Properties

Label 1512.2.cc
Level 1512
Weight 2
Character orbit cc
Rep. character \(\chi_{1512}(125,\cdot)\)
Character field \(\Q(\zeta_{6})\)
Dimension 184
Sturm bound 576

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 1512.cc (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 504 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(576\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1512, [\chi])\).

Total New Old
Modular forms 600 200 400
Cusp forms 552 184 368
Eisenstein series 48 16 32

Trace form

\( 184q + 6q^{2} - 2q^{4} - 2q^{7} + O(q^{10}) \) \( 184q + 6q^{2} - 2q^{4} - 2q^{7} - 12q^{14} - 2q^{16} + 6q^{22} + 12q^{23} + 72q^{25} + 4q^{28} - 24q^{32} - 16q^{46} - 2q^{49} + 36q^{50} + 24q^{56} + 6q^{58} - 8q^{64} + 12q^{65} - 6q^{70} - 48q^{74} - 4q^{79} + 144q^{86} - 18q^{88} - 54q^{92} + 72q^{95} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1512, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1512, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1512, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 2}\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database