Properties

Label 1512.2.c.g.757.21
Level 1512
Weight 2
Character 1512.757
Analytic conductor 12.073
Analytic rank 0
Dimension 24
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 1512.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(24\)
Coefficient ring index: multiple of None
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 757.21
Character \(\chi\) = 1512.757
Dual form 1512.2.c.g.757.22

$q$-expansion

\(f(q)\) \(=\) \(q+(1.35918 - 0.390688i) q^{2} +(1.69473 - 1.06203i) q^{4} +1.82986i q^{5} +1.00000 q^{7} +(1.88851 - 2.10559i) q^{8} +O(q^{10})\) \(q+(1.35918 - 0.390688i) q^{2} +(1.69473 - 1.06203i) q^{4} +1.82986i q^{5} +1.00000 q^{7} +(1.88851 - 2.10559i) q^{8} +(0.714906 + 2.48711i) q^{10} -3.75866i q^{11} -3.09942i q^{13} +(1.35918 - 0.390688i) q^{14} +(1.74419 - 3.59969i) q^{16} +3.61074 q^{17} -1.65297i q^{19} +(1.94337 + 3.10112i) q^{20} +(-1.46846 - 5.10869i) q^{22} -7.47934 q^{23} +1.65160 q^{25} +(-1.21090 - 4.21266i) q^{26} +(1.69473 - 1.06203i) q^{28} +2.38629i q^{29} +8.97301 q^{31} +(0.964311 - 5.57406i) q^{32} +(4.90764 - 1.41067i) q^{34} +1.82986i q^{35} +8.94392i q^{37} +(-0.645794 - 2.24668i) q^{38} +(3.85295 + 3.45572i) q^{40} +3.04284 q^{41} -1.82597i q^{43} +(-3.99180 - 6.36990i) q^{44} +(-10.1657 + 2.92209i) q^{46} +6.21697 q^{47} +1.00000 q^{49} +(2.24482 - 0.645259i) q^{50} +(-3.29167 - 5.25266i) q^{52} +3.21435i q^{53} +6.87784 q^{55} +(1.88851 - 2.10559i) q^{56} +(0.932294 + 3.24339i) q^{58} +12.4366i q^{59} -9.91962i q^{61} +(12.1959 - 3.50565i) q^{62} +(-0.867047 - 7.95288i) q^{64} +5.67151 q^{65} -8.73156i q^{67} +(6.11922 - 3.83471i) q^{68} +(0.714906 + 2.48711i) q^{70} -12.4229 q^{71} +9.79655 q^{73} +(3.49428 + 12.1564i) q^{74} +(-1.75550 - 2.80133i) q^{76} -3.75866i q^{77} -7.24388 q^{79} +(6.58695 + 3.19163i) q^{80} +(4.13577 - 1.18880i) q^{82} +8.99325i q^{83} +6.60717i q^{85} +(-0.713383 - 2.48181i) q^{86} +(-7.91421 - 7.09827i) q^{88} -1.54944 q^{89} -3.09942i q^{91} +(-12.6754 + 7.94327i) q^{92} +(8.44997 - 2.42890i) q^{94} +3.02470 q^{95} -10.2583 q^{97} +(1.35918 - 0.390688i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24q + 6q^{4} + 24q^{7} + O(q^{10}) \) \( 24q + 6q^{4} + 24q^{7} - 16q^{10} + 2q^{16} + 16q^{22} - 24q^{25} + 6q^{28} + 8q^{31} + 22q^{34} + 26q^{46} + 24q^{49} - 6q^{52} + 16q^{55} - 58q^{58} + 6q^{64} - 16q^{70} + 60q^{76} + 8q^{79} - 28q^{82} + 12q^{88} + 36q^{94} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.35918 0.390688i 0.961084 0.276258i
\(3\) 0 0
\(4\) 1.69473 1.06203i 0.847363 0.531014i
\(5\) 1.82986i 0.818340i 0.912458 + 0.409170i \(0.134182\pi\)
−0.912458 + 0.409170i \(0.865818\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 1.88851 2.10559i 0.667690 0.744440i
\(9\) 0 0
\(10\) 0.714906 + 2.48711i 0.226073 + 0.786493i
\(11\) 3.75866i 1.13328i −0.823966 0.566639i \(-0.808243\pi\)
0.823966 0.566639i \(-0.191757\pi\)
\(12\) 0 0
\(13\) 3.09942i 0.859623i −0.902919 0.429812i \(-0.858580\pi\)
