27 - 9 * q^29 - 12 * q^33 - 9 * q^35 - 6 * q^37 - 19 * q^39 + 8 * q^41 + 17 * q^43 - 27 * q^45 - q^47 + 5 * q^49 + 11 * q^51 + q^53 + 19 * q^55 - q^57 - 23 * q^59 + 3 * q^61 + 47 * q^63 + 12 * q^65 + 15 * q^67 - 43 * q^69 - 12 * q^71 + 4 * q^73 + 33 * q^75 - 17 * q^77 + 26 * q^79 + 47 * q^81 - 6 * q^83 + 11 * q^85 - 3 * q^87 + 18 * q^89 + 17 * q^91 - q^95 - 8 * q^97 - 51 * q^99

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{3} - x^{2} - 10x + 8$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$( \nu^{2} + \nu - 8 ) / 2$$ (v^2 + v - 8) / 2
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$2\beta_{2} - \beta _1 + 8$$ 2*b2 - b1 + 8

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −3.08387 0.786802 3.29707
0 −3.08387 0 0.786802 0 4.29707 0 6.51027 0
1.2 0 0.786802 0 3.29707 0 −2.08387 0 −2.38094 0
1.3 0 3.29707 0 −3.08387 0 1.78680 0 7.87067 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$19$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 152.2.a.c 3
3.b odd 2 1 1368.2.a.n 3
4.b odd 2 1 304.2.a.g 3
5.b even 2 1 3800.2.a.r 3
5.c odd 4 2 3800.2.d.j 6
7.b odd 2 1 7448.2.a.bf 3
8.b even 2 1 1216.2.a.u 3
8.d odd 2 1 1216.2.a.v 3
12.b even 2 1 2736.2.a.bd 3
19.b odd 2 1 2888.2.a.o 3
20.d odd 2 1 7600.2.a.bv 3
76.d even 2 1 5776.2.a.bp 3

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
152.2.a.c 3 1.a even 1 1 trivial
304.2.a.g 3 4.b odd 2 1
1216.2.a.u 3 8.b even 2 1
1216.2.a.v 3 8.d odd 2 1
1368.2.a.n 3 3.b odd 2 1
2736.2.a.bd 3 12.b even 2 1
2888.2.a.o 3 19.b odd 2 1
3800.2.a.r 3 5.b even 2 1
3800.2.d.j 6 5.c odd 4 2
5776.2.a.bp 3 76.d even 2 1
7448.2.a.bf 3 7.b odd 2 1
7600.2.a.bv 3 20.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{3}^{3} - T_{3}^{2} - 10T_{3} + 8$$ acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(152))$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{3}$$
$3$ $$T^{3} - T^{2} - 10T + 8$$
$5$ $$T^{3} - T^{2} - 10T + 8$$
$7$ $$T^{3} - 4 T^{2} + \cdots + 16$$
$11$ $$T^{3} + 5 T^{2} + \cdots - 8$$
$13$ $$T^{3} - 5 T^{2} + \cdots + 8$$
$17$ $$T^{3} - 2 T^{2} + \cdots + 2$$
$19$ $$(T + 1)^{3}$$
$23$ $$T^{3} + 5 T^{2} + \cdots - 256$$
$29$ $$T^{3} + 9 T^{2} + \cdots - 4$$
$31$ $$T^{3}$$
$37$ $$(T + 2)^{3}$$
$41$ $$T^{3} - 8 T^{2} + \cdots + 128$$
$43$ $$T^{3} - 17 T^{2} + \cdots + 368$$
$47$ $$T^{3} + T^{2} + \cdots - 256$$
$53$ $$T^{3} - T^{2} + \cdots + 256$$
$59$ $$T^{3} + 23 T^{2} + \cdots + 376$$
$61$ $$T^{3} - 3 T^{2} + \cdots + 92$$
$67$ $$T^{3} - 15 T^{2} + \cdots - 32$$
$71$ $$T^{3} + 12 T^{2} + \cdots - 928$$
$73$ $$T^{3} - 4 T^{2} + \cdots + 326$$
$79$ $$T^{3} - 26 T^{2} + \cdots - 256$$
$83$ $$T^{3} + 6 T^{2} + \cdots - 736$$
$89$ $$T^{3} - 18 T^{2} + \cdots + 1024$$
$97$ $$T^{3} + 8 T^{2} + \cdots - 128$$