Properties

Label 1512.2.s.p.1297.3
Level $1512$
Weight $2$
Character 1512.1297
Analytic conductor $12.073$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.9391935744.3
Defining polynomial: \(x^{8} - 4 x^{7} + 5 x^{6} + 12 x^{5} - 76 x^{4} + 84 x^{3} + 245 x^{2} - 1372 x + 2401\)
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1297.3
Root \(2.61033 + 0.431486i\) of defining polynomial
Character \(\chi\) \(=\) 1512.1297
Dual form 1512.2.s.p.865.3

$q$-expansion

\(f(q)\) \(=\) \(q+(1.36603 - 2.36603i) q^{5} +(-0.931486 - 2.47635i) q^{7} +O(q^{10})\) \(q+(1.36603 - 2.36603i) q^{5} +(-0.931486 - 2.47635i) q^{7} +(-1.17884 - 2.04182i) q^{11} +6.68476 q^{13} +(2.09808 + 3.63397i) q^{17} +(-1.80056 + 3.11867i) q^{19} +(3.40784 - 5.90255i) q^{23} +(-1.23205 - 2.13397i) q^{25} -1.00610 q^{29} +(-1.05321 - 1.82421i) q^{31} +(-7.13155 - 1.17884i) q^{35} +(2.47941 - 4.29446i) q^{37} -8.91152 q^{41} -2.25127 q^{43} +(5.85463 - 10.1405i) q^{47} +(-5.26467 + 4.61338i) q^{49} +(-4.13989 - 7.17050i) q^{53} -6.44132 q^{55} +(-5.91089 - 10.2380i) q^{59} +(-6.00592 + 10.4026i) q^{61} +(9.13155 - 15.8163i) q^{65} +(3.03262 + 5.25264i) q^{67} -4.89358 q^{71} +(2.28917 + 3.96496i) q^{73} +(-3.95818 + 4.82116i) q^{77} +(0.252644 - 0.437591i) q^{79} +11.1900 q^{83} +11.4641 q^{85} +(4.22900 - 7.32484i) q^{89} +(-6.22676 - 16.5538i) q^{91} +(4.91923 + 8.52036i) q^{95} +2.25127 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 4q^{5} - 2q^{7} + O(q^{10}) \) \( 8q + 4q^{5} - 2q^{7} + 2q^{11} - 8q^{13} - 4q^{17} - 6q^{19} - 2q^{23} + 4q^{25} - 16q^{29} - 6q^{31} + 2q^{35} + 16q^{41} + 20q^{47} - 6q^{49} + 10q^{53} + 16q^{55} - 22q^{59} + 2q^{61} + 14q^{65} + 2q^{67} - 44q^{71} - 10q^{73} - 54q^{77} + 8q^{79} + 40q^{83} + 64q^{85} + 16q^{89} - 24q^{91} + 30q^{95} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.36603 2.36603i 0.610905 1.05812i −0.380183 0.924911i \(-0.624139\pi\)
0.991088 0.133207i \(-0.0425277\pi\)
\(6\) 0 0
\(7\) −0.931486 2.47635i −0.352069 0.935974i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.17884 2.04182i −0.355435 0.615631i 0.631758 0.775166i \(-0.282334\pi\)
−0.987192 + 0.159535i \(0.949000\pi\)
\(12\) 0 0
\(13\) 6.68476 1.85402 0.927009 0.375038i \(-0.122370\pi\)
0.927009 + 0.375038i \(0.122370\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.09808 + 3.63397i 0.508858 + 0.881368i 0.999947 + 0.0102590i \(0.00326559\pi\)
−0.491089 + 0.871109i \(0.663401\pi\)
\(18\) 0 0
\(19\) −1.80056 + 3.11867i −0.413078 + 0.715472i −0.995225 0.0976120i \(-0.968880\pi\)
0.582147 + 0.813084i \(0.302213\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.40784 5.90255i 0.710584 1.23077i −0.254054 0.967190i \(-0.581764\pi\)
0.964638 0.263578i \(-0.0849025\pi\)
\(24\) 0 0
\(25\) −1.23205 2.13397i −0.246410 0.426795i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.00610 −0.186829 −0.0934145 0.995627i \(-0.529778\pi\)
−0.0934145 + 0.995627i \(0.529778\pi\)
\(30\) 0 0
\(31\) −1.05321 1.82421i −0.189162 0.327638i 0.755809 0.654792i \(-0.227244\pi\)
−0.944971 + 0.327154i \(0.893910\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −7.13155 1.17884i −1.20545 0.199261i
\(36\) 0 0
\(37\) 2.47941 4.29446i 0.407612 0.706005i −0.587010 0.809580i \(-0.699695\pi\)
0.994622 + 0.103575i \(0.0330282\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −8.91152 −1.39175 −0.695873 0.718165i \(-0.744982\pi\)
−0.695873 + 0.718165i \(0.744982\pi\)
\(42\) 0 0
\(43\) −2.25127 −0.343315 −0.171658 0.985157i \(-0.554912\pi\)
−0.171658 + 0.985157i \(0.554912\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.85463 10.1405i 0.853986 1.47915i −0.0235965 0.999722i \(-0.507512\pi\)
0.877583 0.479426i \(-0.159155\pi\)
\(48\) 0 0