0.902919 0.429812i \(-0.141420\pi\)
\(14\) 1.35918 0.390688i 0.363255 0.104416i
\(15\) 0 0
\(16\) 1.74419 3.59969i 0.436048 0.899923i
\(17\) 3.61074 0.875734 0.437867 0.899040i \(-0.355734\pi\)
0.437867 + 0.899040i \(0.355734\pi\)
\(18\) 0 0
\(19\) 1.65297i 0.379217i −0.981860 0.189608i \(-0.939278\pi\)
0.981860 0.189608i \(-0.0607218\pi\)
\(20\) 1.94337 + 3.10112i 0.434550 + 0.693431i
\(21\) 0 0
\(22\) −1.46846 5.10869i −0.313077 1.08918i
\(23\) −7.47934 −1.55955 −0.779775 0.626060i \(-0.784666\pi\)
−0.779775 + 0.626060i \(0.784666\pi\)
\(24\) 0 0
\(25\) 1.65160 0.330320
\(26\) −1.21090 4.21266i −0.237478 0.826170i
\(27\) 0 0
\(28\) 1.69473 1.06203i 0.320273 0.200704i
\(29\) 2.38629i 0.443123i 0.975146 + 0.221561i \(0.0711153\pi\)
−0.975146 + 0.221561i \(0.928885\pi\)
\(30\) 0 0
\(31\) 8.97301 1.61160 0.805800 0.592188i \(-0.201736\pi\)
0.805800 + 0.592188i \(0.201736\pi\)
\(32\) 0.964311 5.57406i 0.170468 0.985363i
\(33\) 0 0
\(34\) 4.90764 1.41067i 0.841653 0.241928i
\(35\) 1.82986i 0.309303i
\(36\) 0 0
\(37\) 8.94392i 1.47037i 0.677865 + 0.735186i \(0.262905\pi\)
−0.677865 + 0.735186i \(0.737095\pi\)
\(38\) −0.645794 2.24668i −0.104762 0.364459i
\(39\) 0 0
\(40\) 3.85295 + 3.45572i 0.609205 + 0.546397i
\(41\) 3.04284 0.475212 0.237606 0.971362i \(-0.423637\pi\)
0.237606 + 0.971362i \(0.423637\pi\)
\(42\) 0 0
\(43\) 1.82597i 0.278457i −0.990260 0.139229i \(-0.955538\pi\)
0.990260 0.139229i \(-0.0444623\pi\)
\(44\) −3.99180 6.36990i −0.601787 0.960299i
\(45\) 0 0
\(46\) −10.1657 + 2.92209i −1.49886 + 0.430838i
\(47\) 6.21697 0.906838 0.453419 0.891297i \(-0.350204\pi\)
0.453419 + 0.891297i \(0.350204\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 2.24482 0.645259i 0.317465 0.0912535i
\(51\) 0 0
\(52\) −3.29167 5.25266i −0.456472 0.728413i
\(53\) 3.21435i 0.441525i 0.975328 + 0.220762i \(0.0708546\pi\)
−0.975328 + 0.220762i \(0.929145\pi\)
\(54\) 0 0
\(55\) 6.87784 0.927407
\(56\) 1.88851 2.10559i 0.252363 0.281372i
\(57\) 0 0
\(58\) 0.932294 + 3.24339i 0.122416 + 0.425878i
\(59\) 12.4366i 1.61911i 0.587046 + 0.809554i \(0.300291\pi\)
−0.587046 + 0.809554i \(0.699709\pi\)
\(60\) 0 0
\(61\) 9.91962i 1.27008i −0.772480 0.635039i \(-0.780984\pi\)
0.772480 0.635039i \(-0.219016\pi\)
\(62\) 12.1959 3.50565i 1.54888 0.445218i
\(63\) 0 0
\(64\) −0.867047 7.95288i −0.108381 0.994109i
\(65\) 5.67151 0.703464
\(66\) 0 0
\(67\) 8.73156i 1.06673i −0.845885 0.533365i \(-0.820927\pi\)
0.845885 0.533365i \(-0.179073\pi\)
\(68\) 6.11922 3.83471i 0.742064 0.465027i
\(69\) 0 0
\(70\) 0.714906 + 2.48711i 0.0854476 + 0.297266i
\(71\) −12.4229 −1.47432 −0.737161 0.675717i \(-0.763834\pi\)
−0.737161 + 0.675717i \(0.763834\pi\)
\(72\) 0 0
\(73\) 9.79655 1.14660 0.573300 0.819346i \(-0.305663\pi\)
0.573300 + 0.819346i \(0.305663\pi\)
\(74\) 3.49428 + 12.1564i 0.406202 + 1.41315i
\(75\) 0 0
\(76\) −1.75550 2.80133i −0.201369 0.321334i
\(77\) 3.75866i 0.428339i
\(78\) 0 0
