Properties

Label 1512.2.j.c.323.32
Level 1512
Weight 2
Character 1512.323
Analytic conductor 12.073
Analytic rank 0
Dimension 32
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 1512.j (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(32\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 323.32
Character \(\chi\) = 1512.323
Dual form 1512.2.j.c.323.31

$q$-expansion

\(f(q)\) \(=\) \(q+(1.40936 + 0.117111i) q^{2} +(1.97257 + 0.330101i) q^{4} -1.17792 q^{5} +1.00000i q^{7} +(2.74140 + 0.696239i) q^{8} +O(q^{10})\) \(q+(1.40936 + 0.117111i) q^{2} +(1.97257 + 0.330101i) q^{4} -1.17792 q^{5} +1.00000i q^{7} +(2.74140 + 0.696239i) q^{8} +(-1.66010 - 0.137947i) q^{10} +2.90595i q^{11} +1.05317i q^{13} +(-0.117111 + 1.40936i) q^{14} +(3.78207 + 1.30230i) q^{16} +6.48837i q^{17} -3.11597 q^{19} +(-2.32352 - 0.388832i) q^{20} +(-0.340317 + 4.09552i) q^{22} +0.812516 q^{23} -3.61251 q^{25} +(-0.123337 + 1.48429i) q^{26} +(-0.330101 + 1.97257i) q^{28} +4.03607 q^{29} +0.108779i q^{31} +(5.17777 + 2.27832i) q^{32} +(-0.759857 + 9.14442i) q^{34} -1.17792i q^{35} -9.97034i q^{37} +(-4.39151 - 0.364913i) q^{38} +(-3.22914 - 0.820111i) q^{40} +9.44298i q^{41} +10.3446 q^{43} +(-0.959257 + 5.73219i) q^{44} +(1.14512 + 0.0951542i) q^{46} +4.03126 q^{47} -1.00000 q^{49} +(-5.09132 - 0.423064i) q^{50} +(-0.347652 + 2.07745i) q^{52} +2.97772 q^{53} -3.42296i q^{55} +(-0.696239 + 2.74140i) q^{56} +(5.68827 + 0.472667i) q^{58} +0.868874i q^{59} +5.33629i q^{61} +(-0.0127391 + 0.153308i) q^{62} +(7.03050 + 3.81733i) q^{64} -1.24054i q^{65} -3.97987 q^{67} +(-2.14182 + 12.7988i) q^{68} +(0.137947 - 1.66010i) q^{70} -0.844302 q^{71} +3.59513 q^{73} +(1.16763 - 14.0518i) q^{74} +(-6.14647 - 1.02859i) q^{76} -2.90595 q^{77} +9.48320i q^{79} +(-4.45496 - 1.53400i) q^{80} +(-1.10587 + 13.3085i) q^{82} -2.71280i q^{83} -7.64276i q^{85} +(14.5793 + 1.21146i) q^{86} +(-2.02323 + 7.96636i) q^{88} -2.22575i q^{89} -1.05317 q^{91} +(1.60275 + 0.268212i) q^{92} +(5.68148 + 0.472103i) q^{94} +3.67035 q^{95} -3.93019 q^{97} +(-1.40936 - 0.117111i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32q + 8q^{4} + O(q^{10}) \) \( 32q + 8q^{4} - 8q^{10} - 8q^{16} - 64q^{19} + 24q^{22} - 16q^{25} - 8q^{28} + 8q^{34} - 24q^{40} - 48q^{43} - 8q^{46} - 32q^{49} - 24q^{52} - 96q^{58} - 40q^{64} + 16q^{67} - 16q^{70} - 16q^{73} + 16q^{76} + 24q^{82} + 72q^{88} + 16q^{91} - 56q^{94} + 64q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.40936 + 0.117111i 0.996565 + 0.0828097i
\(3\) 0 0
\(4\) 1.97257 + 0.330101i 0.986285 + 0.165051i
\(5\) −1.17792 −0.526780 −0.263390 0.964689i \(-0.584841\pi\)
−0.263390 + 0.964689i \(0.584841\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 2.74140 + 0.696239i 0.969230 + 0.246158i
\(9\) 0 0
\(10\) −1.66010 0.137947i −0.524971 0.0436225i
\(11\) 2.90595i 0.876176i 0.898932 + 0.438088i \(0.144344\pi\)
−0.898932 + 0.438088i \(0.855656\pi\)
\(12\) 0 0
\(13\) 1.05317i 0.292096i 0.989278 + 0.146048i \(0.0466554\pi\)
−0.989278 + 0.146048i \(0.953345\pi\)
\(14\) −0.117111 + 1.40936i −0.0312991 + 0.376666i
\(15\) 0 0
\(16\) 3.78207 + 1.30230i 0.945517 + 0.325574i
\(17\) 6.48837i 1.57366i 0.617169 + 0.786830i \(0.288279\pi\)
−0.617169 + 0.786830i \(0.711721\pi\)
\(18\) 0 0
\(19\) −3.11597 −0.714853 −0.357426 0.933941i \(-0.616346\pi\)
−0.357426 + 0.933941i \(0.616346\pi\)
\(20\) −2.32352 0.388832i −0.519556 0.0869454i
\(21\) 0 0
\(22\) −0.340317 + 4.09552i −0.0725559 + 0.873167i
\(23\) 0.812516 0.169421 0.0847107 0.996406i \(-0.473003\pi\)
0.0847107 + 0.996406i \(0.473003\pi\)
\(24\) 0 0
\(25\) −3.61251 −0.722503
\(26\) −0.123337 + 1.48429i −0.0241884 + 0.291093i
\(27\) 0 0
\(28\) −0.330101 + 1.97257i −0.0623832 + 0.372781i
\(29\) 4.03607 0.749480 0.374740 0.927130i \(-0.377732\pi\)
0.374740 + 0.927130i \(0.377732\pi\)
\(30\) 0 0
\(31\) 0.108779i 0.0195372i 0.999952 + 0.00976861i \(0.00310949\pi\)
−0.999952 + 0.00976861i \(0.996891\pi\)
\(32\) 5.17777 + 2.27832i 0.915308 + 0.402754i
\(33\) 0 0
\(34\) −0.759857 + 9.14442i −0.130314 + 1.56826i
\(35\) 1.17792i 0.199104i
\(36\) 0 0
\(37\) 9.97034i 1.63911i −0.572998 0.819557i \(-0.694220\pi\)
0.572998 0.819557i \(-0.305780\pi\)
\(38\) −4.39151 0.364913i −0.712397 0.0591967i
\(39\) 0 0
\(40\) −3.22914 0.820111i −0.510571 0.129671i
\(41\) 9.44298i 1.47475i 0.675486 + 0.737373i \(0.263934\pi\)
−0.675486 + 0.737373i \(0.736066\pi\)
\(42\) 0 0
