Properties

Label 152.2.a.a.1.1
Level 152
Weight 2
Character 152.1
Self dual yes
Analytic conductor 1.214
Analytic rank 1
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 152.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(1.21372611072\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0\)
Character \(\chi\) = 152.1

$q$-expansion

\(f(q)\) \(=\) \(q-2.00000 q^{3} -1.00000 q^{5} -3.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-2.00000 q^{3} -1.00000 q^{5} -3.00000 q^{7} +1.00000 q^{9} -3.00000 q^{11} -4.00000 q^{13} +2.00000 q^{15} +5.00000 q^{17} -1.00000 q^{19} +6.00000 q^{21} -4.00000 q^{25} +4.00000 q^{27} +2.00000 q^{29} +8.00000 q^{31} +6.00000 q^{33} +3.00000 q^{35} -10.0000 q^{37} +8.00000 q^{39} +6.00000 q^{41} -7.00000 q^{43} -1.00000 q^{45} -9.00000 q^{47} +2.00000 q^{49} -10.0000 q^{51} -8.00000 q^{53} +3.00000 q^{55} +2.00000 q^{57} +14.0000 q^{59} -5.00000 q^{61} -3.00000 q^{63} +4.00000 q^{65} -6.00000 q^{71} -15.0000 q^{73} +8.00000 q^{75} +9.00000 q^{77} -4.00000 q^{79} -11.0000 q^{81} +4.00000 q^{83} -5.00000 q^{85} -4.00000 q^{87} +12.0000 q^{91} -16.0000 q^{93} +1.00000 q^{95} +16.0000 q^{97} -3.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.00000 −1.15470 −0.577350 0.816497i \(-0.695913\pi\)
−0.577350 + 0.816497i \(0.695913\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) −3.00000 −1.13389 −0.566947 0.823754i \(-0.691875\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 2.00000 0.516398
\(16\) 0 0
\(17\) 5.00000 1.21268 0.606339 0.795206i \(-0.292637\pi\)
0.606339 + 0.795206i \(0.292637\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 6.00000 1.30931
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0 0
\(33\) 6.00000 1.04447
\(34\) 0 0
\(35\) 3.00000 0.507093
\(36\) 0 0
\(37\) −10.0000 −1.64399 −0.821995 0.569495i \(-0.807139\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) 0 0
\(39\) 8.00000 1.28103
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) −7.00000 −1.06749 −0.533745 0.845645i \(-0.679216\pi\)
−0.533745 + 0.845645i \(0.679216\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −9.00000 −1.31278 −0.656392 0.754420i \(-0.727918\pi\)
−0.656392 + 0.754420i \(0.727918\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) −10.0000 −1.40028
\(52\) 0 0
\(53\) −8.00000 −1.09888 −0.549442 0.835532i \(-0.685160\pi\)
−0.549442 + 0.835532i \(0.685160\pi\)
\(54\) 0 0
\(55\) 3.00000 0.404520
\(56\) 0 0
\(57\) 2.00000 0.264906
\(58\) 0 0
\(59\) 14.0000 1.82264 0.911322 0.411693i \(-0.135063\pi\)
0.911322 + 0.411693i \(0.135063\pi\)
\(60\) 0 0
\(61\) −5.00000 −0.640184 −0.320092 0.947386i \(-0.603714\pi\)
−0.320092 + 0.947386i \(0.603714\pi\)
\(62\) 0 0
\(63\) −3.00000 −0.377964
\(64\) 0 0
\(65\) 4.00000 0.496139
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) −15.0000 −1.75562 −0.877809 0.479012i \(-0.840995\pi\)
−0.877809 + 0.479012i \(0.840995\pi\)
\(74\) 0 0
\(75\) 8.00000 0.923760
\(76\) 0 0
\(77\) 9.00000 1.02565
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) −5.00000 −0.542326
\(86\) 0 0
\(87\) −4.00000 −0.428845
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 12.0000 1.25794
\(92\) 0 0
\(93\) −16.0000 −1.65912
\(94\) 0 0
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) 16.0000 1.62455 0.812277 0.583272i \(-0.198228\pi\)
0.812277 + 0.583272i \(0.198228\pi\)
\(98\) 0 0
\(99\) −3.00000 −0.301511
\(100\) 0 0
\(101\) −18.0000 −1.79107 −0.895533 0.444994i \(-0.853206\pi\)
−0.895533 + 0.444994i \(0.853206\pi\)
\(102\) 0 0
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) 0 0
\(105\) −6.00000 −0.585540
\(106\) 0 0
\(107\) 10.0000 0.966736 0.483368 0.875417i \(-0.339413\pi\)
0.483368 + 0.875417i \(0.339413\pi\)
\(108\) 0 0
\(109\) 12.0000 1.14939 0.574696 0.818367i \(-0.305120\pi\)