\(79\) −7.24388 −0.815001 −0.407500 0.913205i \(-0.633599\pi\)
−0.407500 + 0.913205i \(0.633599\pi\)
\(80\) 6.58695 + 3.19163i 0.736443 + 0.356836i
\(81\) 0 0
\(82\) 4.13577 1.18880i 0.456719 0.131281i
\(83\) 8.99325i 0.987138i 0.869707 + 0.493569i \(0.164308\pi\)
−0.869707 + 0.493569i \(0.835692\pi\)
\(84\) 0 0
\(85\) 6.60717i 0.716648i
\(86\) −0.713383 2.48181i −0.0769261 0.267621i
\(87\) 0 0
\(88\) −7.91421 7.09827i −0.843658 0.756679i
\(89\) −1.54944 −0.164240 −0.0821202 0.996622i \(-0.526169\pi\)
−0.0821202 + 0.996622i \(0.526169\pi\)
\(90\) 0 0
\(91\) 3.09942i 0.324907i
\(92\) −12.6754 + 7.94327i −1.32150 + 0.828143i
\(93\) 0 0
\(94\) 8.44997 2.42890i 0.871547 0.250521i
\(95\) 3.02470 0.310328
\(96\) 0 0
\(97\) −10.2583 −1.04158 −0.520788 0.853686i \(-0.674362\pi\)
−0.520788 + 0.853686i \(0.674362\pi\)
\(98\) 1.35918 0.390688i 0.137298 0.0394654i
\(99\) 0 0
\(100\) 2.79901 1.75404i 0.279901 0.175404i
\(101\) 5.97880i 0.594913i 0.954735 + 0.297456i \(0.0961383\pi\)
−0.954735 + 0.297456i \(0.903862\pi\)
\(102\) 0 0
\(103\) −16.9060 −1.66579 −0.832896 0.553429i \(-0.813319\pi\)
−0.832896 + 0.553429i \(0.813319\pi\)
\(104\) −6.52611 5.85328i −0.639938 0.573962i
\(105\) 0 0
\(106\) 1.25581 + 4.36887i 0.121975 + 0.424342i
\(107\) 2.14315i 0.207186i −0.994620 0.103593i \(-0.966966\pi\)
0.994620 0.103593i \(-0.0330339\pi\)
\(108\) 0 0
\(109\) 8.34775i 0.799569i 0.916609 + 0.399785i \(0.130915\pi\)
−0.916609 + 0.399785i \(0.869085\pi\)
\(110\) 9.34820 2.68709i 0.891316 0.256204i
\(111\) 0 0
\(112\) 1.74419 3.59969i 0.164811 0.340139i
\(113\) −17.5901 −1.65474 −0.827369 0.561659i \(-0.810163\pi\)
−0.827369 + 0.561659i \(0.810163\pi\)
\(114\) 0 0
\(115\) 13.6862i 1.27624i
\(116\) 2.53431 + 4.04411i 0.235304 + 0.375486i
\(117\) 0 0
\(118\) 4.85883 + 16.9035i 0.447292 + 1.55610i
\(119\) 3.61074 0.330996
\(120\) 0 0
\(121\) −3.12753 −0.284321
\(122\) −3.87548 13.4825i −0.350869 1.22065i
\(123\) 0 0
\(124\) 15.2068 9.52959i 1.36561 0.855782i
\(125\) 12.1715i 1.08865i
\(126\) 0 0
\(127\) 9.73427 0.863777 0.431888 0.901927i \(-0.357847\pi\)
0.431888 + 0.901927i \(0.357847\pi\)
\(128\) −4.28556 10.4706i −0.378794 0.925481i
\(129\) 0 0
\(130\) 7.70859 2.21579i 0.676088 0.194338i
\(131\) 16.7317i 1.46185i −0.682456 0.730926i \(-0.739088\pi\)
0.682456 0.730926i \(-0.260912\pi\)
\(132\) 0 0
\(133\) 1.65297i 0.143330i
\(134\) −3.41131 11.8677i −0.294693 1.02522i
\(135\) 0 0
\(136\) 6.81893 7.60275i 0.584718 0.651931i
\(137\) −15.1897 −1.29774 −0.648872 0.760897i \(-0.724759\pi\)
−0.648872 + 0.760897i \(0.724759\pi\)
\(138\) 0 0
\(139\) 9.32344i 0.790804i −0.918508 0.395402i \(-0.870605\pi\)
0.918508 0.395402i \(-0.129395\pi\)
\(140\) 1.94337 + 3.10112i 0.164244 + 0.262092i
\(141\) 0 0
\(142\) −16.8849 + 4.85346i −1.41695 + 0.407293i
\(143\) −11.6497 −0.974193
\(144\) 0 0
\(145\) −4.36658 −0.362625
\(146\) 13.3152 3.82739i 1.10198 0.316757i
\(147\) 0 0
\(148\) 9.49870 + 15.1575i 0.780788 + 1.24594i