\(43\) 10.3446 1.57754 0.788770 0.614688i \(-0.210718\pi\)
0.788770 + 0.614688i \(0.210718\pi\)
\(44\) −0.959257 + 5.73219i −0.144613 + 0.864160i
\(45\) 0 0
\(46\) 1.14512 + 0.0951542i 0.168839 + 0.0140297i
\(47\) 4.03126 0.588019 0.294010 0.955802i \(-0.405010\pi\)
0.294010 + 0.955802i \(0.405010\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) −5.09132 0.423064i −0.720021 0.0598302i
\(51\) 0 0
\(52\) −0.347652 + 2.07745i −0.0482106 + 0.288090i
\(53\) 2.97772 0.409022 0.204511 0.978864i \(-0.434440\pi\)
0.204511 + 0.978864i \(0.434440\pi\)
\(54\) 0 0
\(55\) 3.42296i 0.461552i
\(56\) −0.696239 + 2.74140i −0.0930388 + 0.366334i
\(57\) 0 0
\(58\) 5.68827 + 0.472667i 0.746906 + 0.0620642i
\(59\) 0.868874i 0.113118i 0.998399 + 0.0565589i \(0.0180129\pi\)
−0.998399 + 0.0565589i \(0.981987\pi\)
\(60\) 0 0
\(61\) 5.33629i 0.683242i 0.939838 + 0.341621i \(0.110976\pi\)
−0.939838 + 0.341621i \(0.889024\pi\)
\(62\) −0.0127391 + 0.153308i −0.00161787 + 0.0194701i
\(63\) 0 0
\(64\) 7.03050 + 3.81733i 0.878813 + 0.477167i
\(65\) 1.24054i 0.153870i
\(66\) 0 0
\(67\) −3.97987 −0.486218 −0.243109 0.969999i \(-0.578167\pi\)
−0.243109 + 0.969999i \(0.578167\pi\)
\(68\) −2.14182 + 12.7988i −0.259734 + 1.55208i
\(69\) 0 0
\(70\) 0.137947 1.66010i 0.0164878 0.198420i
\(71\) −0.844302 −0.100200 −0.0501001 0.998744i \(-0.515954\pi\)
−0.0501001 + 0.998744i \(0.515954\pi\)
\(72\) 0 0
\(73\) 3.59513 0.420778 0.210389 0.977618i \(-0.432527\pi\)
0.210389 + 0.977618i \(0.432527\pi\)
\(74\) 1.16763 14.0518i 0.135734 1.63348i
\(75\) 0 0
\(76\) −6.14647 1.02859i −0.705048 0.117987i
\(77\) −2.90595 −0.331164
\(78\) 0 0
\(79\) 9.48320i 1.06694i 0.845818 + 0.533472i \(0.179113\pi\)
−0.845818 + 0.533472i \(0.820887\pi\)
\(80\) −4.45496 1.53400i −0.498080 0.171506i
\(81\) 0 0
\(82\) −1.10587 + 13.3085i −0.122123 + 1.46968i
\(83\) 2.71280i 0.297769i −0.988855 0.148884i \(-0.952432\pi\)
0.988855 0.148884i \(-0.0475682\pi\)
\(84\) 0 0
\(85\) 7.64276i 0.828973i
\(86\) 14.5793 + 1.21146i 1.57212 + 0.130636i
\(87\) 0 0
\(88\) −2.02323 + 7.96636i −0.215678 + 0.849216i
\(89\) 2.22575i 0.235930i −0.993018 0.117965i \(-0.962363\pi\)
0.993018 0.117965i \(-0.0376370\pi\)
\(90\) 0 0
\(91\) −1.05317 −0.110402
\(92\) 1.60275 + 0.268212i 0.167098 + 0.0279631i
\(93\) 0 0
\(94\) 5.68148 + 0.472103i 0.586000 + 0.0486937i
\(95\) 3.67035 0.376570
\(96\) 0 0
\(97\) −3.93019 −0.399050 −0.199525 0.979893i \(-0.563940\pi\)
−0.199525 + 0.979893i \(0.563940\pi\)
\(98\) −1.40936 0.117111i −0.142366 0.0118300i
\(99\) 0 0
\(100\) −7.12593 1.19249i −0.712593 0.119249i
\(101\) −18.0700 −1.79803 −0.899016 0.437915i \(-0.855717\pi\)
−0.899016 + 0.437915i \(0.855717\pi\)
\(102\) 0 0
\(103\) 17.8616i 1.75995i −0.475017 0.879977i \(-0.657558\pi\)
0.475017 0.879977i \(-0.342442\pi\)
\(104\) −0.733256 + 2.88715i −0.0719016 + 0.283108i
\(105\) 0 0
\(106\) 4.19667 + 0.348723i 0.407617 + 0.0338709i
\(107\) 7.67720i 0.742183i −0.928596 0.371091i \(-0.878984\pi\)
0.928596 0.371091i \(-0.121016\pi\)
\(108\) 0 0
\(109\) 12.6991i 1.21635i −0.793801 0.608177i \(-0.791901\pi\)
0.793801 0.608177i \(-0.208099\pi\)
\(110\) 0.400865 4.82418i 0.0382210 0.459967i
\(111\) 0 0
\(112\) −1.30230 + 3.78207i −0.123055 + 0.357372i
\(113\) 15.4017i 1.44887i 0.689342 + 0.724437i \(0.257900\pi\)
−0.689342 + 0.724437i \(0.742100\pi\)
\(114\) 0 0
\(115\) −0.957076 −0.0892478
\(116\) 7.96144 + 1.33231i 0.739201 + 0.123702i
\(117\) 0 0
\(118\) −0.101754 + 1.22455i −0.00936725 + 0.112729i
\(119\) −6.48837 −0.594788
\(120\) 0 0
\(121\) 2.55546 0.232315
\(122\) −0.624936 + 7.52074i −0.0565791 + 0.680896i
\(123\) 0 0
\(124\) −0.0359079 + 0.214573i −0.00322463 + 0.0192693i
\(125\) 10.1448 0.907380
\(126\) 0 0
\(127\) 17.1514i 1.52194i −0.648787 0.760970i \(-0.724724\pi\)
0.648787 0.760970i \(-0.275276\pi\)
\(128\) 9.46143 + 6.20333i 0.836280 + 0.548302i
\(129\) 0 0
\(130\) 0.145281 1.74837i 0.0127420 0.153342i
\(131\) 10.5118i 0.918421i −0.888328 0.459210i \(-0.848132\pi\)
0.888328 0.459210i \(-0.151868\pi\)
\(132\) 0 0
\(133\) 3.11597i 0.270189i
\(134\) −5.60905 0.466084i −0.484548 0.0402636i
\(135\) 0 0
\(136\) −4.51745 + 17.7872i −0.387369 + 1.52524i
\(137\) 13.6268i 1.16422i 0.813110 + 0.582110i \(0.197773\pi\)
−0.813110 + 0.582110i \(0.802227\pi\)
\(138\) 0 0
\(139\) −5.37620 −0.456003 −0.228002 0.973661i \(-0.573219\pi\)
−0.228002 + 0.973661i \(0.573219\pi\)