\(49\) −5.26467 + 4.61338i −0.752095 + 0.659055i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.13989 7.17050i −0.568658 0.984944i −0.996699 0.0811851i \(-0.974129\pi\)
0.428041 0.903759i \(-0.359204\pi\)
\(54\) 0 0
\(55\) −6.44132 −0.868547
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.91089 10.2380i −0.769533 1.33287i −0.937817 0.347131i \(-0.887156\pi\)
0.168284 0.985739i \(-0.446178\pi\)
\(60\) 0 0
\(61\) −6.00592 + 10.4026i −0.768979 + 1.33191i 0.169138 + 0.985592i \(0.445902\pi\)
−0.938117 + 0.346318i \(0.887432\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9.13155 15.8163i 1.13263 1.96177i
\(66\) 0 0
\(67\) 3.03262 + 5.25264i 0.370493 + 0.641713i 0.989641 0.143561i \(-0.0458554\pi\)
−0.619149 + 0.785274i \(0.712522\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −4.89358 −0.580762 −0.290381 0.956911i \(-0.593782\pi\)
−0.290381 + 0.956911i \(0.593782\pi\)
\(72\) 0 0
\(73\) 2.28917 + 3.96496i 0.267927 + 0.464064i 0.968326 0.249688i \(-0.0803279\pi\)
−0.700399 + 0.713751i \(0.746995\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −3.95818 + 4.82116i −0.451077 + 0.549422i
\(78\) 0 0
\(79\) 0.252644 0.437591i 0.0284246 0.0492329i −0.851463 0.524414i \(-0.824284\pi\)
0.879888 + 0.475182i \(0.157618\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 11.1900 1.22827 0.614134 0.789202i \(-0.289506\pi\)
0.614134 + 0.789202i \(0.289506\pi\)
\(84\) 0 0
\(85\) 11.4641 1.24346
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.22900 7.32484i 0.448273 0.776431i −0.550001 0.835164i \(-0.685373\pi\)
0.998274 + 0.0587326i \(0.0187059\pi\)
\(90\) 0 0
\(91\) −6.22676 16.5538i −0.652742 1.73531i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.91923 + 8.52036i 0.504703 + 0.874171i
\(96\) 0 0
\(97\) 2.25127 0.228582 0.114291 0.993447i \(-0.463540\pi\)
0.114291 + 0.993447i \(0.463540\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −3.53653 6.12545i −0.351898 0.609505i 0.634684 0.772772i \(-0.281130\pi\)
−0.986582 + 0.163267i \(0.947797\pi\)
\(102\) 0 0
\(103\) −2.87828 + 4.98532i −0.283605 + 0.491219i −0.972270 0.233861i \(-0.924864\pi\)
0.688665 + 0.725080i \(0.258197\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.04245 + 15.6620i −0.874166 + 1.51410i −0.0165180 + 0.999864i \(0.505258\pi\)
−0.857648 + 0.514237i \(0.828075\pi\)
\(108\) 0 0
\(109\) 8.00592 + 13.8667i 0.766828 + 1.32818i 0.939275 + 0.343166i \(0.111499\pi\)
−0.172447 + 0.985019i \(0.555167\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.84457 0.267595 0.133797 0.991009i \(-0.457283\pi\)
0.133797 + 0.991009i \(0.457283\pi\)
\(114\) 0 0
\(115\) −9.31040 16.1261i −0.868199 1.50376i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.04468 8.58058i 0.645785 0.786580i
\(120\) 0 0
\(121\) 2.72066 4.71232i 0.247333 0.428393i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.92820 0.619677
\(126\) 0 0
\(127\) −4.64231 −0.411939 −0.205969 0.978558i \(-0.566035\pi\)
−0.205969 + 0.978558i \(0.566035\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.27692 + 5.67579i −0.286306 + 0.495896i −0.972925 0.231121i \(-0.925761\pi\)
0.686619 + 0.727017i \(0.259094\pi\)
\(132\) 0 0
\(133\) 9.40013 + 1.55384i 0.815095 + 0.134735i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.78221 + 10.0151i 0.494007 + 0.855646i 0.999976 0.00690610i \(-0.00219830\pi\)
−0.505969 + 0.862552i \(0.668865\pi\)
\(138\) 0 0
\(139\) −12.5065 −1.06079 −0.530396 0.847750i \(-0.677957\pi\)
−0.530396 + 0.847750i \(0.677957\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −7.88028 13.6490i −0.658982 1.14139i
\(144\) 0 0
\(145\) −1.37436 + 2.38047i −0.114135 + 0.197687i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.36603 5.83013i 0.275756 0.477623i −0.694570 0.719425i \(-0.744405\pi\)
0.970325 + 0.241803i \(0.0777386\pi\)
\(150\) 0 0
\(151\) 2.41089 + 4.17579i 0.196196 + 0.339821i 0.947292 0.320372i \(-0.103808\pi\)