\(149\) 3.32322i 0.272248i 0.990692 + 0.136124i \(0.0434646\pi\)
−0.990692 + 0.136124i \(0.956535\pi\)
\(150\) 0 0
\(151\) 12.3757 1.00712 0.503561 0.863960i \(-0.332023\pi\)
0.503561 + 0.863960i \(0.332023\pi\)
\(152\) −3.48048 3.12165i −0.282304 0.253199i
\(153\) 0 0
\(154\) −1.46846 5.10869i −0.118332 0.411670i
\(155\) 16.4194i 1.31884i
\(156\) 0 0
\(157\) 12.9811i 1.03601i 0.855378 + 0.518004i \(0.173325\pi\)
−0.855378 + 0.518004i \(0.826675\pi\)
\(158\) −9.84572 + 2.83010i −0.783284 + 0.225150i
\(159\) 0 0
\(160\) 10.1998 + 1.76456i 0.806362 + 0.139500i
\(161\) −7.47934 −0.589454
\(162\) 0 0
\(163\) 6.17108i 0.483356i −0.970356 0.241678i \(-0.922302\pi\)
0.970356 0.241678i \(-0.0776978\pi\)
\(164\) 5.15679 3.23159i 0.402677 0.252345i
\(165\) 0 0
\(166\) 3.51355 + 12.2234i 0.272705 + 0.948722i
\(167\) −5.75113 −0.445036 −0.222518 0.974929i \(-0.571428\pi\)
−0.222518 + 0.974929i \(0.571428\pi\)
\(168\) 0 0
\(169\) 3.39362 0.261048
\(170\) 2.58134 + 8.98031i 0.197980 + 0.688758i
\(171\) 0 0
\(172\) −1.93923 3.09451i −0.147865 0.235954i
\(173\) 8.09698i 0.615602i 0.951451 + 0.307801i \(0.0995931\pi\)
−0.951451 + 0.307801i \(0.900407\pi\)
\(174\) 0 0
\(175\) 1.65160 0.124849
\(176\) −13.5300 6.55583i −1.01986 0.494164i
\(177\) 0 0
\(178\) −2.10596 + 0.605347i −0.157849 + 0.0453727i
\(179\) 15.4128i 1.15201i 0.817447 + 0.576003i \(0.195389\pi\)
−0.817447 + 0.576003i \(0.804611\pi\)
\(180\) 0 0
\(181\) 6.06823i 0.451048i 0.974238 + 0.225524i \(0.0724095\pi\)
−0.974238 + 0.225524i \(0.927591\pi\)
\(182\) −1.21090 4.21266i −0.0897582 0.312263i
\(183\) 0 0
\(184\) −14.1248 + 15.7484i −1.04130 + 1.16099i
\(185\) −16.3662 −1.20326
\(186\) 0 0
\(187\) 13.5716i 0.992450i
\(188\) 10.5361 6.60260i 0.768421 0.481544i
\(189\) 0 0
\(190\) 4.11111 1.18172i 0.298251 0.0857306i
\(191\) −2.76632 −0.200164 −0.100082 0.994979i \(-0.531910\pi\)
−0.100082 + 0.994979i \(0.531910\pi\)
\(192\) 0 0
\(193\) −17.9782 −1.29410 −0.647048 0.762449i \(-0.723997\pi\)
−0.647048 + 0.762449i \(0.723997\pi\)
\(194\) −13.9429 + 4.00781i −1.00104 + 0.287744i
\(195\) 0 0
\(196\) 1.69473 1.06203i 0.121052 0.0758592i
\(197\) 10.5179i 0.749369i 0.927152 + 0.374684i \(0.122249\pi\)
−0.927152 + 0.374684i \(0.877751\pi\)
\(198\) 0 0
\(199\) 4.09973 0.290622 0.145311 0.989386i \(-0.453582\pi\)
0.145311 + 0.989386i \(0.453582\pi\)
\(200\) 3.11906 3.47759i 0.220551 0.245903i
\(201\) 0 0
\(202\) 2.33584 + 8.12625i 0.164349 + 0.571761i
\(203\) 2.38629i 0.167485i
\(204\) 0 0
\(205\) 5.56799i 0.388885i
\(206\) −22.9782 + 6.60495i −1.60097 + 0.460189i
\(207\) 0 0
\(208\) −11.1569 5.40598i −0.773595 0.374837i
\(209\) −6.21294 −0.429758
\(210\) 0 0
\(211\) 21.1789i 1.45802i −0.684504 0.729009i \(-0.739981\pi\)
0.684504 0.729009i \(-0.260019\pi\)
\(212\) 3.41373 + 5.44744i 0.234456 + 0.374132i
\(213\) 0 0
\(214\) −0.837301 2.91292i −0.0572367 0.199123i
\(215\) 3.34127 0.227873
\(216\) 0 0
\(217\) 8.97301 0.609128
\(218\) 3.26136 + 11.3461i 0.220887 + 0.768453i