\(140\) 0.388832 2.32352i 0.0328623 0.196374i
\(141\) 0 0
\(142\) −1.18992 0.0988767i −0.0998560 0.00829755i
\(143\) −3.06045 −0.255928
\(144\) 0 0
\(145\) −4.75416 −0.394811
\(146\) 5.06681 + 0.421027i 0.419332 + 0.0348445i
\(147\) 0 0
\(148\) 3.29122 19.6672i 0.270537 1.61663i
\(149\) 17.3187 1.41880 0.709401 0.704805i \(-0.248965\pi\)
0.709401 + 0.704805i \(0.248965\pi\)
\(150\) 0 0
\(151\) 4.50773i 0.366834i −0.983035 0.183417i \(-0.941284\pi\)
0.983035 0.183417i \(-0.0587158\pi\)
\(152\) −8.54211 2.16946i −0.692856 0.175966i
\(153\) 0 0
\(154\) −4.09552 0.340317i −0.330026 0.0274236i
\(155\) 0.128132i 0.0102918i
\(156\) 0 0
\(157\) 8.84696i 0.706064i −0.935611 0.353032i \(-0.885151\pi\)
0.935611 0.353032i \(-0.114849\pi\)
\(158\) −1.11058 + 13.3652i −0.0883533 + 1.06328i
\(159\) 0 0
\(160\) −6.09898 2.68367i −0.482166 0.212163i
\(161\) 0.812516i 0.0640352i
\(162\) 0 0
\(163\) −8.38238 −0.656558 −0.328279 0.944581i \(-0.606469\pi\)
−0.328279 + 0.944581i \(0.606469\pi\)
\(164\) −3.11714 + 18.6269i −0.243408 + 1.45452i
\(165\) 0 0
\(166\) 0.317698 3.82331i 0.0246582 0.296746i
\(167\) −8.93563 −0.691460 −0.345730 0.938334i \(-0.612369\pi\)
−0.345730 + 0.938334i \(0.612369\pi\)
\(168\) 0 0
\(169\) 11.8908 0.914680
\(170\) 0.895048 10.7714i 0.0686470 0.826126i
\(171\) 0 0
\(172\) 20.4055 + 3.41477i 1.55590 + 0.260374i
\(173\) 14.1612 1.07666 0.538328 0.842736i \(-0.319056\pi\)
0.538328 + 0.842736i \(0.319056\pi\)
\(174\) 0 0
\(175\) 3.61251i 0.273080i
\(176\) −3.78440 + 10.9905i −0.285260 + 0.828439i
\(177\) 0 0
\(178\) 0.260659 3.13688i 0.0195373 0.235119i
\(179\) 20.3695i 1.52249i −0.648467 0.761243i \(-0.724589\pi\)
0.648467 0.761243i \(-0.275411\pi\)
\(180\) 0 0
\(181\) 18.2659i 1.35770i −0.734279 0.678848i \(-0.762480\pi\)
0.734279 0.678848i \(-0.237520\pi\)
\(182\) −1.48429 0.123337i −0.110023 0.00914235i
\(183\) 0 0
\(184\) 2.22743 + 0.565705i 0.164208 + 0.0417044i
\(185\) 11.7442i 0.863453i
\(186\) 0 0
\(187\) −18.8549 −1.37880
\(188\) 7.95194 + 1.33072i 0.579955 + 0.0970529i
\(189\) 0 0
\(190\) 5.17283 + 0.429837i 0.375277 + 0.0311837i
\(191\) 7.83849 0.567173 0.283587 0.958947i \(-0.408476\pi\)
0.283587 + 0.958947i \(0.408476\pi\)
\(192\) 0 0
\(193\) −13.0241 −0.937498 −0.468749 0.883331i \(-0.655295\pi\)
−0.468749 + 0.883331i \(0.655295\pi\)
\(194\) −5.53903 0.460266i −0.397679 0.0330452i
\(195\) 0 0
\(196\) −1.97257 0.330101i −0.140898 0.0235786i
\(197\) −14.9576 −1.06568 −0.532842 0.846215i \(-0.678876\pi\)
−0.532842 + 0.846215i \(0.678876\pi\)
\(198\) 0 0
\(199\) 16.9147i 1.19905i −0.800356 0.599525i \(-0.795356\pi\)
0.800356 0.599525i \(-0.204644\pi\)
\(200\) −9.90333 2.51517i −0.700271 0.177850i
\(201\) 0 0
\(202\) −25.4671 2.11619i −1.79186 0.148895i
\(203\) 4.03607i 0.283277i
\(204\) 0 0
\(205\) 11.1230i 0.776867i
\(206\) 2.09178 25.1733i 0.145741 1.75391i
\(207\) 0 0
\(208\) −1.37153 + 3.98315i −0.0950988 + 0.276182i
\(209\) 9.05485i 0.626337i
\(210\) 0 0
\(211\) 5.68386 0.391293 0.195647 0.980674i \(-0.437319\pi\)
0.195647 + 0.980674i \(0.437319\pi\)
\(212\) 5.87376 + 0.982949i 0.403412 + 0.0675092i
\(213\) 0 0
\(214\) 0.899081 10.8199i 0.0614599 0.739633i
\(215\) −12.1851 −0.831017
\(216\) 0 0
\(217\) −0.108779 −0.00738437
\(218\) 1.48720 17.8976i 0.100726 1.21218i
\(219\) 0 0
\(220\) 1.12992 6.75204i 0.0761795 0.455222i
\(221\) −6.83333 −0.459660
\(222\) 0 0
\(223\) 3.43963i 0.230335i 0.993346 + 0.115167i \(0.0367404\pi\)
−0.993346 + 0.115167i \(0.963260\pi\)
\(224\) −2.27832 + 5.17777i −0.152227 + 0.345954i
\(225\) 0 0
\(226\) −1.80371 + 21.7065i −0.119981 + 1.44390i
\(227\) 8.86522i 0.588406i −0.955743 0.294203i \(-0.904946\pi\)
0.955743 0.294203i \(-0.0950541\pi\)
\(228\) 0 0
\(229\) 17.3653i 1.14753i 0.819019 + 0.573767i \(0.194518\pi\)
−0.819019 + 0.573767i \(0.805482\pi\)
\(230\) −1.34886 0.112084i −0.0889413 0.00739058i
\(231\) 0 0
\(232\) 11.0645 + 2.81007i 0.726418 + 0.184490i
\(233\) 9.99149i 0.654564i 0.944927 + 0.327282i \(0.106133\pi\)
−0.944927 + 0.327282i \(0.893867\pi\)
\(234\) 0 0
\(235\) −4.74848 −0.309757
\(236\) −0.286816 + 1.71392i −0.0186702 + 0.111566i
\(237\) 0 0
\(238\) −9.14442 0.759857i −0.592745 0.0492542i
\(239\) 24.5708 1.58935 0.794677 0.607032i \(-0.207640\pi\)
0.794677 + 0.607032i \(0.207640\pi\)
\(240\) 0 0
\(241\) 23.1786 1.49306 0.746532 0.665349i \(-0.231717\pi\)
0.746532 + 0.665349i \(0.231717\pi\)
\(242\) 3.60156 + 0.299272i 0.231517 + 0.0192379i