−0.751096 + 0.660193i \(0.770475\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −5.75483 −0.462239
\(156\) 0 0
\(157\) −10.5538 18.2798i −0.842288 1.45889i −0.887956 0.459929i \(-0.847875\pi\)
0.0456678 0.998957i \(-0.485458\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −17.7912 2.94087i −1.40214 0.231773i
\(162\) 0 0
\(163\) 6.36297 11.0210i 0.498387 0.863231i −0.501612 0.865093i \(-0.667259\pi\)
0.999998 + 0.00186211i \(0.000592727\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 12.4535 0.963683 0.481841 0.876258i \(-0.339968\pi\)
0.481841 + 0.876258i \(0.339968\pi\)
\(168\) 0 0
\(169\) 31.6860 2.43739
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.81282 16.9963i 0.746055 1.29220i −0.203646 0.979045i \(-0.565279\pi\)
0.949700 0.313160i \(-0.101388\pi\)
\(174\) 0 0
\(175\) −4.13684 + 5.03876i −0.312716 + 0.380895i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.50305 + 11.2636i 0.486061 + 0.841882i 0.999872 0.0160213i \(-0.00509996\pi\)
−0.513811 + 0.857904i \(0.671767\pi\)
\(180\) 0 0
\(181\) 15.7684 1.17206 0.586028 0.810291i \(-0.300691\pi\)
0.586028 + 0.810291i \(0.300691\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.77387 11.7327i −0.498025 0.862604i
\(186\) 0 0
\(187\) 4.94660 8.56777i 0.361732 0.626537i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.47244 + 4.28239i −0.178900 + 0.309863i −0.941504 0.337002i \(-0.890587\pi\)
0.762604 + 0.646865i \(0.223920\pi\)
\(192\) 0 0
\(193\) −4.92620 8.53243i −0.354596 0.614178i 0.632453 0.774599i \(-0.282048\pi\)
−0.987049 + 0.160421i \(0.948715\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −27.0955 −1.93047 −0.965236 0.261380i \(-0.915822\pi\)
−0.965236 + 0.261380i \(0.915822\pi\)
\(198\) 0 0
\(199\) 13.7441 + 23.8054i 0.974292 + 1.68752i 0.682253 + 0.731116i \(0.261000\pi\)
0.292038 + 0.956407i \(0.405667\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0.937173 + 2.49147i 0.0657767 + 0.174867i
\(204\) 0 0
\(205\) −12.1734 + 21.0849i −0.850225 + 1.47263i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 8.49033 0.587288
\(210\) 0 0
\(211\) 1.66636 0.114717 0.0573584 0.998354i \(-0.481732\pi\)
0.0573584 + 0.998354i \(0.481732\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.07529 + 5.32656i −0.209733 + 0.363269i
\(216\) 0 0
\(217\) −3.53634 + 4.30734i −0.240062 + 0.292401i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 14.0251 + 24.2922i 0.943433 + 1.63407i
\(222\) 0 0
\(223\) 5.19005 0.347551 0.173776 0.984785i \(-0.444403\pi\)
0.173776 + 0.984785i \(0.444403\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.05016 + 1.81892i 0.0697013 + 0.120726i 0.898770 0.438421i \(-0.144462\pi\)
−0.829069 + 0.559147i \(0.811129\pi\)
\(228\) 0 0
\(229\) 12.6316 21.8785i 0.834716 1.44577i −0.0595446 0.998226i \(-0.518965\pi\)
0.894261 0.447546i \(-0.147702\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.9862 + 19.0286i −0.719729 + 1.24661i 0.241378 + 0.970431i \(0.422401\pi\)
−0.961107 + 0.276176i \(0.910933\pi\)
\(234\) 0 0
\(235\) −15.9952 27.7044i −1.04341 1.80724i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −21.3038 −1.37803 −0.689015 0.724747i \(-0.741957\pi\)
−0.689015 + 0.724747i \(0.741957\pi\)
\(240\) 0 0
\(241\) 6.17866 + 10.7017i 0.398002 + 0.689360i 0.993479 0.114012i \(-0.0363703\pi\)
−0.595477 + 0.803372i \(0.703037\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.72371 + 18.7583i 0.237899 + 1.19843i
\(246\) 0 0
\(247\) −12.0363 + 20.8476i −0.765854 + 1.32650i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.35158 −0.0853110 −0.0426555 0.999090i \(-0.513582\pi\)
−0.0426555 + 0.999090i \(0.513582\pi\)
\(252\) 0 0
\(253\) −16.0692 −1.01026
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.59502 + 9.69087i −0.349008 + 0.604500i −0.986074 0.166310i \(-0.946815\pi\)