\(219\) 0 0
\(220\) 11.6560 7.30446i 0.785851 0.492466i
\(221\) 11.1912i 0.752801i
\(222\) 0 0
\(223\) −2.30718 −0.154500 −0.0772502 0.997012i \(-0.524614\pi\)
−0.0772502 + 0.997012i \(0.524614\pi\)
\(224\) 0.964311 5.57406i 0.0644307 0.372432i
\(225\) 0 0
\(226\) −23.9081 + 6.87224i −1.59034 + 0.457134i
\(227\) 2.69006i 0.178545i 0.996007 + 0.0892727i \(0.0284543\pi\)
−0.996007 + 0.0892727i \(0.971546\pi\)
\(228\) 0 0
\(229\) 15.3215i 1.01247i 0.862394 + 0.506237i \(0.168964\pi\)
−0.862394 + 0.506237i \(0.831036\pi\)
\(230\) −5.34702 18.6019i −0.352572 1.22657i
\(231\) 0 0
\(232\) 5.02455 + 4.50653i 0.329878 + 0.295868i
\(233\) 21.3885 1.40121 0.700605 0.713549i \(-0.252914\pi\)
0.700605 + 0.713549i \(0.252914\pi\)
\(234\) 0 0
\(235\) 11.3762i 0.742102i
\(236\) 13.2080 + 21.0766i 0.859769 + 1.37197i
\(237\) 0 0
\(238\) 4.90764 1.41067i 0.318115 0.0914404i
\(239\) −7.04548 −0.455734 −0.227867 0.973692i \(-0.573175\pi\)
−0.227867 + 0.973692i \(0.573175\pi\)
\(240\) 0 0
\(241\) −0.343612 −0.0221340 −0.0110670 0.999939i \(-0.503523\pi\)
−0.0110670 + 0.999939i \(0.503523\pi\)
\(242\) −4.25087 + 1.22189i −0.273256 + 0.0785460i
\(243\) 0 0
\(244\) −10.5349 16.8110i −0.674429 1.07622i
\(245\) 1.82986i 0.116906i
\(246\) 0 0
\(247\) −5.12323 −0.325983
\(248\) 16.9456 18.8935i 1.07605 1.19974i
\(249\) 0 0
\(250\) 4.75526 + 16.5433i 0.300749 + 1.04629i
\(251\) 7.65363i 0.483093i 0.970389 + 0.241546i \(0.0776546\pi\)
−0.970389 + 0.241546i \(0.922345\pi\)
\(252\) 0 0
\(253\) 28.1123i 1.76740i
\(254\) 13.2306 3.80306i 0.830162 0.238625i
\(255\) 0 0
\(256\) −9.91558 12.5571i −0.619724 0.784820i
\(257\) 7.01134 0.437356 0.218678 0.975797i \(-0.429826\pi\)
0.218678 + 0.975797i \(0.429826\pi\)
\(258\) 0 0
\(259\) 8.94392i 0.555748i
\(260\) 9.61165 6.02330i 0.596089 0.373549i
\(261\) 0 0
\(262\) −6.53686 22.7413i −0.403849 1.40496i
\(263\) 24.0879 1.48532 0.742661 0.669667i \(-0.233563\pi\)
0.742661 + 0.669667i \(0.233563\pi\)
\(264\) 0 0
\(265\) −5.88182 −0.361317
\(266\) −0.645794 2.24668i −0.0395962 0.137753i
\(267\) 0 0
\(268\) −9.27316 14.7976i −0.566449 0.903907i
\(269\) 14.4906i 0.883507i 0.897136 + 0.441753i \(0.145643\pi\)
−0.897136 + 0.441753i \(0.854357\pi\)
\(270\) 0 0
\(271\) 28.3057 1.71945 0.859726 0.510756i \(-0.170635\pi\)
0.859726 + 0.510756i \(0.170635\pi\)
\(272\) 6.29783 12.9976i 0.381862 0.788093i
\(273\) 0 0
\(274\) −20.6455 + 5.93444i −1.24724 + 0.358512i
\(275\) 6.20780i 0.374344i
\(276\) 0 0
\(277\) 9.70296i 0.582994i 0.956572 + 0.291497i \(0.0941534\pi\)
−0.956572 + 0.291497i \(0.905847\pi\)
\(278\) −3.64256 12.6722i −0.218466 0.760029i
\(279\) 0 0
\(280\) 3.85295 + 3.45572i 0.230258 + 0.206519i
\(281\) −16.0412 −0.956937 −0.478469 0.878105i \(-0.658808\pi\)
−0.478469 + 0.878105i \(0.658808\pi\)
\(282\) 0 0
\(283\) 11.0326i 0.655818i −0.944709 0.327909i \(-0.893656\pi\)
0.944709 0.327909i \(-0.106344\pi\)
\(284\) −21.0533 + 13.1934i −1.24929 + 0.782886i
\(285\) 0 0