\(243\) 0 0
\(244\) −1.76152 + 10.5262i −0.112769 + 0.673872i
\(245\) 1.17792 0.0752543
\(246\) 0 0
\(247\) 3.28164i 0.208806i
\(248\) −0.0757359 + 0.298205i −0.00480924 + 0.0189361i
\(249\) 0 0
\(250\) 14.2977 + 1.18807i 0.904264 + 0.0751399i
\(251\) 21.3670i 1.34868i −0.738423 0.674338i \(-0.764429\pi\)
0.738423 0.674338i \(-0.235571\pi\)
\(252\) 0 0
\(253\) 2.36113i 0.148443i
\(254\) 2.00861 24.1724i 0.126031 1.51671i
\(255\) 0 0
\(256\) 12.6081 + 9.85073i 0.788003 + 0.615671i
\(257\) 29.5594i 1.84386i 0.387352 + 0.921932i \(0.373390\pi\)
−0.387352 + 0.921932i \(0.626610\pi\)
\(258\) 0 0
\(259\) 9.97034 0.619527
\(260\) 0.409504 2.44706i 0.0253964 0.151760i
\(261\) 0 0
\(262\) 1.23104 14.8149i 0.0760542 0.915266i
\(263\) −15.8001 −0.974277 −0.487139 0.873325i \(-0.661959\pi\)
−0.487139 + 0.873325i \(0.661959\pi\)
\(264\) 0 0
\(265\) −3.50751 −0.215464
\(266\) 0.364913 4.39151i 0.0223743 0.269261i
\(267\) 0 0
\(268\) −7.85056 1.31376i −0.479550 0.0802505i
\(269\) −6.41502 −0.391131 −0.195565 0.980691i \(-0.562654\pi\)
−0.195565 + 0.980691i \(0.562654\pi\)
\(270\) 0 0
\(271\) 0.0927686i 0.00563529i 0.999996 + 0.00281765i \(0.000896886\pi\)
−0.999996 + 0.00281765i \(0.999103\pi\)
\(272\) −8.44977 + 24.5394i −0.512343 + 1.48792i
\(273\) 0 0
\(274\) −1.59585 + 19.2051i −0.0964087 + 1.16022i
\(275\) 10.4978i 0.633040i
\(276\) 0 0
\(277\) 19.7900i 1.18907i 0.804071 + 0.594534i \(0.202663\pi\)
−0.804071 + 0.594534i \(0.797337\pi\)
\(278\) −7.57698 0.629610i −0.454437 0.0377615i
\(279\) 0 0
\(280\) 0.820111 3.22914i 0.0490110 0.192978i
\(281\) 14.4404i 0.861443i −0.902485 0.430721i \(-0.858259\pi\)
0.902485 0.430721i \(-0.141741\pi\)
\(282\) 0 0
\(283\) 20.3759 1.21122 0.605612 0.795760i \(-0.292929\pi\)
0.605612 + 0.795760i \(0.292929\pi\)
\(284\) −1.66544 0.278705i −0.0988259 0.0165381i
\(285\) 0 0
\(286\) −4.31326 0.358411i −0.255049 0.0211933i
\(287\) −9.44298 −0.557402
\(288\) 0 0
\(289\) −25.0989 −1.47641
\(290\) −6.70030 0.556762i −0.393455 0.0326942i
\(291\) 0 0
\(292\) 7.09164 + 1.18675i 0.415007 + 0.0694496i
\(293\) 10.2919 0.601262 0.300631 0.953741i \(-0.402803\pi\)
0.300631 + 0.953741i \(0.402803\pi\)
\(294\) 0 0
\(295\) 1.02346i 0.0595882i
\(296\) 6.94174 27.3326i 0.403480 1.58868i
\(297\) 0 0
\(298\) 24.4082 + 2.02820i 1.41393 + 0.117491i
\(299\) 0.855715i 0.0494873i
\(300\) 0 0
\(301\) 10.3446i 0.596254i
\(302\) 0.527903 6.35300i 0.0303774 0.365574i
\(303\) 0 0
\(304\) −11.7848 4.05791i −0.675905 0.232737i
\(305\) 6.28571i 0.359919i
\(306\) 0 0
\(307\) 19.8799 1.13461 0.567304 0.823508i \(-0.307986\pi\)
0.567304 + 0.823508i \(0.307986\pi\)
\(308\) −5.73219 0.959257i −0.326622 0.0546587i
\(309\) 0 0
\(310\) 0.0150056 0.180584i 0.000852263 0.0102565i
\(311\) −7.94464 −0.450499 −0.225250 0.974301i \(-0.572320\pi\)
−0.225250 + 0.974301i \(0.572320\pi\)
\(312\) 0 0
\(313\) −28.2451 −1.59651 −0.798254 0.602321i \(-0.794243\pi\)
−0.798254 + 0.602321i \(0.794243\pi\)
\(314\) 1.03607 12.4685i 0.0584689 0.703639i
\(315\) 0 0
\(316\) −3.13042 + 18.7063i −0.176100 + 1.05231i
\(317\) 13.8609 0.778506 0.389253 0.921131i \(-0.372733\pi\)
0.389253 + 0.921131i \(0.372733\pi\)
\(318\) 0 0
\(319\) 11.7286i 0.656677i
\(320\) −8.28135 4.49650i −0.462941 0.251362i
\(321\) 0 0
\(322\) −0.0951542 + 1.14512i −0.00530274 + 0.0638153i
\(323\) 20.2176i 1.12494i
\(324\) 0 0
\(325\) 3.80458i 0.211040i
\(326\) −11.8138 0.981665i −0.654303 0.0543694i
\(327\) 0 0
\(328\) −6.57457 + 25.8869i −0.363020 + 1.42937i
\(329\) 4.03126i 0.222250i
\(330\) 0 0
\(331\) −14.5450 −0.799468 −0.399734 0.916631i \(-0.630897\pi\)
−0.399734 + 0.916631i \(0.630897\pi\)
\(332\) 0.895500 5.35120i 0.0491469 0.293685i
\(333\) 0 0
\(334\) −12.5935 1.04646i −0.689085 0.0572596i
\(335\) 4.68795 0.256130
\(336\) 0 0
\(337\) 5.26170 0.286623 0.143312 0.989678i \(-0.454225\pi\)
0.143312 + 0.989678i \(0.454225\pi\)
\(338\) 16.7584 + 1.39254i 0.911538 + 0.0757444i
\(339\) 0 0
\(340\) 2.52288 15.0759i 0.136823 0.817604i
\(341\) −0.316105 −0.0171181
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 28.3587 + 7.20233i 1.52900 + 0.388324i
\(345\) 0 0
\(346\) 19.9582 + 1.65843i 1.07296 + 0.0891575i
\(347\) 15.5549i 0.835029i −0.908670 0.417514i \(-0.862901\pi\)
0.908670 0.417514i \(-0.137099\pi\)
\(348\) 0 0
\(349\) 17.1607i 0.918594i 0.888283 + 0.459297i \(0.151899\pi\)
−0.888283 + 0.459297i \(0.848101\pi\)