0.574696 + 0.818367i \(0.305120\pi\)
\(110\) 0 0
\(111\) 20.0000 1.89832
\(112\) 0 0
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −4.00000 −0.369800
\(118\) 0 0
\(119\) −15.0000 −1.37505
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) −12.0000 −1.08200
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −6.00000 −0.532414 −0.266207 0.963916i \(-0.585770\pi\)
−0.266207 + 0.963916i \(0.585770\pi\)
\(128\) 0 0
\(129\) 14.0000 1.23263
\(130\) 0 0
\(131\) −9.00000 −0.786334 −0.393167 0.919467i \(-0.628621\pi\)
−0.393167 + 0.919467i \(0.628621\pi\)
\(132\) 0 0
\(133\) 3.00000 0.260133
\(134\) 0 0
\(135\) −4.00000 −0.344265
\(136\) 0 0
\(137\) 21.0000 1.79415 0.897076 0.441877i \(-0.145687\pi\)
0.897076 + 0.441877i \(0.145687\pi\)
\(138\) 0 0
\(139\) 5.00000 0.424094 0.212047 0.977259i \(-0.431987\pi\)
0.212047 + 0.977259i \(0.431987\pi\)
\(140\) 0 0
\(141\) 18.0000 1.51587
\(142\) 0 0
\(143\) 12.0000 1.00349
\(144\) 0 0
\(145\) −2.00000 −0.166091
\(146\) 0 0
\(147\) −4.00000 −0.329914
\(148\) 0 0
\(149\) 17.0000 1.39269 0.696347 0.717705i \(-0.254807\pi\)
0.696347 + 0.717705i \(0.254807\pi\)
\(150\) 0 0
\(151\) 2.00000 0.162758 0.0813788 0.996683i \(-0.474068\pi\)
0.0813788 + 0.996683i \(0.474068\pi\)
\(152\) 0 0
\(153\) 5.00000 0.404226
\(154\) 0 0
\(155\) −8.00000 −0.642575
\(156\) 0 0
\(157\) 14.0000 1.11732 0.558661 0.829396i \(-0.311315\pi\)
0.558661 + 0.829396i \(0.311315\pi\)
\(158\) 0 0
\(159\) 16.0000 1.26888
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 0 0
\(165\) −6.00000 −0.467099
\(166\) 0 0
\(167\) −2.00000 −0.154765 −0.0773823 0.997001i \(-0.524656\pi\)
−0.0773823 + 0.997001i \(0.524656\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −1.00000 −0.0764719
\(172\) 0 0
\(173\) −2.00000 −0.152057 −0.0760286 0.997106i \(-0.524224\pi\)
−0.0760286 + 0.997106i \(0.524224\pi\)
\(174\) 0 0
\(175\) 12.0000 0.907115
\(176\) 0 0
\(177\) −28.0000 −2.10461
\(178\) 0 0
\(179\) −18.0000 −1.34538 −0.672692 0.739923i \(-0.734862\pi\)
−0.672692 + 0.739923i \(0.734862\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) 10.0000 0.739221
\(184\) 0 0
\(185\) 10.0000 0.735215
\(186\) 0 0
\(187\) −15.0000 −1.09691
\(188\) 0 0
\(189\) −12.0000 −0.872872
\(190\) 0 0
\(191\) −15.0000 −1.08536 −0.542681 0.839939i \(-0.682591\pi\)
−0.542681 + 0.839939i \(0.682591\pi\)
\(192\) 0 0
\(193\) −24.0000 −1.72756 −0.863779 0.503871i \(-0.831909\pi\)
−0.863779 + 0.503871i \(0.831909\pi\)
\(194\) 0 0
\(195\) −8.00000 −0.572892
\(196\) 0 0
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) −15.0000 −1.06332 −0.531661 0.846957i \(-0.678432\pi\)
−0.531661 + 0.846957i \(0.678432\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6.00000 −0.421117
\(204\) 0 0
\(205\) −6.00000 −0.419058
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.00000 0.207514
\(210\) 0 0
\(211\) −6.00000 −0.413057 −0.206529 0.978441i \(-0.566217\pi\)
−0.206529 + 0.978441i \(0.566217\pi\)
\(212\) 0 0
\(213\) 12.0000 0.822226
\(214\) 0 0
\(215\) 7.00000 0.477396
\(216\) 0 0
\(217\) −24.0000 −1.62923
\(218\) 0 0
\(219\) 30.0000 2.02721
\(220\) 0 0
\(221\) −20.0000 −1.34535
\(222\) 0 0
\(223\) 22.0000 1.47323 0.736614 0.676313i \(-0.236423\pi\)
0.736614 + 0.676313i \(0.236423\pi\)
\(224\) 0 0
\(225\) −4.00000 −0.266667
\(226\) 0 0
\(227\) −20.0000 −1.32745 −0.663723 0.747978i \(-0.731025\pi\)
−0.663723 + 0.747978i \(0.731025\pi\)
\(228\) 0 0
\(229\) 1.00000 0.0660819 0.0330409 0.999454i \(-0.489481\pi\)
0.0330409 + 0.999454i \(0.489481\pi\)
\(230\) 0 0
\(231\) −18.0000 −1.18431
\(232\) 0 0
\(233\) −13.0000 −0.851658 −0.425829 0.904804i \(-0.640018\pi\)
−0.425829 + 0.904804i \(0.640018\pi\)
\(234\) 0 0
\(235\) 9.00000 0.587095
\(236\) 0 0
\(237\) 8.00000 0.519656
\(238\) 0 0