\(286\) −15.8339 + 4.55138i −0.936281 + 0.269129i
\(287\) 3.04284 0.179613
\(288\) 0 0
\(289\) −3.96254 −0.233091
\(290\) −5.93496 + 1.70597i −0.348513 + 0.100178i
\(291\) 0 0
\(292\) 16.6025 10.4042i 0.971586 0.608860i
\(293\) 10.9744i 0.641131i −0.947226 0.320566i \(-0.896127\pi\)
0.947226 0.320566i \(-0.103873\pi\)
\(294\) 0 0
\(295\) −22.7573 −1.32498
\(296\) 18.8323 + 16.8907i 1.09460 + 0.981752i
\(297\) 0 0
\(298\) 1.29834 + 4.51684i 0.0752108 + 0.261653i
\(299\) 23.1816i 1.34062i
\(300\) 0 0
\(301\) 1.82597i 0.105247i
\(302\) 16.8208 4.83504i 0.967928 0.278225i
\(303\) 0 0
\(304\) −5.95018 2.88309i −0.341266 0.165357i
\(305\) 18.1516 1.03936
\(306\) 0 0
\(307\) 28.2184i 1.61051i 0.592931 + 0.805254i \(0.297971\pi\)
−0.592931 + 0.805254i \(0.702029\pi\)
\(308\) −3.99180 6.36990i −0.227454 0.362959i
\(309\) 0 0
\(310\) 6.41485 + 22.3169i 0.364339 + 1.26751i
\(311\) −24.3156 −1.37881 −0.689407 0.724375i \(-0.742129\pi\)
−0.689407 + 0.724375i \(0.742129\pi\)
\(312\) 0 0
\(313\) −8.29548 −0.468889 −0.234444 0.972130i \(-0.575327\pi\)
−0.234444 + 0.972130i \(0.575327\pi\)
\(314\) 5.07157 + 17.6437i 0.286205 + 0.995690i
\(315\) 0 0
\(316\) −12.2764 + 7.69321i −0.690601 + 0.432777i
\(317\) 0.906822i 0.0509322i 0.999676 + 0.0254661i \(0.00810699\pi\)
−0.999676 + 0.0254661i \(0.991893\pi\)
\(318\) 0 0
\(319\) 8.96925 0.502182
\(320\) 14.5527 1.58658i 0.813519 0.0886924i
\(321\) 0 0
\(322\) −10.1657 + 2.92209i −0.566515 + 0.162841i
\(323\) 5.96844i 0.332093i
\(324\) 0 0
\(325\) 5.11899i 0.283950i
\(326\) −2.41096 8.38759i −0.133531 0.464546i
\(327\) 0 0
\(328\) 5.74645 6.40699i 0.317295 0.353767i
\(329\) 6.21697 0.342753
\(330\) 0 0
\(331\) 31.7662i 1.74603i 0.487697 + 0.873013i \(0.337837\pi\)
−0.487697 + 0.873013i \(0.662163\pi\)
\(332\) 9.55109 + 15.2411i 0.524184 + 0.836464i
\(333\) 0 0
\(334\) −7.81681 + 2.24690i −0.427717 + 0.122945i
\(335\) 15.9776 0.872948
\(336\) 0 0
\(337\) −34.4231 −1.87515 −0.937573 0.347788i \(-0.886933\pi\)
−0.937573 + 0.347788i \(0.886933\pi\)
\(338\) 4.61253 1.32585i 0.250889 0.0721166i
\(339\) 0 0
\(340\) 7.01700 + 11.1973i 0.380550 + 0.607261i
\(341\) 33.7265i 1.82639i
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) −3.84474 3.44836i −0.207295 0.185923i
\(345\) 0 0
\(346\) 3.16339 + 11.0052i 0.170065 + 0.591645i
\(347\) 23.5611i 1.26483i −0.774630 0.632414i \(-0.782064\pi\)
0.774630 0.632414i \(-0.217936\pi\)
\(348\) 0 0
\(349\) 28.6095i 1.53143i 0.643179 + 0.765716i \(0.277615\pi\)
−0.643179 + 0.765716i \(0.722385\pi\)
\(350\) 2.24482 0.645259i 0.119990 0.0344906i
\(351\) 0 0
\(352\) −20.9510 3.62452i −1.11669 0.193187i
\(353\) −7.03843 −0.374618 −0.187309 0.982301i \(-0.559976\pi\)
−0.187309 + 0.982301i \(0.559976\pi\)
\(354\) 0 0
\(355\) 22.7321i 1.20650i
\(356\) −2.62588 + 1.64555i −0.139171 + 0.0872139i
\(357\) 0 0
\(358\) 6.02159 + 20.9487i 0.318251 + 1.10717i
\(359\) −13.2261 −0.698046 −0.349023 0.937114i \(-0.613487\pi\)