\(350\) 0.423064 5.09132i 0.0226137 0.272142i
\(351\) 0 0
\(352\) −6.62067 + 15.0463i −0.352883 + 0.801972i
\(353\) 15.5438i 0.827314i −0.910433 0.413657i \(-0.864251\pi\)
0.910433 0.413657i \(-0.135749\pi\)
\(354\) 0 0
\(355\) 0.994517 0.0527835
\(356\) 0.734724 4.39046i 0.0389403 0.232694i
\(357\) 0 0
\(358\) 2.38548 28.7078i 0.126077 1.51726i
\(359\) 14.9471 0.788876 0.394438 0.918923i \(-0.370939\pi\)
0.394438 + 0.918923i \(0.370939\pi\)
\(360\) 0 0
\(361\) −9.29073 −0.488986
\(362\) 2.13913 25.7432i 0.112430 1.35303i
\(363\) 0 0
\(364\) −2.07745 0.347652i −0.108888 0.0182219i
\(365\) −4.23476 −0.221657
\(366\) 0 0
\(367\) 2.86184i 0.149387i −0.997207 0.0746934i \(-0.976202\pi\)
0.997207 0.0746934i \(-0.0237978\pi\)
\(368\) 3.07299 + 1.05814i 0.160191 + 0.0551591i
\(369\) 0 0
\(370\) −1.37537 + 16.5518i −0.0715023 + 0.860487i
\(371\) 2.97772i 0.154596i
\(372\) 0 0
\(373\) 20.7327i 1.07350i 0.843743 + 0.536748i \(0.180347\pi\)
−0.843743 + 0.536748i \(0.819653\pi\)
\(374\) −26.5732 2.20810i −1.37407 0.114178i
\(375\) 0 0
\(376\) 11.0513 + 2.80672i 0.569926 + 0.144745i
\(377\) 4.25066i 0.218920i
\(378\) 0 0
\(379\) 28.1561 1.44628 0.723141 0.690700i \(-0.242698\pi\)
0.723141 + 0.690700i \(0.242698\pi\)
\(380\) 7.24003 + 1.21159i 0.371406 + 0.0621531i
\(381\) 0 0
\(382\) 11.0472 + 0.917970i 0.565225 + 0.0469675i
\(383\) −29.9733 −1.53156 −0.765781 0.643101i \(-0.777648\pi\)
−0.765781 + 0.643101i \(0.777648\pi\)
\(384\) 0 0
\(385\) 3.42296 0.174450
\(386\) −18.3556 1.52526i −0.934278 0.0776339i
\(387\) 0 0
\(388\) −7.75257 1.29736i −0.393577 0.0658634i
\(389\) −29.4931 −1.49536 −0.747679 0.664060i \(-0.768832\pi\)
−0.747679 + 0.664060i \(0.768832\pi\)
\(390\) 0 0
\(391\) 5.27190i 0.266612i
\(392\) −2.74140 0.696239i −0.138461 0.0351654i
\(393\) 0 0
\(394\) −21.0806 1.75169i −1.06202 0.0882489i
\(395\) 11.1704i 0.562045i
\(396\) 0 0
\(397\) 22.0845i 1.10839i −0.832386 0.554196i \(-0.813026\pi\)
0.832386 0.554196i \(-0.186974\pi\)
\(398\) 1.98089 23.8388i 0.0992930 1.19493i
\(399\) 0 0
\(400\) −13.6628 4.70456i −0.683138 0.235228i
\(401\) 7.42054i 0.370564i 0.982685 + 0.185282i \(0.0593198\pi\)
−0.982685 + 0.185282i \(0.940680\pi\)
\(402\) 0 0
\(403\) −0.114562 −0.00570674
\(404\) −35.6443 5.96493i −1.77337 0.296766i
\(405\) 0 0
\(406\) −0.472667 + 5.68827i −0.0234581 + 0.282304i
\(407\) 28.9733 1.43615
\(408\) 0 0
\(409\) 37.3983 1.84923 0.924615 0.380904i \(-0.124387\pi\)
0.924615 + 0.380904i \(0.124387\pi\)
\(410\) 1.30263 15.6763i 0.0643321 0.774199i
\(411\) 0 0
\(412\) 5.89612 35.2332i 0.290481 1.73582i
\(413\) −0.868874 −0.0427545
\(414\) 0 0
\(415\) 3.19546i 0.156859i
\(416\) −2.39945 + 5.45305i −0.117643 + 0.267358i
\(417\) 0 0
\(418\) 1.06042 12.7615i 0.0518668 0.624186i
\(419\) 8.55960i 0.418164i −0.977898 0.209082i \(-0.932952\pi\)
0.977898 0.209082i \(-0.0670475\pi\)
\(420\) 0 0
\(421\) 6.56688i 0.320050i −0.987113 0.160025i \(-0.948842\pi\)
0.987113 0.160025i \(-0.0511575\pi\)
\(422\) 8.01059 + 0.665640i 0.389949 + 0.0324029i
\(423\) 0 0
\(424\) 8.16311 + 2.07321i 0.396436 + 0.100684i
\(425\) 23.4393i 1.13697i
\(426\) 0 0
\(427\) −5.33629 −0.258241
\(428\) 2.53425 15.1438i 0.122498 0.732004i
\(429\) 0 0
\(430\) −17.1731 1.42700i −0.828163 0.0688163i
\(431\) −5.61014 −0.270231 −0.135116 0.990830i \(-0.543141\pi\)
−0.135116 + 0.990830i \(0.543141\pi\)
\(432\) 0 0
\(433\) 7.96675 0.382857 0.191429 0.981507i \(-0.438688\pi\)
0.191429 + 0.981507i \(0.438688\pi\)
\(434\) −0.153308 0.0127391i −0.00735901 0.000611498i
\(435\) 0 0
\(436\) 4.19199 25.0499i 0.200760 1.19967i
\(437\) −2.53178 −0.121111
\(438\) 0 0
\(439\) 33.9176i 1.61880i 0.587258 + 0.809400i \(0.300208\pi\)
−0.587258 + 0.809400i \(0.699792\pi\)
\(440\) 2.38320 9.38370i 0.113615 0.447350i
\(441\) 0 0
\(442\) −9.63060 0.800256i −0.458081 0.0380643i
\(443\) 6.31862i 0.300207i −0.988670 0.150103i \(-0.952039\pi\)
0.988670 0.150103i \(-0.0479606\pi\)
\(444\) 0 0
\(445\) 2.62175i 0.124283i
\(446\) −0.402817 + 4.84767i −0.0190740 + 0.229544i
\(447\) 0 0
\(448\) −3.81733 + 7.03050i −0.180352 + 0.332160i
\(449\) 11.9562i 0.564246i 0.959378 + 0.282123i \(0.0910387\pi\)
−0.959378 + 0.282123i \(0.908961\pi\)
\(450\) 0 0
\(451\) −27.4408 −1.29214
\(452\) −5.08413 + 30.3810i −0.239137 + 1.42900i
\(453\) 0 0
\(454\) 1.03821 12.4943i 0.0487257 0.586385i
\(455\) 1.24054 0.0581575
\(456\) 0 0
\(457\) 10.7774 0.504144 0.252072 0.967708i \(-0.418888\pi\)