\(239\) −3.00000 −0.194054 −0.0970269 0.995282i \(-0.530933\pi\)
−0.0970269 + 0.995282i \(0.530933\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) 0 0
\(243\) 10.0000 0.641500
\(244\) 0 0
\(245\) −2.00000 −0.127775
\(246\) 0 0
\(247\) 4.00000 0.254514
\(248\) 0 0
\(249\) −8.00000 −0.506979
\(250\) 0 0
\(251\) −13.0000 −0.820553 −0.410276 0.911961i \(-0.634568\pi\)
−0.410276 + 0.911961i \(0.634568\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 10.0000 0.626224
\(256\) 0 0
\(257\) −24.0000 −1.49708 −0.748539 0.663090i \(-0.769245\pi\)
−0.748539 + 0.663090i \(0.769245\pi\)
\(258\) 0 0
\(259\) 30.0000 1.86411
\(260\) 0 0
\(261\) 2.00000 0.123797
\(262\) 0 0
\(263\) −5.00000 −0.308313 −0.154157 0.988046i \(-0.549266\pi\)
−0.154157 + 0.988046i \(0.549266\pi\)
\(264\) 0 0
\(265\) 8.00000 0.491436
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.00000 0.243884 0.121942 0.992537i \(-0.461088\pi\)
0.121942 + 0.992537i \(0.461088\pi\)
\(270\) 0 0
\(271\) −8.00000 −0.485965 −0.242983 0.970031i \(-0.578126\pi\)
−0.242983 + 0.970031i \(0.578126\pi\)
\(272\) 0 0
\(273\) −24.0000 −1.45255
\(274\) 0 0
\(275\) 12.0000 0.723627
\(276\) 0 0
\(277\) 9.00000 0.540758 0.270379 0.962754i \(-0.412851\pi\)
0.270379 + 0.962754i \(0.412851\pi\)
\(278\) 0 0
\(279\) 8.00000 0.478947
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) 13.0000 0.772770 0.386385 0.922338i \(-0.373724\pi\)
0.386385 + 0.922338i \(0.373724\pi\)
\(284\) 0 0
\(285\) −2.00000 −0.118470
\(286\) 0 0
\(287\) −18.0000 −1.06251
\(288\) 0 0
\(289\) 8.00000 0.470588
\(290\) 0 0
\(291\) −32.0000 −1.87587
\(292\) 0 0
\(293\) −4.00000 −0.233682 −0.116841 0.993151i \(-0.537277\pi\)
−0.116841 + 0.993151i \(0.537277\pi\)
\(294\) 0 0
\(295\) −14.0000 −0.815112
\(296\) 0 0
\(297\) −12.0000 −0.696311
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 21.0000 1.21042
\(302\) 0 0
\(303\) 36.0000 2.06815
\(304\) 0 0
\(305\) 5.00000 0.286299
\(306\) 0 0
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 0 0
\(309\) 28.0000 1.59286
\(310\) 0 0
\(311\) 31.0000 1.75785 0.878924 0.476961i \(-0.158262\pi\)
0.878924 + 0.476961i \(0.158262\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) 0 0
\(315\) 3.00000 0.169031
\(316\) 0 0
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 0 0
\(319\) −6.00000 −0.335936
\(320\) 0 0
\(321\) −20.0000 −1.11629
\(322\) 0 0
\(323\) −5.00000 −0.278207
\(324\) 0 0
\(325\) 16.0000 0.887520
\(326\) 0 0
\(327\) −24.0000 −1.32720
\(328\) 0 0
\(329\) 27.0000 1.48856
\(330\) 0 0
\(331\) −8.00000 −0.439720 −0.219860 0.975531i \(-0.570560\pi\)
−0.219860 + 0.975531i \(0.570560\pi\)
\(332\) 0 0
\(333\) −10.0000 −0.547997
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 0 0
\(339\) −4.00000 −0.217250
\(340\) 0 0
\(341\) −24.0000 −1.29967
\(342\) 0 0
\(343\) 15.0000 0.809924
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 27.0000 1.44944 0.724718 0.689046i \(-0.241970\pi\)
0.724718 + 0.689046i \(0.241970\pi\)
\(348\) 0 0
\(349\) −19.0000 −1.01705 −0.508523 0.861048i \(-0.669808\pi\)
−0.508523 + 0.861048i \(0.669808\pi\)
\(350\) 0 0
\(351\) −16.0000 −0.854017
\(352\) 0 0
\(353\) 2.00000 0.106449 0.0532246 0.998583i \(-0.483050\pi\)
0.0532246 + 0.998583i \(0.483050\pi\)
\(354\) 0 0
\(355\) 6.00000 0.318447
\(356\) 0 0
\(357\) 30.0000 1.58777
\(358\) 0 0
\(359\) −11.0000 −0.580558 −0.290279 0.956942i \(-0.593748\pi\)
−0.290279 + 0.956942i \(0.593748\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 4.00000 0.209946
\(364\) 0 0
\(365\) 15.0000 0.785136
\(366\) 0 0
\(367\) 16.0000 0.835193 0.417597 0.908633i \(-0.362873\pi\)
0.417597 + 0.908633i \(0.362873\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) 24.0000 1.24602
\(372\) 0 0
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 0 0
