Properties

Label 1512.2.s.c
Level 1512
Weight 2
Character orbit 1512.s
Analytic conductor 12.073
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.s (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -2 \zeta_{6} q^{5} + ( -1 + 3 \zeta_{6} ) q^{7} +O(q^{10})\) \( q -2 \zeta_{6} q^{5} + ( -1 + 3 \zeta_{6} ) q^{7} -2 q^{13} + ( 6 - 6 \zeta_{6} ) q^{17} + \zeta_{6} q^{19} -2 \zeta_{6} q^{23} + ( 1 - \zeta_{6} ) q^{25} + 6 q^{29} + ( -1 + \zeta_{6} ) q^{31} + ( 6 - 4 \zeta_{6} ) q^{35} -2 \zeta_{6} q^{37} + 2 q^{41} + 9 q^{43} + 2 \zeta_{6} q^{47} + ( -8 + 3 \zeta_{6} ) q^{49} + ( 6 - 6 \zeta_{6} ) q^{53} + ( 8 - 8 \zeta_{6} ) q^{59} -11 \zeta_{6} q^{61} + 4 \zeta_{6} q^{65} + ( 12 - 12 \zeta_{6} ) q^{67} + 4 q^{71} + ( -5 + 5 \zeta_{6} ) q^{73} + 4 \zeta_{6} q^{79} + 4 q^{83} -12 q^{85} -18 \zeta_{6} q^{89} + ( 2 - 6 \zeta_{6} ) q^{91} + ( 2 - 2 \zeta_{6} ) q^{95} + q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{5} + q^{7} + O(q^{10}) \) \( 2q - 2q^{5} + q^{7} - 4q^{13} + 6q^{17} + q^{19} - 2q^{23} + q^{25} + 12q^{29} - q^{31} + 8q^{35} - 2q^{37} + 4q^{41} + 18q^{43} + 2q^{47} - 13q^{49} + 6q^{53} + 8q^{59} - 11q^{61} + 4q^{65} + 12q^{67} + 8q^{71} - 5q^{73} + 4q^{79} + 8q^{83} - 24q^{85} - 18q^{89} - 2q^{91} + 2q^{95} + 2q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(1\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
865.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 −1.00000 1.73205i 0 0.500000 + 2.59808i 0 0 0
1297.1 0 0 0 −1.00000 + 1.73205i 0 0.500000 2.59808i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1512.2.s.c 2
3.b odd 2 1 1512.2.s.g yes 2
7.c even 3 1 inner 1512.2.s.c 2
21.h odd 6 1 1512.2.s.g yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1512.2.s.c 2 1.a even 1 1 trivial
1512.2.s.c 2 7.c even 3 1 inner
1512.2.s.g yes 2 3.b odd 2 1
1512.2.s.g yes 2 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1512, [\chi])\):

\( T_{5}^{2} + 2 T_{5} + 4 \)
\( T_{11} \)
\( T_{13} + 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( 1 + 2 T - T^{2} + 10 T^{3} + 25 T^{4} \)
$7$ \( 1 - T + 7 T^{2} \)
$11$ \( 1 - 11 T^{2} + 121 T^{4} \)
$13$ \( ( 1 + 2 T + 13 T^{2} )^{2} \)
$17$ \( 1 - 6 T + 19 T^{2} - 102 T^{3} + 289 T^{4} \)
$19$ \( ( 1 - 8 T + 19 T^{2} )( 1 + 7 T + 19 T^{2} ) \)
$23$ \( 1 + 2 T - 19 T^{2} + 46 T^{3} + 529 T^{4} \)
$29$ \( ( 1 - 6 T + 29 T^{2} )^{2} \)
$31$ \( 1 + T - 30 T^{2} + 31 T^{3} + 961 T^{4} \)
$37$ \( 1 + 2 T - 33 T^{2} + 74 T^{3} + 1369 T^{4} \)
$41$ \( ( 1 - 2 T + 41 T^{2} )^{2} \)
$43$ \( ( 1 - 9 T + 43 T^{2} )^{2} \)
$47$ \( 1 - 2 T - 43 T^{2} - 94 T^{3} + 2209 T^{4} \)
$53$ \( 1 - 6 T - 17 T^{2} - 318 T^{3} + 2809 T^{4} \)
$59$ \( 1 - 8 T + 5 T^{2} - 472 T^{3} + 3481 T^{4} \)
$61$ \( 1 + 11 T + 60 T^{2} + 671 T^{3} + 3721 T^{4} \)
$67$ \( 1 - 12 T + 77 T^{2} - 804 T^{3} + 4489 T^{4} \)
$71$ \( ( 1 - 4 T + 71 T^{2} )^{2} \)
$73$ \( 1 + 5 T - 48 T^{2} + 365 T^{3} + 5329 T^{4} \)
$79$ \( ( 1 - 17 T + 79 T^{2} )( 1 + 13 T + 79 T^{2} ) \)
$83$ \( ( 1 - 4 T + 83 T^{2} )^{2} \)
$89$ \( 1 + 18 T + 235 T^{2} + 1602 T^{3} + 7921 T^{4} \)
$97$ \( ( 1 - T + 97 T^{2} )^{2} \)
show more
show less