0.637066 + 0.770810i \(0.280148\pi\)
\(258\) 0 0
\(259\) −12.9441 2.13966i −0.804310 0.132952i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.93540 + 12.0125i 0.427655 + 0.740720i 0.996664 0.0816108i \(-0.0260065\pi\)
−0.569009 + 0.822331i \(0.692673\pi\)
\(264\) 0 0
\(265\) −22.6208 −1.38958
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 12.9115 + 22.3634i 0.787230 + 1.36352i 0.927658 + 0.373431i \(0.121819\pi\)
−0.140429 + 0.990091i \(0.544848\pi\)
\(270\) 0 0
\(271\) −12.0895 + 20.9397i −0.734388 + 1.27200i 0.220604 + 0.975364i \(0.429197\pi\)
−0.954991 + 0.296633i \(0.904136\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.90479 + 5.03124i −0.175165 + 0.303395i
\(276\) 0 0
\(277\) 6.03653 + 10.4556i 0.362700 + 0.628215i 0.988404 0.151846i \(-0.0485217\pi\)
−0.625704 + 0.780060i \(0.715188\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.6554 0.635648 0.317824 0.948150i \(-0.397048\pi\)
0.317824 + 0.948150i \(0.397048\pi\)
\(282\) 0 0
\(283\) −1.23205 2.13397i −0.0732378 0.126852i 0.827081 0.562083i \(-0.190000\pi\)
−0.900319 + 0.435231i \(0.856667\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.30096 + 22.0681i 0.489990 + 1.30264i
\(288\) 0 0
\(289\) −0.303848 + 0.526279i −0.0178734 + 0.0309576i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.38047 0.314330 0.157165 0.987572i \(-0.449764\pi\)
0.157165 + 0.987572i \(0.449764\pi\)
\(294\) 0 0
\(295\) −32.2977 −1.88045
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 22.7806 39.4572i 1.31744 2.28187i
\(300\) 0 0
\(301\) 2.09703 + 5.57494i 0.120871 + 0.321334i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 16.4085 + 28.4203i 0.939546 + 1.62734i
\(306\) 0 0
\(307\) 18.3083 1.04491 0.522455 0.852667i \(-0.325016\pi\)
0.522455 + 0.852667i \(0.325016\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.00063 + 1.73314i 0.0567405 + 0.0982775i 0.893000 0.450056i \(-0.148596\pi\)
−0.836260 + 0.548333i \(0.815263\pi\)
\(312\) 0 0
\(313\) 2.04401 3.54032i 0.115534 0.200111i −0.802459 0.596707i \(-0.796475\pi\)
0.917993 + 0.396596i \(0.129809\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.88639 8.46347i 0.274447 0.475356i −0.695549 0.718479i \(-0.744839\pi\)
0.969995 + 0.243123i \(0.0781719\pi\)
\(318\) 0 0
\(319\) 1.18604 + 2.05428i 0.0664055 + 0.115018i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −15.1109 −0.840792
\(324\) 0 0
\(325\) −8.23596 14.2651i −0.456849 0.791286i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −30.5650 5.05239i −1.68511 0.278547i
\(330\) 0 0
\(331\) 16.8369 29.1624i 0.925440 1.60291i 0.134588 0.990902i \(-0.457029\pi\)
0.790852 0.612008i \(-0.209638\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 16.5705 0.905344
\(336\) 0 0
\(337\) 24.7790 1.34980 0.674898 0.737911i \(-0.264188\pi\)
0.674898 + 0.737911i \(0.264188\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.48313 + 4.30091i −0.134469 + 0.232908i
\(342\) 0 0
\(343\) 16.3283 + 8.73988i 0.881647 + 0.471909i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 8.53590 + 14.7846i 0.458231 + 0.793679i 0.998868 0.0475768i \(-0.0151499\pi\)
−0.540637 + 0.841256i \(0.681817\pi\)
\(348\) 0 0
\(349\) −11.0714 −0.592640 −0.296320 0.955089i \(-0.595759\pi\)
−0.296320 + 0.955089i \(0.595759\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.0670 + 17.4365i 0.535810 + 0.928050i 0.999124 + 0.0418556i \(0.0133269\pi\)
−0.463314 + 0.886194i \(0.653340\pi\)
\(354\) 0 0
\(355\) −6.68476 + 11.5783i −0.354790 + 0.614515i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.04245 15.6620i 0.477242 0.826607i −0.522418 0.852690i \(-0.674970\pi\)
0.999660 + 0.0260822i \(0.00830316\pi\)
\(360\) 0 0
\(361\) 3.01594 + 5.22375i 0.158733 + 0.274934i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 12.5083 0.654713