\(375\) −18.0000 −0.929516
\(376\) 0 0
\(377\) −8.00000 −0.412021
\(378\) 0 0
\(379\) 18.0000 0.924598 0.462299 0.886724i \(-0.347025\pi\)
0.462299 + 0.886724i \(0.347025\pi\)
\(380\) 0 0
\(381\) 12.0000 0.614779
\(382\) 0 0
\(383\) 16.0000 0.817562 0.408781 0.912633i \(-0.365954\pi\)
0.408781 + 0.912633i \(0.365954\pi\)
\(384\) 0 0
\(385\) −9.00000 −0.458682
\(386\) 0 0
\(387\) −7.00000 −0.355830
\(388\) 0 0
\(389\) −29.0000 −1.47036 −0.735179 0.677873i \(-0.762902\pi\)
−0.735179 + 0.677873i \(0.762902\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 18.0000 0.907980
\(394\) 0 0
\(395\) 4.00000 0.201262
\(396\) 0 0
\(397\) 13.0000 0.652451 0.326226 0.945292i \(-0.394223\pi\)
0.326226 + 0.945292i \(0.394223\pi\)
\(398\) 0 0
\(399\) −6.00000 −0.300376
\(400\) 0 0
\(401\) 24.0000 1.19850 0.599251 0.800561i \(-0.295465\pi\)
0.599251 + 0.800561i \(0.295465\pi\)
\(402\) 0 0
\(403\) −32.0000 −1.59403
\(404\) 0 0
\(405\) 11.0000 0.546594
\(406\) 0 0
\(407\) 30.0000 1.48704
\(408\) 0 0
\(409\) −8.00000 −0.395575 −0.197787 0.980245i \(-0.563376\pi\)
−0.197787 + 0.980245i \(0.563376\pi\)
\(410\) 0 0
\(411\) −42.0000 −2.07171
\(412\) 0 0
\(413\) −42.0000 −2.06668
\(414\) 0 0
\(415\) −4.00000 −0.196352
\(416\) 0 0
\(417\) −10.0000 −0.489702
\(418\) 0 0
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) 20.0000 0.974740 0.487370 0.873195i \(-0.337956\pi\)
0.487370 + 0.873195i \(0.337956\pi\)
\(422\) 0 0
\(423\) −9.00000 −0.437595
\(424\) 0 0
\(425\) −20.0000 −0.970143
\(426\) 0 0
\(427\) 15.0000 0.725901
\(428\) 0 0
\(429\) −24.0000 −1.15873
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) 0 0
\(435\) 4.00000 0.191785
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −26.0000 −1.24091 −0.620456 0.784241i \(-0.713053\pi\)
−0.620456 + 0.784241i \(0.713053\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) 0 0
\(443\) 19.0000 0.902717 0.451359 0.892343i \(-0.350940\pi\)
0.451359 + 0.892343i \(0.350940\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −34.0000 −1.60814
\(448\) 0 0
\(449\) 24.0000 1.13263 0.566315 0.824189i \(-0.308369\pi\)
0.566315 + 0.824189i \(0.308369\pi\)
\(450\) 0 0
\(451\) −18.0000 −0.847587
\(452\) 0 0
\(453\) −4.00000 −0.187936
\(454\) 0 0
\(455\) −12.0000 −0.562569
\(456\) 0 0
\(457\) −29.0000 −1.35656 −0.678281 0.734802i \(-0.737275\pi\)
−0.678281 + 0.734802i \(0.737275\pi\)
\(458\) 0 0
\(459\) 20.0000 0.933520
\(460\) 0 0
\(461\) 21.0000 0.978068 0.489034 0.872265i \(-0.337349\pi\)
0.489034 + 0.872265i \(0.337349\pi\)
\(462\) 0 0
\(463\) −37.0000 −1.71954 −0.859768 0.510685i \(-0.829392\pi\)
−0.859768 + 0.510685i \(0.829392\pi\)
\(464\) 0 0
\(465\) 16.0000 0.741982
\(466\) 0 0
\(467\) −13.0000 −0.601568 −0.300784 0.953692i \(-0.597248\pi\)
−0.300784 + 0.953692i \(0.597248\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −28.0000 −1.29017
\(472\) 0 0
\(473\) 21.0000 0.965581
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 0 0
\(477\) −8.00000 −0.366295
\(478\) 0 0
\(479\) −28.0000 −1.27935 −0.639676 0.768644i \(-0.720932\pi\)
−0.639676 + 0.768644i \(0.720932\pi\)
\(480\) 0 0
\(481\) 40.0000 1.82384
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −16.0000 −0.726523
\(486\) 0 0
\(487\) −2.00000 −0.0906287 −0.0453143 0.998973i \(-0.514429\pi\)
−0.0453143 + 0.998973i \(0.514429\pi\)
\(488\) 0 0
\(489\) −8.00000 −0.361773
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) 10.0000 0.450377
\(494\) 0 0
\(495\) 3.00000 0.134840
\(496\) 0 0
\(497\) 18.0000 0.807410
\(498\) 0 0
\(499\) −29.0000 −1.29822 −0.649109 0.760695i \(-0.724858\pi\)
−0.649109 + 0.760695i \(0.724858\pi\)
\(500\) 0 0
\(501\) 4.00000 0.178707
\(502\) 0 0
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 0 0
\(505\) 18.0000 0.800989
\(506\) 0 0
\(507\) −6.00000 −0.266469