0.252072 + 0.967708i \(0.418888\pi\)
\(458\) −2.03366 + 24.4739i −0.0950269 + 1.14359i
\(459\) 0 0
\(460\) −1.88790 0.315932i −0.0880238 0.0147304i
\(461\) 2.36887 0.110329 0.0551647 0.998477i \(-0.482432\pi\)
0.0551647 + 0.998477i \(0.482432\pi\)
\(462\) 0 0
\(463\) 38.4537i 1.78709i 0.448969 + 0.893547i \(0.351791\pi\)
−0.448969 + 0.893547i \(0.648209\pi\)
\(464\) 15.2647 + 5.25616i 0.708646 + 0.244011i
\(465\) 0 0
\(466\) −1.17011 + 14.0816i −0.0542043 + 0.652316i
\(467\) 5.09381i 0.235713i −0.993031 0.117857i \(-0.962398\pi\)
0.993031 0.117857i \(-0.0376023\pi\)
\(468\) 0 0
\(469\) 3.97987i 0.183773i
\(470\) −6.69231 0.556098i −0.308693 0.0256509i
\(471\) 0 0
\(472\) −0.604944 + 2.38193i −0.0278448 + 0.109637i
\(473\) 30.0609i 1.38220i
\(474\) 0 0
\(475\) 11.2565 0.516483
\(476\) −12.7988 2.14182i −0.586630 0.0981701i
\(477\) 0 0
\(478\) 34.6291 + 2.87750i 1.58390 + 0.131614i
\(479\) −20.8166 −0.951137 −0.475568 0.879679i \(-0.657758\pi\)
−0.475568 + 0.879679i \(0.657758\pi\)
\(480\) 0 0
\(481\) 10.5004 0.478778
\(482\) 32.6669 + 2.71446i 1.48794 + 0.123640i
\(483\) 0 0
\(484\) 5.04083 + 0.843561i 0.229129 + 0.0383437i
\(485\) 4.62943 0.210212
\(486\) 0 0
\(487\) 26.1716i 1.18595i −0.805222 0.592973i \(-0.797954\pi\)
0.805222 0.592973i \(-0.202046\pi\)
\(488\) −3.71533 + 14.6289i −0.168185 + 0.662219i
\(489\) 0 0
\(490\) 1.66010 + 0.137947i 0.0749959 + 0.00623179i
\(491\) 27.7686i 1.25318i −0.779349 0.626590i \(-0.784450\pi\)
0.779349 0.626590i \(-0.215550\pi\)
\(492\) 0 0
\(493\) 26.1875i 1.17943i
\(494\) 0.384314 4.62499i 0.0172911 0.208088i
\(495\) 0 0
\(496\) −0.141662 + 0.411408i −0.00636081 + 0.0184728i
\(497\) 0.844302i 0.0378721i
\(498\) 0 0
\(499\) −13.7781 −0.616791 −0.308395 0.951258i \(-0.599792\pi\)
−0.308395 + 0.951258i \(0.599792\pi\)
\(500\) 20.0114 + 3.34882i 0.894936 + 0.149764i
\(501\) 0 0
\(502\) 2.50231 30.1138i 0.111683 1.34404i
\(503\) 32.5875 1.45300 0.726502 0.687165i \(-0.241145\pi\)
0.726502 + 0.687165i \(0.241145\pi\)
\(504\) 0 0
\(505\) 21.2850 0.947168
\(506\) −0.276513 + 3.32767i −0.0122925 + 0.147933i
\(507\) 0 0
\(508\) 5.66169 33.8323i 0.251197 1.50107i
\(509\) −17.1161 −0.758657 −0.379328 0.925262i \(-0.623845\pi\)
−0.379328 + 0.925262i \(0.623845\pi\)
\(510\) 0 0
\(511\) 3.59513i 0.159039i
\(512\) 16.6156 + 15.3597i 0.734313 + 0.678811i
\(513\) 0 0
\(514\) −3.46172 + 41.6597i −0.152690 + 1.83753i
\(515\) 21.0394i 0.927109i
\(516\) 0 0
\(517\) 11.7146i 0.515209i
\(518\) 14.0518 + 1.16763i 0.617399 + 0.0513028i
\(519\) 0 0
\(520\) 0.863714 3.40082i 0.0378764 0.149136i
\(521\) 22.6308i 0.991471i 0.868473 + 0.495736i \(0.165102\pi\)
−0.868473 + 0.495736i \(0.834898\pi\)
\(522\) 0 0
\(523\) −19.0252 −0.831914 −0.415957 0.909384i \(-0.636553\pi\)
−0.415957 + 0.909384i \(0.636553\pi\)
\(524\) 3.46996 20.7353i 0.151586 0.905825i
\(525\) 0 0
\(526\) −22.2680 1.85036i −0.970931 0.0806796i
\(527\) −0.705796 −0.0307450
\(528\) 0 0
\(529\) −22.3398 −0.971296
\(530\) −4.94333 0.410766i −0.214724 0.0178425i
\(531\) 0 0
\(532\) 1.02859 6.14647i 0.0445948 0.266483i
\(533\) −9.94503 −0.430767
\(534\) 0 0
\(535\) 9.04310i 0.390967i
\(536\) −10.9104 2.77094i −0.471257 0.119686i
\(537\) 0 0
\(538\) −9.04105 0.751267i −0.389787 0.0323894i
\(539\) 2.90595i 0.125168i
\(540\) 0 0
\(541\) 17.3996i 0.748066i 0.927415 + 0.374033i \(0.122025\pi\)
−0.927415 + 0.374033i \(0.877975\pi\)
\(542\) −0.0108642 + 0.130744i −0.000466657 + 0.00561594i
\(543\) 0 0
\(544\) −14.7826 + 33.5953i −0.633797 + 1.44038i
\(545\) 14.9585i 0.640751i
\(546\) 0 0
\(547\) 4.96571 0.212318 0.106159 0.994349i \(-0.466145\pi\)
0.106159 + 0.994349i \(0.466145\pi\)
\(548\) −4.49824 + 26.8799i −0.192155 + 1.14825i
\(549\) 0 0
\(550\) 1.22940 14.7951i 0.0524218 0.630865i
\(551\) −12.5763 −0.535768
\(552\) 0 0
\(553\) −9.48320 −0.403267
\(554\) −2.31762 + 27.8912i −0.0984663 + 1.18498i
\(555\) 0 0
\(556\) −10.6049 1.77469i −0.449749 0.0752635i
\(557\) −5.67400 −0.240415 −0.120208 0.992749i \(-0.538356\pi\)
−0.120208 + 0.992749i \(0.538356\pi\)
\(558\) 0 0
\(559\) 10.8946i 0.460793i
\(560\) 1.53400 4.45496i 0.0648231 0.188256i
\(561\) 0 0
\(562\) 1.69113 20.3517i 0.0713358 0.858484i
\(563\) 25.4752i 1.07365i −0.843693 0.536826i \(-0.819623\pi\)
0.843693 0.536826i \(-0.180377\pi\)
\(564\) 0 0
\(565\) 18.1420i 0.763238i
\(566\) 28.7169 + 2.38624i 1.20706 + 0.100301i
\(567\) 0 0