\(366\) 0 0
\(367\) 2.60441 + 4.51097i 0.135949 + 0.235471i 0.925960 0.377622i \(-0.123258\pi\)
−0.790010 + 0.613093i \(0.789925\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −13.9005 + 16.9311i −0.721676 + 0.879017i
\(372\) 0 0
\(373\) −10.3299 + 17.8919i −0.534862 + 0.926408i 0.464308 + 0.885674i \(0.346303\pi\)
−0.999170 + 0.0407341i \(0.987030\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6.72557 −0.346385
\(378\) 0 0
\(379\) −27.9829 −1.43738 −0.718691 0.695329i \(-0.755259\pi\)
−0.718691 + 0.695329i \(0.755259\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −8.11424 + 14.0543i −0.414618 + 0.718140i −0.995388 0.0959276i \(-0.969418\pi\)
0.580770 + 0.814068i \(0.302752\pi\)
\(384\) 0 0
\(385\) 6.00000 + 15.9510i 0.305788 + 0.812938i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −4.72434 8.18280i −0.239534 0.414884i 0.721047 0.692886i \(-0.243661\pi\)
−0.960581 + 0.278002i \(0.910328\pi\)
\(390\) 0 0
\(391\) 28.5996 1.44635
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −0.690235 1.19552i −0.0347295 0.0601532i
\(396\) 0 0
\(397\) 8.64823 14.9792i 0.434042 0.751783i −0.563175 0.826338i \(-0.690420\pi\)
0.997217 + 0.0745546i \(0.0237535\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.46347 4.26686i 0.123020 0.213077i −0.797937 0.602740i \(-0.794075\pi\)
0.920957 + 0.389664i \(0.127409\pi\)
\(402\) 0 0
\(403\) −7.04044 12.1944i −0.350709 0.607447i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −11.6913 −0.579518
\(408\) 0 0
\(409\) 2.63374 + 4.56178i 0.130230 + 0.225565i 0.923765 0.382959i \(-0.125095\pi\)
−0.793535 + 0.608525i \(0.791762\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −19.8469 + 24.1740i −0.976603 + 1.18952i
\(414\) 0 0
\(415\) 15.2859 26.4759i 0.750355 1.29965i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.06569 0.198622 0.0993110 0.995056i \(-0.468336\pi\)
0.0993110 + 0.995056i \(0.468336\pi\)
\(420\) 0 0
\(421\) −17.9479 −0.874725 −0.437363 0.899285i \(-0.644087\pi\)
−0.437363 + 0.899285i \(0.644087\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.16987 8.95448i 0.250776 0.434356i
\(426\) 0 0
\(427\) 31.3548 + 5.18294i 1.51737 + 0.250820i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 17.4892 + 30.2922i 0.842427 + 1.45913i 0.887837 + 0.460158i \(0.152207\pi\)
−0.0454101 + 0.998968i \(0.514459\pi\)
\(432\) 0 0
\(433\) −16.6314 −0.799252 −0.399626 0.916678i \(-0.630860\pi\)
−0.399626 + 0.916678i \(0.630860\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 12.2721 + 21.2559i 0.587053 + 1.01681i
\(438\) 0 0
\(439\) 10.1550 17.5889i 0.484670 0.839473i −0.515175 0.857085i \(-0.672273\pi\)
0.999845 + 0.0176119i \(0.00560632\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −8.65739 + 14.9950i −0.411325 + 0.712436i −0.995035 0.0995265i \(-0.968267\pi\)
0.583710 + 0.811962i \(0.301601\pi\)
\(444\) 0 0
\(445\) −11.5538 20.0118i −0.547704 0.948652i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 8.85030 0.417672 0.208836 0.977951i \(-0.433033\pi\)
0.208836 + 0.977951i \(0.433033\pi\)
\(450\) 0 0
\(451\) 10.5053 + 18.1957i 0.494675 + 0.856802i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −47.6727 7.88028i −2.23493 0.369433i
\(456\) 0 0
\(457\) −3.51668 + 6.09107i −0.164503 + 0.284928i −0.936479 0.350724i \(-0.885935\pi\)
0.771975 + 0.635652i \(0.219269\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −11.0452 −0.514426 −0.257213 0.966355i \(-0.582804\pi\)
−0.257213 + 0.966355i \(0.582804\pi\)
\(462\) 0 0
\(463\) 2.49597 0.115998 0.0579989 0.998317i \(-0.481528\pi\)
0.0579989 + 0.998317i \(0.481528\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.66135 15.0019i 0.400799 0.694205i −0.593023 0.805185i \(-0.702066\pi\)