\(508\) 0 0
\(509\) −8.00000 −0.354594 −0.177297 0.984157i \(-0.556735\pi\)
−0.177297 + 0.984157i \(0.556735\pi\)
\(510\) 0 0
\(511\) 45.0000 1.99068
\(512\) 0 0
\(513\) −4.00000 −0.176604
\(514\) 0 0
\(515\) 14.0000 0.616914
\(516\) 0 0
\(517\) 27.0000 1.18746
\(518\) 0 0
\(519\) 4.00000 0.175581
\(520\) 0 0
\(521\) 4.00000 0.175243 0.0876216 0.996154i \(-0.472073\pi\)
0.0876216 + 0.996154i \(0.472073\pi\)
\(522\) 0 0
\(523\) 26.0000 1.13690 0.568450 0.822718i \(-0.307543\pi\)
0.568450 + 0.822718i \(0.307543\pi\)
\(524\) 0 0
\(525\) −24.0000 −1.04745
\(526\) 0 0
\(527\) 40.0000 1.74243
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 14.0000 0.607548
\(532\) 0 0
\(533\) −24.0000 −1.03956
\(534\) 0 0
\(535\) −10.0000 −0.432338
\(536\) 0 0
\(537\) 36.0000 1.55351
\(538\) 0 0
\(539\) −6.00000 −0.258438
\(540\) 0 0
\(541\) 19.0000 0.816874 0.408437 0.912787i \(-0.366074\pi\)
0.408437 + 0.912787i \(0.366074\pi\)
\(542\) 0 0
\(543\) −4.00000 −0.171656
\(544\) 0 0
\(545\) −12.0000 −0.514024
\(546\) 0 0
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) 0 0
\(549\) −5.00000 −0.213395
\(550\) 0 0
\(551\) −2.00000 −0.0852029
\(552\) 0 0
\(553\) 12.0000 0.510292
\(554\) 0 0
\(555\) −20.0000 −0.848953
\(556\) 0 0
\(557\) −7.00000 −0.296600 −0.148300 0.988942i \(-0.547380\pi\)
−0.148300 + 0.988942i \(0.547380\pi\)
\(558\) 0 0
\(559\) 28.0000 1.18427
\(560\) 0 0
\(561\) 30.0000 1.26660
\(562\) 0 0
\(563\) 14.0000 0.590030 0.295015 0.955493i \(-0.404675\pi\)
0.295015 + 0.955493i \(0.404675\pi\)
\(564\) 0 0
\(565\) −2.00000 −0.0841406
\(566\) 0 0
\(567\) 33.0000 1.38587
\(568\) 0 0
\(569\) 8.00000 0.335377 0.167689 0.985840i \(-0.446370\pi\)
0.167689 + 0.985840i \(0.446370\pi\)
\(570\) 0 0
\(571\) −28.0000 −1.17176 −0.585882 0.810397i \(-0.699252\pi\)
−0.585882 + 0.810397i \(0.699252\pi\)
\(572\) 0 0
\(573\) 30.0000 1.25327
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −37.0000 −1.54033 −0.770165 0.637845i \(-0.779826\pi\)
−0.770165 + 0.637845i \(0.779826\pi\)
\(578\) 0 0
\(579\) 48.0000 1.99481
\(580\) 0 0
\(581\) −12.0000 −0.497844
\(582\) 0 0
\(583\) 24.0000 0.993978
\(584\) 0 0
\(585\) 4.00000 0.165380
\(586\) 0 0
\(587\) −29.0000 −1.19696 −0.598479 0.801138i \(-0.704228\pi\)
−0.598479 + 0.801138i \(0.704228\pi\)
\(588\) 0 0
\(589\) −8.00000 −0.329634
\(590\) 0 0
\(591\) −36.0000 −1.48084
\(592\) 0 0
\(593\) −18.0000 −0.739171 −0.369586 0.929197i \(-0.620500\pi\)
−0.369586 + 0.929197i \(0.620500\pi\)
\(594\) 0 0
\(595\) 15.0000 0.614940
\(596\) 0 0
\(597\) 30.0000 1.22782
\(598\) 0 0
\(599\) 8.00000 0.326871 0.163436 0.986554i \(-0.447742\pi\)
0.163436 + 0.986554i \(0.447742\pi\)
\(600\) 0 0
\(601\) −22.0000 −0.897399 −0.448699 0.893683i \(-0.648113\pi\)
−0.448699 + 0.893683i \(0.648113\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.00000 0.0813116
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 12.0000 0.486265
\(610\) 0 0
\(611\) 36.0000 1.45640
\(612\) 0 0
\(613\) −31.0000 −1.25208 −0.626039 0.779792i \(-0.715325\pi\)
−0.626039 + 0.779792i \(0.715325\pi\)
\(614\) 0 0
\(615\) 12.0000 0.483887
\(616\) 0 0
\(617\) 33.0000 1.32853 0.664265 0.747497i \(-0.268745\pi\)
0.664265 + 0.747497i \(0.268745\pi\)
\(618\) 0 0
\(619\) −20.0000 −0.803868 −0.401934 0.915669i \(-0.631662\pi\)
−0.401934 + 0.915669i \(0.631662\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) −6.00000 −0.239617
\(628\) 0 0
\(629\) −50.0000 −1.99363
\(630\) 0 0
\(631\) 25.0000 0.995234 0.497617 0.867397i \(-0.334208\pi\)
0.497617 + 0.867397i \(0.334208\pi\)
\(632\) 0 0
\(633\) 12.0000 0.476957
\(634\) 0 0
\(635\) 6.00000 0.238103
\(636\) 0 0
\(637\) −8.00000 −0.316972
\(638\) 0 0
\(639\) −6.00000 −0.237356
\(640\) 0 0
\(641\) −24.0000 −0.947943 −0.473972 0.880540i \(-0.657180\pi\)