−0.349023 + 0.937114i \(0.613487\pi\)
\(360\) 0 0
\(361\) 16.2677 0.856195
\(362\) 2.37079 + 8.24781i 0.124606 + 0.433495i
\(363\) 0 0
\(364\) −3.29167 5.25266i −0.172530 0.275314i
\(365\) 17.9263i 0.938308i
\(366\) 0 0
\(367\) 11.6530 0.608281 0.304140 0.952627i \(-0.401631\pi\)
0.304140 + 0.952627i \(0.401631\pi\)
\(368\) −13.0454 + 26.9233i −0.680039 + 1.40347i
\(369\) 0 0
\(370\) −22.2445 + 6.39406i −1.15644 + 0.332411i
\(371\) 3.21435i 0.166881i
\(372\) 0 0
\(373\) 9.85547i 0.510297i 0.966902 + 0.255148i \(0.0821243\pi\)
−0.966902 + 0.255148i \(0.917876\pi\)
\(374\) −5.30224 18.4462i −0.274172 0.953828i
\(375\) 0 0
\(376\) 11.7408 13.0904i 0.605487 0.675087i
\(377\) 7.39610 0.380919
\(378\) 0 0
\(379\) 34.5581i 1.77513i −0.460684 0.887564i \(-0.652396\pi\)
0.460684 0.887564i \(-0.347604\pi\)
\(380\) 5.12605 3.21232i 0.262961 0.164789i
\(381\) 0 0
\(382\) −3.75992 + 1.08077i −0.192374 + 0.0552968i
\(383\) 11.4073 0.582884 0.291442 0.956589i \(-0.405865\pi\)
0.291442 + 0.956589i \(0.405865\pi\)
\(384\) 0 0
\(385\) 6.87784 0.350527
\(386\) −24.4355 + 7.02385i −1.24373 + 0.357504i
\(387\) 0 0
\(388\) −17.3851 + 10.8946i −0.882593 + 0.553092i
\(389\) 37.3093i 1.89166i −0.324667 0.945828i \(-0.605252\pi\)
0.324667 0.945828i \(-0.394748\pi\)
\(390\) 0 0
\(391\) −27.0060 −1.36575
\(392\) 1.88851 2.10559i 0.0953842 0.106349i
\(393\) 0 0
\(394\) 4.10921 + 14.2957i 0.207019 + 0.720206i
\(395\) 13.2553i 0.666947i
\(396\) 0 0
\(397\) 10.8903i 0.546567i −0.961934 0.273283i \(-0.911890\pi\)
0.961934 0.273283i \(-0.0881097\pi\)
\(398\) 5.57226 1.60171i 0.279312 0.0802867i
\(399\) 0 0
\(400\) 2.88071 5.94525i 0.144035 0.297262i
\(401\) 20.6784 1.03263 0.516316 0.856398i \(-0.327303\pi\)
0.516316 + 0.856398i \(0.327303\pi\)
\(402\) 0 0
\(403\) 27.8111i 1.38537i
\(404\) 6.34965 + 10.1324i 0.315907 + 0.504107i
\(405\) 0 0
\(406\) 0.932294 + 3.24339i 0.0462690 + 0.160967i
\(407\) 33.6172 1.66634
\(408\) 0 0
\(409\) −16.1209 −0.797129 −0.398565 0.917140i \(-0.630492\pi\)
−0.398565 + 0.917140i \(0.630492\pi\)
\(410\) 2.17535 + 7.56789i 0.107433 + 0.373751i
\(411\) 0 0
\(412\) −28.6510 + 17.9546i −1.41153 + 0.884559i
\(413\) 12.4366i 0.611965i
\(414\) 0 0
\(415\) −16.4564 −0.807814
\(416\) −17.2763 2.98880i −0.847041 0.146538i
\(417\) 0 0
\(418\) −8.44449 + 2.42732i −0.413034 + 0.118724i
\(419\) 26.5958i 1.29929i −0.760237 0.649645i \(-0.774917\pi\)
0.760237 0.649645i \(-0.225083\pi\)
\(420\) 0 0
\(421\) 27.2198i 1.32661i 0.748348 + 0.663307i \(0.230847\pi\)
−0.748348 + 0.663307i \(0.769153\pi\)
\(422\) −8.27435 28.7859i −0.402789 1.40128i
\(423\) 0 0
\(424\) 6.76811 + 6.07034i 0.328689 + 0.294802i
\(425\) 5.96350 0.289272
\(426\) 0 0
\(427\) 9.91962i 0.480044i
\(428\) −2.27608 3.63205i −0.110019 0.175562i
\(429\) 0 0
\(430\) 4.54138 1.30539i 0.219005 0.0629517i
\(431\) 4.58135 0.220676 0.110338 0.993894i \(-0.464807\pi\)
0.110338 + 0.993894i \(0.464807\pi\)
\(432\) 0 0
\(433\) 4.43085 0.212933 0.106466 0.994316i \(-0.466046\pi\)