0.993823 + 0.110981i \(0.0353991\pi\)
\(468\) 0 0
\(469\) 10.1826 12.4026i 0.470187 0.572699i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.65389 + 4.59668i 0.122026 + 0.211356i
\(474\) 0 0
\(475\) 8.87355 0.407146
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 7.44966 + 12.9032i 0.340384 + 0.589562i 0.984504 0.175363i \(-0.0561098\pi\)
−0.644120 + 0.764924i \(0.722776\pi\)
\(480\) 0 0
\(481\) 16.5742 28.7074i 0.755720 1.30895i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.07529 5.32656i 0.139642 0.241867i
\(486\) 0 0
\(487\) 16.0637 + 27.8231i 0.727914 + 1.26078i 0.957763 + 0.287558i \(0.0928435\pi\)
−0.229849 + 0.973226i \(0.573823\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 26.3099 1.18735 0.593675 0.804705i \(-0.297676\pi\)
0.593675 + 0.804705i \(0.297676\pi\)
\(492\) 0 0
\(493\) −2.11088 3.65616i −0.0950695 0.164665i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.55831 + 12.1183i 0.204468 + 0.543578i
\(498\) 0 0
\(499\) 2.94132 5.09451i 0.131671 0.228062i −0.792650 0.609678i \(-0.791299\pi\)
0.924321 + 0.381616i \(0.124632\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −33.7798 −1.50617 −0.753083 0.657926i \(-0.771434\pi\)
−0.753083 + 0.657926i \(0.771434\pi\)
\(504\) 0 0
\(505\) −19.3240 −0.859905
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 16.5902 28.7350i 0.735347 1.27366i −0.219224 0.975674i \(-0.570353\pi\)
0.954571 0.297983i \(-0.0963140\pi\)
\(510\) 0 0
\(511\) 7.68632 9.36211i 0.340023 0.414155i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 7.86360 + 13.6202i 0.346512 + 0.600176i
\(516\) 0 0
\(517\) −27.6068 −1.21414
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −20.8642 36.1379i −0.914079 1.58323i −0.808245 0.588847i \(-0.799582\pi\)
−0.105834 0.994384i \(-0.533751\pi\)
\(522\) 0 0
\(523\) 14.9319 25.8629i 0.652928 1.13090i −0.329481 0.944162i \(-0.606874\pi\)
0.982409 0.186742i \(-0.0597928\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.41942 7.65466i 0.192513 0.333442i
\(528\) 0 0
\(529\) −11.7268 20.3114i −0.509859 0.883102i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −59.5714 −2.58032
\(534\) 0 0
\(535\) 24.7044 + 42.7893i 1.06807 + 1.84994i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 15.6259 + 5.31103i 0.673055 + 0.228762i
\(540\) 0 0
\(541\) −11.8903 + 20.5946i −0.511204 + 0.885431i 0.488712 + 0.872445i \(0.337467\pi\)
−0.999916 + 0.0129859i \(0.995866\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 43.7451 1.87384
\(546\) 0 0
\(547\) −8.03499 −0.343552 −0.171776 0.985136i \(-0.554950\pi\)
−0.171776 + 0.985136i \(0.554950\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1.81156 3.13771i 0.0771749 0.133671i
\(552\) 0 0
\(553\) −1.31897 0.218025i −0.0560881 0.00927135i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −9.38397 16.2535i −0.397611 0.688683i 0.595819 0.803119i \(-0.296827\pi\)
−0.993431 + 0.114435i \(0.963494\pi\)
\(558\) 0 0
\(559\) −15.0492 −0.636513
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −13.0335 22.5746i −0.549296 0.951408i −0.998323 0.0578898i \(-0.981563\pi\)
0.449027 0.893518i \(-0.351771\pi\)
\(564\) 0 0
\(565\) 3.88576 6.73033i 0.163475 0.283147i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.04792 8.74326i 0.211620 0.366536i −0.740602 0.671944i \(-0.765459\pi\)
0.952222 + 0.305408i \(0.0987928\pi\)
\(570\) 0 0
\(571\) 9.50983 + 16.4715i 0.397974 + 0.689311i 0.993476 0.114043i \(-0.0363801\pi\)
−0.595502 + 0.803354i \(0.703047\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −16.7945 −0.700380
\(576\) 0 0
\(577\) 0.960818 + 1.66419i 0.0399994 + 0.0692810i 0.885332 0.464959i \(-0.153931\pi\)
−0.845333 + 0.534240i \(0.820598\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −10.4234 27.7105i −0.432435 1.14963i
\(582\) 0 0