−0.473972 + 0.880540i \(0.657180\pi\)
\(642\) 0 0
\(643\) −43.0000 −1.69575 −0.847877 0.530193i \(-0.822120\pi\)
−0.847877 + 0.530193i \(0.822120\pi\)
\(644\) 0 0
\(645\) −14.0000 −0.551249
\(646\) 0 0
\(647\) 49.0000 1.92639 0.963194 0.268806i \(-0.0866290\pi\)
0.963194 + 0.268806i \(0.0866290\pi\)
\(648\) 0 0
\(649\) −42.0000 −1.64864
\(650\) 0 0
\(651\) 48.0000 1.88127
\(652\) 0 0
\(653\) 21.0000 0.821794 0.410897 0.911682i \(-0.365216\pi\)
0.410897 + 0.911682i \(0.365216\pi\)
\(654\) 0 0
\(655\) 9.00000 0.351659
\(656\) 0 0
\(657\) −15.0000 −0.585206
\(658\) 0 0
\(659\) 6.00000 0.233727 0.116863 0.993148i \(-0.462716\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(660\) 0 0
\(661\) −16.0000 −0.622328 −0.311164 0.950356i \(-0.600719\pi\)
−0.311164 + 0.950356i \(0.600719\pi\)
\(662\) 0 0
\(663\) 40.0000 1.55347
\(664\) 0 0
\(665\) −3.00000 −0.116335
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −44.0000 −1.70114
\(670\) 0 0
\(671\) 15.0000 0.579069
\(672\) 0 0
\(673\) 6.00000 0.231283 0.115642 0.993291i \(-0.463108\pi\)
0.115642 + 0.993291i \(0.463108\pi\)
\(674\) 0 0
\(675\) −16.0000 −0.615840
\(676\) 0 0
\(677\) −38.0000 −1.46046 −0.730229 0.683202i \(-0.760587\pi\)
−0.730229 + 0.683202i \(0.760587\pi\)
\(678\) 0 0
\(679\) −48.0000 −1.84207
\(680\) 0 0
\(681\) 40.0000 1.53280
\(682\) 0 0
\(683\) −28.0000 −1.07139 −0.535695 0.844411i \(-0.679950\pi\)
−0.535695 + 0.844411i \(0.679950\pi\)
\(684\) 0 0
\(685\) −21.0000 −0.802369
\(686\) 0 0
\(687\) −2.00000 −0.0763048
\(688\) 0 0
\(689\) 32.0000 1.21910
\(690\) 0 0
\(691\) 15.0000 0.570627 0.285313 0.958434i \(-0.407902\pi\)
0.285313 + 0.958434i \(0.407902\pi\)
\(692\) 0 0
\(693\) 9.00000 0.341882
\(694\) 0 0
\(695\) −5.00000 −0.189661
\(696\) 0 0
\(697\) 30.0000 1.13633
\(698\) 0 0
\(699\) 26.0000 0.983410
\(700\) 0 0
\(701\) 30.0000 1.13308 0.566542 0.824033i \(-0.308281\pi\)
0.566542 + 0.824033i \(0.308281\pi\)
\(702\) 0 0
\(703\) 10.0000 0.377157
\(704\) 0 0
\(705\) −18.0000 −0.677919
\(706\) 0 0
\(707\) 54.0000 2.03088
\(708\) 0 0
\(709\) −6.00000 −0.225335 −0.112667 0.993633i \(-0.535939\pi\)
−0.112667 + 0.993633i \(0.535939\pi\)
\(710\) 0 0
\(711\) −4.00000 −0.150012
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −12.0000 −0.448775
\(716\) 0 0
\(717\) 6.00000 0.224074
\(718\) 0 0
\(719\) 29.0000 1.08152 0.540759 0.841178i \(-0.318137\pi\)
0.540759 + 0.841178i \(0.318137\pi\)
\(720\) 0 0
\(721\) 42.0000 1.56416
\(722\) 0 0
\(723\) −36.0000 −1.33885
\(724\) 0 0
\(725\) −8.00000 −0.297113
\(726\) 0 0
\(727\) 7.00000 0.259616 0.129808 0.991539i \(-0.458564\pi\)
0.129808 + 0.991539i \(0.458564\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −35.0000 −1.29452
\(732\) 0 0
\(733\) −14.0000 −0.517102 −0.258551 0.965998i \(-0.583245\pi\)
−0.258551 + 0.965998i \(0.583245\pi\)
\(734\) 0 0
\(735\) 4.00000 0.147542
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −35.0000 −1.28750 −0.643748 0.765238i \(-0.722621\pi\)
−0.643748 + 0.765238i \(0.722621\pi\)
\(740\) 0 0
\(741\) −8.00000 −0.293887
\(742\) 0 0
\(743\) −36.0000 −1.32071 −0.660356 0.750953i \(-0.729595\pi\)
−0.660356 + 0.750953i \(0.729595\pi\)
\(744\) 0 0
\(745\) −17.0000 −0.622832
\(746\) 0 0
\(747\) 4.00000 0.146352
\(748\) 0 0
\(749\) −30.0000 −1.09618
\(750\) 0 0
\(751\) −40.0000 −1.45962 −0.729810 0.683650i \(-0.760392\pi\)
−0.729810 + 0.683650i \(0.760392\pi\)
\(752\) 0 0
\(753\) 26.0000 0.947493
\(754\) 0 0
\(755\) −2.00000 −0.0727875
\(756\) 0 0
\(757\) −37.0000 −1.34479 −0.672394 0.740193i \(-0.734734\pi\)
−0.672394 + 0.740193i \(0.734734\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7.00000 −0.253750 −0.126875 0.991919i \(-0.540495\pi\)
−0.126875 + 0.991919i \(0.540495\pi\)
\(762\) 0 0
\(763\) −36.0000 −1.30329
\(764\) 0 0