\(568\) −2.31457 0.587836i −0.0971170 0.0246650i
\(569\) 19.5120i 0.817986i −0.912537 0.408993i \(-0.865880\pi\)
0.912537 0.408993i \(-0.134120\pi\)
\(570\) 0 0
\(571\) −38.0268 −1.59137 −0.795686 0.605709i \(-0.792889\pi\)
−0.795686 + 0.605709i \(0.792889\pi\)
\(572\) −6.03695 1.01026i −0.252418 0.0422410i
\(573\) 0 0
\(574\) −13.3085 1.10587i −0.555487 0.0461582i
\(575\) −2.93522 −0.122407
\(576\) 0 0
\(577\) 5.32632 0.221738 0.110869 0.993835i \(-0.464637\pi\)
0.110869 + 0.993835i \(0.464637\pi\)
\(578\) −35.3733 2.93935i −1.47134 0.122261i
\(579\) 0 0
\(580\) −9.37791 1.56935i −0.389397 0.0651638i
\(581\) 2.71280 0.112546
\(582\) 0 0
\(583\) 8.65311i 0.358375i
\(584\) 9.85566 + 2.50307i 0.407830 + 0.103578i
\(585\) 0 0
\(586\) 14.5050 + 1.20530i 0.599197 + 0.0497903i
\(587\) 25.6946i 1.06053i 0.847832 + 0.530265i \(0.177908\pi\)
−0.847832 + 0.530265i \(0.822092\pi\)
\(588\) 0 0
\(589\) 0.338951i 0.0139662i
\(590\) 0.119858 1.44242i 0.00493448 0.0593836i
\(591\) 0 0
\(592\) 12.9843 37.7085i 0.533652 1.54981i
\(593\) 35.9249i 1.47526i 0.675205 + 0.737630i \(0.264055\pi\)
−0.675205 + 0.737630i \(0.735945\pi\)
\(594\) 0 0
\(595\) 7.64276 0.313322
\(596\) 34.1623 + 5.71692i 1.39934 + 0.234174i
\(597\) 0 0
\(598\) −0.100213 + 1.20601i −0.00409803 + 0.0493173i
\(599\) 8.08090 0.330177 0.165088 0.986279i \(-0.447209\pi\)
0.165088 + 0.986279i \(0.447209\pi\)
\(600\) 0 0
\(601\) 39.0492 1.59285 0.796425 0.604738i \(-0.206722\pi\)
0.796425 + 0.604738i \(0.206722\pi\)
\(602\) −1.21146 + 14.5793i −0.0493756 + 0.594206i
\(603\) 0 0
\(604\) 1.48801 8.89181i 0.0605461 0.361803i
\(605\) −3.01012 −0.122379
\(606\) 0 0
\(607\) 39.0636i 1.58554i 0.609519 + 0.792772i \(0.291363\pi\)
−0.609519 + 0.792772i \(0.708637\pi\)
\(608\) −16.1338 7.09917i −0.654311 0.287909i
\(609\) 0 0
\(610\) 0.736123 8.85880i 0.0298047 0.358682i
\(611\) 4.24559i 0.171758i
\(612\) 0 0
\(613\) 27.0877i 1.09406i 0.837112 + 0.547031i \(0.184242\pi\)
−0.837112 + 0.547031i \(0.815758\pi\)
\(614\) 28.0179 + 2.32815i 1.13071 + 0.0939566i
\(615\) 0 0
\(616\) −7.96636 2.02323i −0.320974 0.0815184i
\(617\) 10.2143i 0.411213i −0.978635 0.205607i \(-0.934083\pi\)
0.978635 0.205607i \(-0.0659167\pi\)
\(618\) 0 0
\(619\) 28.5400 1.14712 0.573560 0.819164i \(-0.305562\pi\)
0.573560 + 0.819164i \(0.305562\pi\)
\(620\) 0.0422966 0.252750i 0.00169867 0.0101507i
\(621\) 0 0
\(622\) −11.1968 0.930401i −0.448952 0.0373057i
\(623\) 2.22575 0.0891730
\(624\) 0 0
\(625\) 6.11281 0.244512
\(626\) −39.8074 3.30780i −1.59102 0.132206i
\(627\) 0 0
\(628\) 2.92039 17.4512i 0.116536 0.696380i
\(629\) 64.6912 2.57941
\(630\) 0 0
\(631\) 17.9037i 0.712734i −0.934346 0.356367i \(-0.884015\pi\)
0.934346 0.356367i \(-0.115985\pi\)
\(632\) −6.60258 + 25.9972i −0.262636 + 1.03411i
\(633\) 0 0
\(634\) 19.5350 + 1.62326i 0.775832 + 0.0644679i
\(635\) 20.2029i 0.801728i
\(636\) 0 0
\(637\) 1.05317i 0.0417280i
\(638\) −1.37355 + 16.5298i −0.0543792 + 0.654421i
\(639\) 0 0
\(640\) −11.1448 7.30700i −0.440536 0.288835i
\(641\) 36.5576i 1.44394i −0.691925 0.721969i \(-0.743237\pi\)
0.691925 0.721969i \(-0.256763\pi\)
\(642\) 0 0
\(643\) 28.5306 1.12514 0.562568 0.826751i \(-0.309813\pi\)
0.562568 + 0.826751i \(0.309813\pi\)
\(644\) −0.268212 + 1.60275i −0.0105691 + 0.0631570i
\(645\) 0 0
\(646\) 2.36769 28.4938i 0.0931556 1.12107i
\(647\) 25.0326 0.984134 0.492067 0.870557i \(-0.336242\pi\)
0.492067 + 0.870557i \(0.336242\pi\)
\(648\) 0 0
\(649\) −2.52490 −0.0991112
\(650\) 0.445556 5.36201i 0.0174762 0.210315i
\(651\) 0 0
\(652\) −16.5348 2.76703i −0.647554 0.108365i
\(653\) 43.1196 1.68740 0.843699 0.536816i \(-0.180373\pi\)
0.843699 + 0.536816i \(0.180373\pi\)
\(654\) 0 0
\(655\) 12.3820i 0.483806i
\(656\) −12.2975 + 35.7140i −0.480139 + 1.39440i
\(657\) 0 0
\(658\) −0.472103 + 5.68148i −0.0184045 + 0.221487i
\(659\) 8.36352i 0.325796i 0.986643 + 0.162898i \(0.0520842\pi\)
−0.986643 + 0.162898i \(0.947916\pi\)
\(660\) 0 0
\(661\) 8.48754i 0.330127i −0.986283 0.165064i \(-0.947217\pi\)
0.986283 0.165064i \(-0.0527829\pi\)
\(662\) −20.4991 1.70338i −0.796722 0.0662037i
\(663\) 0 0
\(664\) 1.88876 7.43687i 0.0732981 0.288607i
\(665\) 3.67035i 0.142330i
\(666\) 0 0
\(667\) 3.27937 0.126978
\(668\) −17.6262 2.94966i −0.681977 0.114126i
\(669\) 0 0
\(670\) 6.60699 + 0.549009i 0.255250 + 0.0212100i
\(671\) −15.5070 −0.598641
\(672\) 0 0
\(673\) −25.4287 −0.980206 −0.490103 0.871664i \(-0.663041\pi\)