\(583\) −9.76056 + 16.9058i −0.404241 + 0.700166i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.1471 0.418817 0.209409 0.977828i \(-0.432846\pi\)
0.209409 + 0.977828i \(0.432846\pi\)
\(588\) 0 0
\(589\) 7.58547 0.312554
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 2.85177 4.93941i 0.117108 0.202837i −0.801512 0.597978i \(-0.795971\pi\)
0.918620 + 0.395141i \(0.129304\pi\)
\(594\) 0 0
\(595\) −10.6787 28.3892i −0.437782 1.16384i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 16.3833 + 28.3768i 0.669405 + 1.15944i 0.978071 + 0.208273i \(0.0667842\pi\)
−0.308666 + 0.951171i \(0.599882\pi\)
\(600\) 0 0
\(601\) −33.3712 −1.36124 −0.680619 0.732638i \(-0.738289\pi\)
−0.680619 + 0.732638i \(0.738289\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −7.43298 12.8743i −0.302194 0.523415i
\(606\) 0 0
\(607\) −15.5037 + 26.8532i −0.629277 + 1.08994i 0.358420 + 0.933560i \(0.383315\pi\)
−0.987697 + 0.156379i \(0.950018\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 39.1368 67.7870i 1.58331 2.74237i
\(612\) 0 0
\(613\) −0.394215 0.682800i −0.0159222 0.0275780i 0.857955 0.513726i \(-0.171735\pi\)
−0.873877 + 0.486148i \(0.838402\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0.534638 0.0215237 0.0107619 0.999942i \(-0.496574\pi\)
0.0107619 + 0.999942i \(0.496574\pi\)
\(618\) 0 0
\(619\) 10.8238 + 18.7474i 0.435045 + 0.753520i 0.997299 0.0734444i \(-0.0233992\pi\)
−0.562254 + 0.826964i \(0.690066\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −22.0782 3.64951i −0.884543 0.146215i
\(624\) 0 0
\(625\) 15.6244 27.0622i 0.624974 1.08249i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 20.8079 0.829667
\(630\) 0 0
\(631\) −19.7378 −0.785749 −0.392874 0.919592i \(-0.628519\pi\)
−0.392874 + 0.919592i \(0.628519\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −6.34152 + 10.9838i −0.251656 + 0.435880i
\(636\) 0 0
\(637\) −35.1930 + 30.8394i −1.39440 + 1.22190i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 15.6580 + 27.1205i 0.618455 + 1.07119i 0.989768 + 0.142687i \(0.0455743\pi\)
−0.371313 + 0.928508i \(0.621092\pi\)
\(642\) 0 0
\(643\) 14.2846 0.563331 0.281665 0.959513i \(-0.409113\pi\)
0.281665 + 0.959513i \(0.409113\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.10642 + 1.91637i 0.0434977 + 0.0753402i 0.886955 0.461857i \(-0.152817\pi\)
−0.843457 + 0.537197i \(0.819483\pi\)
\(648\) 0 0
\(649\) −13.9360 + 24.1379i −0.547037 + 0.947496i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −18.1578 + 31.4503i −0.710571 + 1.23074i 0.254072 + 0.967185i \(0.418230\pi\)
−0.964643 + 0.263560i \(0.915103\pi\)
\(654\) 0 0
\(655\) 8.95271 + 15.5065i 0.349811 + 0.605891i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −7.37474 −0.287279 −0.143640 0.989630i \(-0.545881\pi\)
−0.143640 + 0.989630i \(0.545881\pi\)
\(660\) 0 0
\(661\) −17.0943 29.6082i −0.664890 1.15162i −0.979315 0.202342i \(-0.935145\pi\)
0.314425 0.949282i \(-0.398188\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 16.5172 20.1184i 0.640511 0.780157i
\(666\) 0 0
\(667\) −3.42865 + 5.93859i −0.132758 + 0.229943i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 28.3201 1.09329
\(672\) 0 0
\(673\) 22.7219 0.875866 0.437933 0.899008i \(-0.355711\pi\)
0.437933 + 0.899008i \(0.355711\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 21.7606 37.6904i 0.836326 1.44856i −0.0566194 0.998396i \(-0.518032\pi\)
0.892946 0.450164i \(-0.148635\pi\)
\(678\) 0 0
\(679\) −2.09703 5.57494i −0.0804765 0.213947i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7.71875 + 13.3693i 0.295350 + 0.511561i 0.975066 0.221914i \(-0.0712305\pi\)
−0.679716 + 0.733475i \(0.737897\pi\)
\(684\) 0 0
\(685\) 31.5946 1.20717
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −27.6742 47.9331i −1.05430 1.82611i
\(690\) 0 0
