# Properties

 Label 1512.2.s.c Level $1512$ Weight $2$ Character orbit 1512.s Analytic conductor $12.073$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1512 = 2^{3} \cdot 3^{3} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1512.s (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$12.0733807856$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -2 \zeta_{6} q^{5} + ( -1 + 3 \zeta_{6} ) q^{7} +O(q^{10})$$ $$q -2 \zeta_{6} q^{5} + ( -1 + 3 \zeta_{6} ) q^{7} -2 q^{13} + ( 6 - 6 \zeta_{6} ) q^{17} + \zeta_{6} q^{19} -2 \zeta_{6} q^{23} + ( 1 - \zeta_{6} ) q^{25} + 6 q^{29} + ( -1 + \zeta_{6} ) q^{31} + ( 6 - 4 \zeta_{6} ) q^{35} -2 \zeta_{6} q^{37} + 2 q^{41} + 9 q^{43} + 2 \zeta_{6} q^{47} + ( -8 + 3 \zeta_{6} ) q^{49} + ( 6 - 6 \zeta_{6} ) q^{53} + ( 8 - 8 \zeta_{6} ) q^{59} -11 \zeta_{6} q^{61} + 4 \zeta_{6} q^{65} + ( 12 - 12 \zeta_{6} ) q^{67} + 4 q^{71} + ( -5 + 5 \zeta_{6} ) q^{73} + 4 \zeta_{6} q^{79} + 4 q^{83} -12 q^{85} -18 \zeta_{6} q^{89} + ( 2 - 6 \zeta_{6} ) q^{91} + ( 2 - 2 \zeta_{6} ) q^{95} + q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{5} + q^{7} + O(q^{10})$$ $$2q - 2q^{5} + q^{7} - 4q^{13} + 6q^{17} + q^{19} - 2q^{23} + q^{25} + 12q^{29} - q^{31} + 8q^{35} - 2q^{37} + 4q^{41} + 18q^{43} + 2q^{47} - 13q^{49} + 6q^{53} + 8q^{59} - 11q^{61} + 4q^{65} + 12q^{67} + 8q^{71} - 5q^{73} + 4q^{79} + 8q^{83} - 24q^{85} - 18q^{89} - 2q^{91} + 2q^{95} + 2q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times$$.

 $$n$$ $$757$$ $$785$$ $$1081$$ $$1135$$ $$\chi(n)$$ $$1$$ $$1$$ $$-\zeta_{6}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
865.1
 0.5 + 0.866025i 0.5 − 0.866025i
0 0 0 −1.00000 1.73205i 0 0.500000 + 2.59808i 0 0 0
1297.1 0 0 0 −1.00000 + 1.73205i 0 0.500000 2.59808i 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1512.2.s.c 2
3.b odd 2 1 1512.2.s.g yes 2
7.c even 3 1 inner 1512.2.s.c 2
21.h odd 6 1 1512.2.s.g yes 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1512.2.s.c 2 1.a even 1 1 trivial
1512.2.s.c 2 7.c even 3 1 inner
1512.2.s.g yes 2 3.b odd 2 1
1512.2.s.g yes 2 21.h odd 6 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1512, [\chi])$$:

 $$T_{5}^{2} + 2 T_{5} + 4$$ $$T_{11}$$ $$T_{13} + 2$$