Properties

Label 152.1.u
Level 152
Weight 1
Character orbit u
Rep. character \(\chi_{152}(35,\cdot)\)
Character field \(\Q(\zeta_{18})\)
Dimension 6
Newforms 1
Sturm bound 20
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 152 = 2^{3} \cdot 19 \)
Weight: \( k \) = \( 1 \)
Character orbit: \([\chi]\) = 152.u (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 152 \)
Character field: \(\Q(\zeta_{18})\)
Newforms: \( 1 \)
Sturm bound: \(20\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(152, [\chi])\).

Total New Old
Modular forms 18 18 0
Cusp forms 6 6 0
Eisenstein series 12 12 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 6 0 0 0

Trace form

\( 6q - 3q^{3} - 3q^{6} - 3q^{8} - 3q^{9} + O(q^{10}) \) \( 6q - 3q^{3} - 3q^{6} - 3q^{8} - 3q^{9} + 6q^{18} + 6q^{22} - 3q^{24} + 3q^{27} - 3q^{33} - 3q^{36} - 3q^{38} - 3q^{41} + 6q^{44} + 6q^{48} - 3q^{49} - 3q^{50} + 3q^{51} - 3q^{54} - 3q^{59} - 3q^{64} - 3q^{66} - 3q^{67} + 3q^{68} + 6q^{72} + 6q^{73} + 3q^{81} - 3q^{82} - 3q^{97} + 3q^{99} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(152, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
152.1.u.a \(6\) \(0.076\) \(\Q(\zeta_{18})\) \(D_{9}\) \(\Q(\sqrt{-2}) \) None \(0\) \(-3\) \(0\) \(0\) \(q-\zeta_{18}^{5}q^{2}+(\zeta_{18}^{6}-\zeta_{18}^{7})q^{3}-\zeta_{18}q^{4}+\cdots\)