\(765\) −5.00000 −0.180775
\(766\) 0 0
\(767\) −56.0000 −2.02204
\(768\) 0 0
\(769\) −1.00000 −0.0360609 −0.0180305 0.999837i \(-0.505740\pi\)
−0.0180305 + 0.999837i \(0.505740\pi\)
\(770\) 0 0
\(771\) 48.0000 1.72868
\(772\) 0 0
\(773\) 34.0000 1.22290 0.611448 0.791285i \(-0.290588\pi\)
0.611448 + 0.791285i \(0.290588\pi\)
\(774\) 0 0
\(775\) −32.0000 −1.14947
\(776\) 0 0
\(777\) −60.0000 −2.15249
\(778\) 0 0
\(779\) −6.00000 −0.214972
\(780\) 0 0
\(781\) 18.0000 0.644091
\(782\) 0 0
\(783\) 8.00000 0.285897
\(784\) 0 0
\(785\) −14.0000 −0.499681
\(786\) 0 0
\(787\) −28.0000 −0.998092 −0.499046 0.866575i \(-0.666316\pi\)
−0.499046 + 0.866575i \(0.666316\pi\)
\(788\) 0 0
\(789\) 10.0000 0.356009
\(790\) 0 0
\(791\) −6.00000 −0.213335
\(792\) 0 0
\(793\) 20.0000 0.710221
\(794\) 0 0
\(795\) −16.0000 −0.567462
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) −45.0000 −1.59199
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 45.0000 1.58802
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −8.00000 −0.281613
\(808\) 0 0
\(809\) 15.0000 0.527372 0.263686 0.964609i \(-0.415062\pi\)
0.263686 + 0.964609i \(0.415062\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 16.0000 0.561144
\(814\) 0 0
\(815\) −4.00000 −0.140114
\(816\) 0 0
\(817\) 7.00000 0.244899
\(818\) 0 0
\(819\) 12.0000 0.419314
\(820\) 0 0
\(821\) −11.0000 −0.383903 −0.191951 0.981404i \(-0.561482\pi\)
−0.191951 + 0.981404i \(0.561482\pi\)
\(822\) 0 0
\(823\) 37.0000 1.28974 0.644869 0.764293i \(-0.276912\pi\)
0.644869 + 0.764293i \(0.276912\pi\)
\(824\) 0 0
\(825\) −24.0000 −0.835573
\(826\) 0 0
\(827\) 8.00000 0.278187 0.139094 0.990279i \(-0.455581\pi\)
0.139094 + 0.990279i \(0.455581\pi\)
\(828\) 0 0
\(829\) 24.0000 0.833554 0.416777 0.909009i \(-0.363160\pi\)
0.416777 + 0.909009i \(0.363160\pi\)
\(830\) 0 0
\(831\) −18.0000 −0.624413
\(832\) 0 0
\(833\) 10.0000 0.346479
\(834\) 0 0
\(835\) 2.00000 0.0692129
\(836\) 0 0
\(837\) 32.0000 1.10608
\(838\) 0 0
\(839\) 30.0000 1.03572 0.517858 0.855467i \(-0.326730\pi\)
0.517858 + 0.855467i \(0.326730\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 20.0000 0.688837
\(844\) 0 0
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) 6.00000 0.206162
\(848\) 0 0
\(849\) −26.0000 −0.892318
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −30.0000 −1.02718 −0.513590 0.858036i \(-0.671685\pi\)
−0.513590 + 0.858036i \(0.671685\pi\)
\(854\) 0 0
\(855\) 1.00000 0.0341993
\(856\) 0 0
\(857\) −38.0000 −1.29806 −0.649028 0.760765i \(-0.724824\pi\)
−0.649028 + 0.760765i \(0.724824\pi\)
\(858\) 0 0
\(859\) 17.0000 0.580033 0.290016 0.957022i \(-0.406339\pi\)
0.290016 + 0.957022i \(0.406339\pi\)
\(860\) 0 0
\(861\) 36.0000 1.22688
\(862\) 0 0
\(863\) −30.0000 −1.02121 −0.510606 0.859815i \(-0.670579\pi\)
−0.510606 + 0.859815i \(0.670579\pi\)
\(864\) 0 0
\(865\) 2.00000 0.0680020
\(866\) 0 0
\(867\) −16.0000 −0.543388
\(868\) 0 0
\(869\) 12.0000 0.407072
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 16.0000 0.541518
\(874\) 0 0
\(875\) −27.0000 −0.912767
\(876\) 0 0
\(877\) 34.0000 1.14810 0.574049 0.818821i \(-0.305372\pi\)
0.574049 + 0.818821i \(0.305372\pi\)
\(878\) 0 0
\(879\) 8.00000 0.269833
\(880\) 0 0
\(881\) 37.0000 1.24656 0.623281 0.781998i \(-0.285799\pi\)
0.623281 + 0.781998i \(0.285799\pi\)
\(882\) 0 0
\(883\) 41.0000 1.37976 0.689880 0.723924i \(-0.257663\pi\)
0.689880 + 0.723924i \(0.257663\pi\)
\(884\) 0 0
\(885\) 28.0000 0.941210
\(886\) 0 0
\(887\) 38.0000 1.27592 0.637958 0.770072i \(-0.279780\pi\)
0.637958 + 0.770072i \(0.279780\pi\)
\(888\) 0 0
\(889\) 18.0000 0.603701
\(890\) 0 0
\(891\) 33.0000 1.10554
\(892\) 0 0
\(893\) 9.00000 0.301174
\(894\) 0 0
\(895\) 18.0000 0.601674
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 16.0000 0.533630