\(691\) 0.726764 1.25879i 0.0276474 0.0478867i −0.851871 0.523752i \(-0.824532\pi\)
0.879518 + 0.475866i \(0.157865\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −17.0843 + 29.5908i −0.648043 + 1.12244i
\(696\) 0 0
\(697\) −18.6971 32.3843i −0.708202 1.22664i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.25700 0.0474762 0.0237381 0.999718i \(-0.492443\pi\)
0.0237381 + 0.999718i \(0.492443\pi\)
\(702\) 0 0
\(703\) 8.92866 + 15.4649i 0.336751 + 0.583270i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −11.8746 + 14.4635i −0.446589 + 0.543955i
\(708\) 0 0
\(709\) −0.971298 + 1.68234i −0.0364779 + 0.0631815i −0.883688 0.468076i \(-0.844947\pi\)
0.847210 + 0.531258i \(0.178281\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −14.3567 −0.537661
\(714\) 0 0
\(715\) −43.0587 −1.61030
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 19.7817 34.2629i 0.737733 1.27779i −0.215781 0.976442i \(-0.569230\pi\)
0.953514 0.301349i \(-0.0974368\pi\)
\(720\) 0 0
\(721\) 15.0265 + 2.48388i 0.559616 + 0.0925044i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.23957 + 2.14700i 0.0460366 + 0.0797377i
\(726\) 0 0
\(727\) 11.6317 0.431397 0.215699 0.976460i \(-0.430797\pi\)
0.215699 + 0.976460i \(0.430797\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.72334 8.18106i −0.174699 0.302587i
\(732\) 0 0
\(733\) 0.636397 1.10227i 0.0235058 0.0407133i −0.854033 0.520219i \(-0.825850\pi\)
0.877539 + 0.479505i \(0.159184\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.14995 12.3841i 0.263372 0.456174i
\(738\) 0 0
\(739\) −0.279341 0.483833i −0.0102757 0.0177981i 0.860842 0.508873i \(-0.169938\pi\)
−0.871118 + 0.491075i \(0.836604\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 13.2067 0.484508 0.242254 0.970213i \(-0.422113\pi\)
0.242254 + 0.970213i \(0.422113\pi\)
\(744\) 0 0
\(745\) −9.19615 15.9282i −0.336921 0.583564i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 47.2075 + 7.80339i 1.72493 + 0.285130i
\(750\) 0 0
\(751\) −20.6281 + 35.7289i −0.752729 + 1.30377i 0.193766 + 0.981048i \(0.437930\pi\)
−0.946495 + 0.322718i \(0.895404\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 13.1734 0.479428
\(756\) 0 0
\(757\) 41.7615 1.51785 0.758923 0.651181i \(-0.225726\pi\)
0.758923 + 0.651181i \(0.225726\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −25.3695 + 43.9413i −0.919644 + 1.59287i −0.119689 + 0.992811i \(0.538190\pi\)
−0.799955 + 0.600059i \(0.795144\pi\)
\(762\) 0 0
\(763\) 26.8814 32.7421i 0.973170 1.18534i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −39.5129 68.4384i −1.42673 2.47117i
\(768\) 0 0
\(769\) 4.16070 0.150039 0.0750193 0.997182i \(-0.476098\pi\)
0.0750193 + 0.997182i \(0.476098\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −10.0926 17.4809i −0.363006 0.628744i 0.625448 0.780266i \(-0.284916\pi\)
−0.988454 + 0.151521i \(0.951583\pi\)
\(774\) 0 0
\(775\) −2.59521 + 4.49504i −0.0932227 + 0.161467i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 16.0458 27.7921i 0.574899 0.995755i
\(780\) 0 0
\(781\) 5.76877 + 9.99180i 0.206423 + 0.357535i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −57.6672 −2.05823
\(786\) 0 0
\(787\) −14.0902 24.4049i −0.502261 0.869941i −0.999997 0.00261235i \(-0.999168\pi\)
0.497736 0.867329i \(-0.334165\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.64968 7.04417i −0.0942118 0.250462i
\(792\) 0 0
\(793\) −40.1481 + 69.5386i −1.42570 + 2.46939i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 4.44006 0.157275 0.0786374 0.996903i \(-0.474943\pi\)
0.0786374 + 0.996903i \(0.474943\pi\)
\(798\) 0 0
\(799\) 49.1339 1.73823
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 5.39715 9.34814i 0.190461 0.329889i
\(804\) 0 0
\(805\) −31.2614 + 38.0771i −1.10182 + 1.34204i
\(806\) 0 0