Properties

Label 1512.2.q.d
Level $1512$
Weight $2$
Character orbit 1512.q
Analytic conductor $12.073$
Analytic rank $0$
Dimension $22$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 22q - q^{5} + 5q^{7} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 22q - q^{5} + 5q^{7} - 3q^{11} + 7q^{13} + q^{17} + 13q^{19} - 22q^{25} + 7q^{29} - 12q^{31} - 2q^{35} + 6q^{37} - 4q^{41} + 2q^{43} + 34q^{47} - 25q^{49} - q^{53} + 2q^{55} - 42q^{59} - 62q^{61} - 6q^{65} + 52q^{67} + 32q^{71} + 17q^{73} + q^{77} + 32q^{79} + 36q^{83} + 28q^{85} + 2q^{89} + 15q^{91} - 48q^{95} + 19q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
793.1 0 0 0 −2.11148 3.65719i 0 2.19338 1.47956i 0 0 0
793.2 0 0 0 −1.89970 3.29038i 0 −0.841809 + 2.50826i 0 0 0
793.3 0 0 0 −1.33425 2.31099i 0 2.54743 + 0.714566i 0 0 0
793.4 0 0 0 −0.891774 1.54460i 0 −2.54386 + 0.727153i 0 0 0
793.5 0 0 0 −0.234085 0.405446i 0 0.212345 2.63722i 0 0 0
793.6 0 0 0 −0.0309846 0.0536670i 0 −0.981674 2.45689i 0 0 0
793.7 0 0 0 0.263002 + 0.455533i 0 −0.333150 + 2.62469i 0 0 0
793.8 0 0 0 1.05220 + 1.82246i 0 2.58382 0.569079i 0 0 0
793.9 0 0 0 1.38590 + 2.40045i 0 1.74026 + 1.99286i 0 0 0
793.10 0 0 0 1.59750 + 2.76695i 0 −1.66645 + 2.05498i 0 0 0
793.11 0 0 0 1.70368 + 2.95086i 0 −0.410295 2.61374i 0 0 0
1369.1 0 0 0 −2.11148 + 3.65719i 0 2.19338 + 1.47956i 0 0 0
1369.2 0 0 0 −1.89970 + 3.29038i 0 −0.841809 2.50826i 0 0 0
1369.3 0 0 0 −1.33425 + 2.31099i 0 2.54743 0.714566i 0 0 0
1369.4 0 0 0 −0.891774 + 1.54460i 0 −2.54386 0.727153i 0 0 0
1369.5 0 0 0 −0.234085 + 0.405446i 0 0.212345 + 2.63722i 0 0 0
1369.6 0 0 0 −0.0309846 + 0.0536670i 0 −0.981674 + 2.45689i 0 0 0
1369.7 0 0 0 0.263002 0.455533i 0 −0.333150 2.62469i 0 0 0
1369.8 0 0 0 1.05220 1.82246i 0 2.58382 + 0.569079i 0 0 0
1369.9 0 0 0 1.38590 2.40045i 0 1.74026 1.99286i 0 0 0
See all 22 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1369.11
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.h even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1512.2.q.d 22
3.b odd 2 1 504.2.q.c 22
4.b odd 2 1 3024.2.q.l 22
7.c even 3 1 1512.2.t.c 22
9.c even 3 1 1512.2.t.c 22
9.d odd 6 1 504.2.t.c yes 22
12.b even 2 1 1008.2.q.l 22
21.h odd 6 1 504.2.t.c yes 22
28.g odd 6 1 3024.2.t.k 22
36.f odd 6 1 3024.2.t.k 22
36.h even 6 1 1008.2.t.l 22
63.h even 3 1 inner 1512.2.q.d 22
63.j odd 6 1 504.2.q.c 22
84.n even 6 1 1008.2.t.l 22
252.u odd 6 1 3024.2.q.l 22
252.bb even 6 1 1008.2.q.l 22
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
504.2.q.c 22 3.b odd 2 1
504.2.q.c 22 63.j odd 6 1
504.2.t.c yes 22 9.d odd 6 1
504.2.t.c yes 22 21.h odd 6 1
1008.2.q.l 22 12.b even 2 1
1008.2.q.l 22 252.bb even 6 1
1008.2.t.l 22 36.h even 6 1
1008.2.t.l 22 84.n even 6 1
1512.2.q.d 22 1.a even 1 1 trivial
1512.2.q.d 22 63.h even 3 1 inner
1512.2.t.c 22 7.c even 3 1
1512.2.t.c 22 9.c even 3 1
3024.2.q.l 22 4.b odd 2 1
3024.2.q.l 22 252.u odd 6 1
3024.2.t.k 22 28.g odd 6 1
3024.2.t.k 22 36.f odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \(T_{5}^{22} + \cdots\) acting on \(S_{2}^{\mathrm{new}}(1512, [\chi])\).

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database