Properties

Label 1512.2.r.a
Level 1512
Weight 2
Character orbit 1512.r
Analytic conductor 12.073
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.r (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\zeta_{6} q^{5} + ( -1 + \zeta_{6} ) q^{7} +O(q^{10})\) \( q -\zeta_{6} q^{5} + ( -1 + \zeta_{6} ) q^{7} + ( -6 + 6 \zeta_{6} ) q^{11} -6 \zeta_{6} q^{13} + 2 q^{17} + 7 q^{19} -\zeta_{6} q^{23} + ( 4 - 4 \zeta_{6} ) q^{25} + ( 2 - 2 \zeta_{6} ) q^{29} -10 \zeta_{6} q^{31} + q^{35} -6 q^{37} -8 \zeta_{6} q^{41} + ( 10 - 10 \zeta_{6} ) q^{43} + ( 8 - 8 \zeta_{6} ) q^{47} -\zeta_{6} q^{49} -2 q^{53} + 6 q^{55} + ( -7 + 7 \zeta_{6} ) q^{61} + ( -6 + 6 \zeta_{6} ) q^{65} + 12 \zeta_{6} q^{67} -15 q^{71} -2 q^{73} -6 \zeta_{6} q^{77} + ( -1 + \zeta_{6} ) q^{79} + ( 12 - 12 \zeta_{6} ) q^{83} -2 \zeta_{6} q^{85} -4 q^{89} + 6 q^{91} -7 \zeta_{6} q^{95} + ( 2 - 2 \zeta_{6} ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{5} - q^{7} + O(q^{10}) \) \( 2q - q^{5} - q^{7} - 6q^{11} - 6q^{13} + 4q^{17} + 14q^{19} - q^{23} + 4q^{25} + 2q^{29} - 10q^{31} + 2q^{35} - 12q^{37} - 8q^{41} + 10q^{43} + 8q^{47} - q^{49} - 4q^{53} + 12q^{55} - 7q^{61} - 6q^{65} + 12q^{67} - 30q^{71} - 4q^{73} - 6q^{77} - q^{79} + 12q^{83} - 2q^{85} - 8q^{89} + 12q^{91} - 7q^{95} + 2q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
505.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0 0 0
1009.1 0 0 0 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1512.2.r.a 2
3.b odd 2 1 504.2.r.a 2
4.b odd 2 1 3024.2.r.b 2
9.c even 3 1 inner 1512.2.r.a 2
9.c even 3 1 4536.2.a.g 1
9.d odd 6 1 504.2.r.a 2
9.d odd 6 1 4536.2.a.d 1
12.b even 2 1 1008.2.r.c 2
36.f odd 6 1 3024.2.r.b 2
36.f odd 6 1 9072.2.a.n 1
36.h even 6 1 1008.2.r.c 2
36.h even 6 1 9072.2.a.i 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
504.2.r.a 2 3.b odd 2 1
504.2.r.a 2 9.d odd 6 1
1008.2.r.c 2 12.b even 2 1
1008.2.r.c 2 36.h even 6 1
1512.2.r.a 2 1.a even 1 1 trivial
1512.2.r.a 2 9.c even 3 1 inner
3024.2.r.b 2 4.b odd 2 1
3024.2.r.b 2 36.f odd 6 1
4536.2.a.d 1 9.d odd 6 1
4536.2.a.g 1 9.c even 3 1
9072.2.a.i 1 36.h even 6 1
9072.2.a.n 1 36.f odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + T_{5} + 1 \) acting on \(S_{2}^{\mathrm{new}}(1512, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ 1
$5$ \( 1 + T - 4 T^{2} + 5 T^{3} + 25 T^{4} \)
$7$ \( 1 + T + T^{2} \)
$11$ \( 1 + 6 T + 25 T^{2} + 66 T^{3} + 121 T^{4} \)
$13$ \( 1 + 6 T + 23 T^{2} + 78 T^{3} + 169 T^{4} \)
$17$ \( ( 1 - 2 T + 17 T^{2} )^{2} \)
$19$ \( ( 1 - 7 T + 19 T^{2} )^{2} \)
$23$ \( 1 + T - 22 T^{2} + 23 T^{3} + 529 T^{4} \)
$29$ \( 1 - 2 T - 25 T^{2} - 58 T^{3} + 841 T^{4} \)
$31$ \( 1 + 10 T + 69 T^{2} + 310 T^{3} + 961 T^{4} \)
$37$ \( ( 1 + 6 T + 37 T^{2} )^{2} \)
$41$ \( 1 + 8 T + 23 T^{2} + 328 T^{3} + 1681 T^{4} \)
$43$ \( 1 - 10 T + 57 T^{2} - 430 T^{3} + 1849 T^{4} \)
$47$ \( 1 - 8 T + 17 T^{2} - 376 T^{3} + 2209 T^{4} \)
$53$ \( ( 1 + 2 T + 53 T^{2} )^{2} \)
$59$ \( 1 - 59 T^{2} + 3481 T^{4} \)
$61$ \( 1 + 7 T - 12 T^{2} + 427 T^{3} + 3721 T^{4} \)
$67$ \( 1 - 12 T + 77 T^{2} - 804 T^{3} + 4489 T^{4} \)
$71$ \( ( 1 + 15 T + 71 T^{2} )^{2} \)
$73$ \( ( 1 + 2 T + 73 T^{2} )^{2} \)
$79$ \( 1 + T - 78 T^{2} + 79 T^{3} + 6241 T^{4} \)
$83$ \( 1 - 12 T + 61 T^{2} - 996 T^{3} + 6889 T^{4} \)
$89$ \( ( 1 + 4 T + 89 T^{2} )^{2} \)
$97$ \( 1 - 2 T - 93 T^{2} - 194 T^{3} + 9409 T^{4} \)
show more
show less