−0.490103 + 0.871664i \(0.663041\pi\)
\(674\) 7.41562 + 0.616201i 0.285639 + 0.0237352i
\(675\) 0 0
\(676\) 23.4555 + 3.92518i 0.902135 + 0.150968i
\(677\) 17.0820 0.656515 0.328258 0.944588i \(-0.393539\pi\)
0.328258 + 0.944588i \(0.393539\pi\)
\(678\) 0 0
\(679\) 3.93019i 0.150827i
\(680\) 5.32118 20.9518i 0.204058 0.803466i
\(681\) 0 0
\(682\) −0.445505 0.0370193i −0.0170593 0.00141754i
\(683\) 44.0552i 1.68573i 0.538128 + 0.842863i \(0.319132\pi\)
−0.538128 + 0.842863i \(0.680868\pi\)
\(684\) 0 0
\(685\) 16.0513i 0.613288i
\(686\) 0.117111 1.40936i 0.00447130 0.0538095i
\(687\) 0 0
\(688\) 39.1240 + 13.4718i 1.49159 + 0.513606i
\(689\) 3.13604i 0.119474i
\(690\) 0 0
\(691\) −18.3483 −0.698002 −0.349001 0.937122i \(-0.613479\pi\)
−0.349001 + 0.937122i \(0.613479\pi\)
\(692\) 27.9339 + 4.67462i 1.06189 + 0.177703i
\(693\) 0 0
\(694\) 1.82164 21.9223i 0.0691485 0.832161i
\(695\) 6.33271 0.240213
\(696\) 0 0
\(697\) −61.2695 −2.32075
\(698\) −2.00971 + 24.1856i −0.0760685 + 0.915439i
\(699\) 0 0
\(700\) 1.19249 7.12593i 0.0450721 0.269335i
\(701\) −33.6724 −1.27179 −0.635894 0.771777i \(-0.719368\pi\)
−0.635894 + 0.771777i \(0.719368\pi\)
\(702\) 0 0
\(703\) 31.0673i 1.17172i
\(704\) −11.0930 + 20.4303i −0.418082 + 0.769995i
\(705\) 0 0
\(706\) 1.82035 21.9068i 0.0685096 0.824472i
\(707\) 18.0700i 0.679592i
\(708\) 0 0
\(709\) 15.9147i 0.597689i 0.954302 + 0.298845i \(0.0966013\pi\)
−0.954302 + 0.298845i \(0.903399\pi\)
\(710\) 1.40163 + 0.116468i 0.0526022 + 0.00437098i
\(711\) 0 0
\(712\) 1.54966 6.10168i 0.0580759 0.228670i
\(713\) 0.0883844i 0.00331002i
\(714\) 0 0
\(715\) 3.60495 0.134818
\(716\) 6.72399 40.1802i 0.251287 1.50161i
\(717\) 0 0
\(718\) 21.0657 + 1.75046i 0.786167 + 0.0653266i
\(719\) −34.6441 −1.29201 −0.646004 0.763334i \(-0.723561\pi\)
−0.646004 + 0.763334i \(0.723561\pi\)
\(720\) 0 0
\(721\) 17.8616 0.665200
\(722\) −13.0939 1.08804i −0.487306 0.0404928i
\(723\) 0 0
\(724\) 6.02960 36.0308i 0.224088 1.33907i
\(725\) −14.5804 −0.541501
\(726\) 0 0
\(727\) 38.6477i 1.43336i −0.697400 0.716682i \(-0.745660\pi\)
0.697400 0.716682i \(-0.254340\pi\)
\(728\) −2.88715 0.733256i −0.107005 0.0271763i
\(729\) 0 0
\(730\) −5.96828 0.495935i −0.220896 0.0183554i
\(731\) 67.1197i 2.48251i
\(732\) 0 0
\(733\) 4.45768i 0.164648i −0.996606 0.0823240i \(-0.973766\pi\)
0.996606 0.0823240i \(-0.0262342\pi\)
\(734\) 0.335152 4.03335i 0.0123707 0.148874i
\(735\) 0 0
\(736\) 4.20702 + 1.85117i 0.155073 + 0.0682350i
\(737\) 11.5653i 0.426013i
\(738\) 0 0
\(739\) −32.0619 −1.17942 −0.589709 0.807616i \(-0.700757\pi\)
−0.589709 + 0.807616i \(0.700757\pi\)
\(740\) −3.87678 + 23.1663i −0.142513 + 0.851611i
\(741\) 0 0
\(742\) −0.348723 + 4.19667i −0.0128020 + 0.154065i
\(743\) 44.9201 1.64796 0.823979 0.566620i \(-0.191749\pi\)
0.823979 + 0.566620i \(0.191749\pi\)
\(744\) 0 0
\(745\) −20.4000 −0.747397
\(746\) −2.42801 + 29.2197i −0.0888959 + 1.06981i
\(747\) 0 0
\(748\) −37.1925 6.22401i −1.35989 0.227572i
\(749\) 7.67720 0.280519
\(750\) 0 0
\(751\) 20.4697i 0.746951i −0.927640 0.373475i \(-0.878166\pi\)
0.927640 0.373475i \(-0.121834\pi\)
\(752\) 15.2465 + 5.24989i 0.555982 + 0.191444i
\(753\) 0 0
\(754\) −0.497797 + 5.99069i −0.0181287 + 0.218168i
\(755\) 5.30973i 0.193241i
\(756\) 0 0
\(757\) 11.4003i 0.414352i −0.978304 0.207176i \(-0.933573\pi\)
0.978304 0.207176i \(-0.0664273\pi\)
\(758\) 39.6820 + 3.29738i 1.44131 + 0.119766i
\(759\) 0 0
\(760\) 10.0619 + 2.55544i 0.364983 + 0.0926956i
\(761\) 32.5142i 1.17864i −0.807901 0.589319i \(-0.799396\pi\)
0.807901 0.589319i \(-0.200604\pi\)
\(762\) 0 0
\(763\) 12.6991 0.459739
\(764\) 15.4620 + 2.58749i 0.559395 + 0.0936123i
\(765\) 0 0
\(766\) −42.2430 3.51019i −1.52630 0.126828i
\(767\) −0.915070 −0.0330413
\(768\) 0 0
\(769\) 25.1134 0.905614 0.452807 0.891609i \(-0.350423\pi\)
0.452807 + 0.891609i \(0.350423\pi\)
\(770\) 4.82418 + 0.400865i 0.173851 + 0.0144462i
\(771\) 0 0
\(772\) −25.6910 4.29928i −0.924640 0.154735i
\(773\) −42.4890 −1.52822 −0.764112 0.645083i \(-0.776823\pi\)
−0.764112 + 0.645083i \(0.776823\pi\)
\(774\) 0 0
\(775\) 0.392964i 0.0141157i
\(776\) −10.7742 2.73635i −0.386771 0.0982292i
\(777\) 0 0
\(778\) −41.5663 3.45395i −1.49022 0.123830i
\(779\) 29.4240i 1.05423i
\(780\) 0 0
\(781\) 2.45350i 0.0877930i
\(782\) −0.617396 + 7.42999i −0.0220780 + 0.265696i
\(783\) 0 0
\(784\) −3.78207 1.30230i −0.135074