\(900\) 0 0
\(901\) −40.0000 −1.33259
\(902\) 0 0
\(903\) −42.0000 −1.39767
\(904\) 0 0
\(905\) −2.00000 −0.0664822
\(906\) 0 0
\(907\) 4.00000 0.132818 0.0664089 0.997792i \(-0.478846\pi\)
0.0664089 + 0.997792i \(0.478846\pi\)
\(908\) 0 0
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) −2.00000 −0.0662630 −0.0331315 0.999451i \(-0.510548\pi\)
−0.0331315 + 0.999451i \(0.510548\pi\)
\(912\) 0 0
\(913\) −12.0000 −0.397142
\(914\) 0 0
\(915\) −10.0000 −0.330590
\(916\) 0 0
\(917\) 27.0000 0.891619
\(918\) 0 0
\(919\) 4.00000 0.131948 0.0659739 0.997821i \(-0.478985\pi\)
0.0659739 + 0.997821i \(0.478985\pi\)
\(920\) 0 0
\(921\) −32.0000 −1.05444
\(922\) 0 0
\(923\) 24.0000 0.789970
\(924\) 0 0
\(925\) 40.0000 1.31519
\(926\) 0 0
\(927\) −14.0000 −0.459820
\(928\) 0 0
\(929\) 54.0000 1.77168 0.885841 0.463988i \(-0.153582\pi\)
0.885841 + 0.463988i \(0.153582\pi\)
\(930\) 0 0
\(931\) −2.00000 −0.0655474
\(932\) 0 0
\(933\) −62.0000 −2.02979
\(934\) 0 0
\(935\) 15.0000 0.490552
\(936\) 0 0
\(937\) −7.00000 −0.228680 −0.114340 0.993442i \(-0.536475\pi\)
−0.114340 + 0.993442i \(0.536475\pi\)
\(938\) 0 0
\(939\) −28.0000 −0.913745
\(940\) 0 0
\(941\) 14.0000 0.456387 0.228193 0.973616i \(-0.426718\pi\)
0.228193 + 0.973616i \(0.426718\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 12.0000 0.390360
\(946\) 0 0
\(947\) 20.0000 0.649913 0.324956 0.945729i \(-0.394650\pi\)
0.324956 + 0.945729i \(0.394650\pi\)
\(948\) 0 0
\(949\) 60.0000 1.94768
\(950\) 0 0
\(951\) 36.0000 1.16738
\(952\) 0 0
\(953\) 4.00000 0.129573 0.0647864 0.997899i \(-0.479363\pi\)
0.0647864 + 0.997899i \(0.479363\pi\)
\(954\) 0 0
\(955\) 15.0000 0.485389
\(956\) 0 0
\(957\) 12.0000 0.387905
\(958\) 0 0
\(959\) −63.0000 −2.03438
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 10.0000 0.322245
\(964\) 0 0
\(965\) 24.0000 0.772587
\(966\) 0 0
\(967\) −48.0000 −1.54358 −0.771788 0.635880i \(-0.780637\pi\)
−0.771788 + 0.635880i \(0.780637\pi\)
\(968\) 0 0
\(969\) 10.0000 0.321246
\(970\) 0 0
\(971\) 20.0000 0.641831 0.320915 0.947108i \(-0.396010\pi\)
0.320915 + 0.947108i \(0.396010\pi\)
\(972\) 0 0
\(973\) −15.0000 −0.480878
\(974\) 0 0
\(975\) −32.0000 −1.02482
\(976\) 0 0
\(977\) 52.0000 1.66363 0.831814 0.555055i \(-0.187303\pi\)
0.831814 + 0.555055i \(0.187303\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 12.0000 0.383131
\(982\) 0 0
\(983\) 20.0000 0.637901 0.318950 0.947771i \(-0.396670\pi\)
0.318950 + 0.947771i \(0.396670\pi\)
\(984\) 0 0
\(985\) −18.0000 −0.573528
\(986\) 0 0
\(987\) −54.0000 −1.71884
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −10.0000 −0.317660 −0.158830 0.987306i \(-0.550772\pi\)
−0.158830 + 0.987306i \(0.550772\pi\)
\(992\) 0 0
\(993\) 16.0000 0.507745
\(994\) 0 0
\(995\) 15.0000 0.475532
\(996\) 0 0
\(997\) 13.0000 0.411714 0.205857 0.978582i \(-0.434002\pi\)
0.205857 + 0.978582i \(0.434002\pi\)
\(998\) 0 0
\(999\) −40.0000 −1.26554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 152.2.a.a.1.1 1
3.2 odd 2 1368.2.a.h.1.1 1
4.3 odd 2 304.2.a.e.1.1 1
5.2 odd 4 3800.2.d.d.3649.2 2
5.3 odd 4 3800.2.d.d.3649.1 2
5.4 even 2 3800.2.a.i.1.1 1
7.6 odd 2 7448.2.a.s.1.1 1
8.3 odd 2 1216.2.a.d.1.1 1
8.5 even 2 1216.2.a.p.1.1 1
12.11 even 2 2736.2.a.p.1.1 1
19.18 odd 2 2888.2.a.f.1.1 1
20.19 odd 2 7600.2.a.b.1.1 1
76.75 even 2 5776.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.a.a.1.1 1 1.1 even 1 trivial
304.2.a.e.1.1 1 4.3 odd 2
1216.2.a.d.1.1 1 8.3 odd 2
1216.2.a.p.1.1 1 8.5 even 2
1368.2.a.h.1.1 1 3.2 odd 2
2736.2.a.p.1.1 1 12.11 even 2
2888.2.a.f.1.1 1 19.18 odd 2
3800.2.a.i.1.1 1 5.4 even 2
3800.2.d.d.3649.1 2 5.3 odd 4
3800.2.d.d.3649.2 2 5.2 odd 4
5776.2.a.b.1.1 1 76.75 even 2
7448.2.a.s.1.1 1 7.6 odd 2
7600.2.a.b.1.1 1 20.19 odd 2