0.106466 + 0.994316i \(0.466046\pi\)
\(434\) 12.1959 3.50565i 0.585423 0.168276i
\(435\) 0 0
\(436\) 8.86554 + 14.1471i 0.424582 + 0.677525i
\(437\) 12.3631i 0.591407i
\(438\) 0 0
\(439\) −11.2867 −0.538685 −0.269343 0.963044i \(-0.586806\pi\)
−0.269343 + 0.963044i \(0.586806\pi\)
\(440\) 12.9889 14.4819i 0.619220 0.690399i
\(441\) 0 0
\(442\) −4.37226 15.2108i −0.207967 0.723505i
\(443\) 3.69129i 0.175378i −0.996148 0.0876892i \(-0.972052\pi\)
0.996148 0.0876892i \(-0.0279482\pi\)
\(444\) 0 0
\(445\) 2.83526i 0.134404i
\(446\) −3.13587 + 0.901388i −0.148488 + 0.0426820i
\(447\) 0 0
\(448\) −0.867047 7.95288i −0.0409641 0.375738i
\(449\) −18.0692 −0.852737 −0.426368 0.904550i \(-0.640207\pi\)
−0.426368 + 0.904550i \(0.640207\pi\)
\(450\) 0 0
\(451\) 11.4370i 0.538548i
\(452\) −29.8104 + 18.6812i −1.40216 + 0.878689i
\(453\) 0 0
\(454\) 1.05097 + 3.65626i 0.0493246 + 0.171597i
\(455\) 5.67151 0.265884
\(456\) 0 0
\(457\) −21.4880 −1.00517 −0.502583 0.864529i \(-0.667617\pi\)
−0.502583 + 0.864529i \(0.667617\pi\)
\(458\) 5.98593 + 20.8247i 0.279704 + 0.973073i
\(459\) 0 0
\(460\) −14.5351 23.1943i −0.677702 1.08144i
\(461\) 16.7622i 0.780695i 0.920668 + 0.390348i \(0.127645\pi\)
−0.920668 + 0.390348i \(0.872355\pi\)
\(462\) 0 0
\(463\) −9.74065 −0.452686 −0.226343 0.974048i \(-0.572677\pi\)
−0.226343 + 0.974048i \(0.572677\pi\)
\(464\) 8.58991 + 4.16215i 0.398776 + 0.193223i
\(465\) 0 0
\(466\) 29.0708 8.35624i 1.34668 0.387096i
\(467\) 33.8683i 1.56724i −0.621241 0.783620i \(-0.713371\pi\)
0.621241 0.783620i \(-0.286629\pi\)
\(468\) 0 0
\(469\) 8.73156i 0.403186i
\(470\) 4.44455 + 15.4623i 0.205012 + 0.713222i
\(471\) 0 0
\(472\) 26.1864 + 23.4867i 1.20533 + 1.08106i
\(473\) −6.86319 −0.315570
\(474\) 0 0
\(475\) 2.73004i 0.125263i
\(476\) 6.11922 3.83471i 0.280474 0.175764i
\(477\) 0 0
\(478\) −9.57606 + 2.75258i −0.437999 + 0.125900i
\(479\) −12.0611 −0.551084 −0.275542 0.961289i \(-0.588857\pi\)
−0.275542 + 0.961289i \(0.588857\pi\)
\(480\) 0 0
\(481\) 27.7209 1.26397
\(482\) −0.467030 + 0.134245i −0.0212726 + 0.00611470i
\(483\) 0 0
\(484\) −5.30031 + 3.32153i −0.240923 + 0.150978i
\(485\) 18.7714i 0.852364i
\(486\) 0 0
\(487\) −11.5752 −0.524522 −0.262261 0.964997i \(-0.584468\pi\)
−0.262261 + 0.964997i \(0.584468\pi\)
\(488\) −20.8867 18.7333i −0.945496 0.848018i
\(489\) 0 0
\(490\) 0.714906 + 2.48711i 0.0322961 + 0.112356i
\(491\) 40.0965i 1.80953i 0.425911 + 0.904765i \(0.359954\pi\)
−0.425911 + 0.904765i \(0.640046\pi\)
\(492\) 0 0
\(493\) 8.61627i 0.388057i
\(494\) −6.96338 + 2.00158i −0.313297 + 0.0900556i
\(495\) 0 0
\(496\) 15.6507 32.3001i 0.702735 1.45032i
\(497\) −12.4229 −0.557241
\(498\) 0 0
\(499\) 33.2035i 1.48639i 0.669073 + 0.743197i \(0.266691\pi\)
−0.669073 + 0.743197i \(0.733309\pi\)
\(500\) 12.9265 + 20.6274i 0.578090 + 0.922485i
\(501\) 0 0
\(502\) 2.99018 + 10.4026i 0.133458 + 0.464292i
\(503\) 4.46295 0.198993 0.0994967 0.995038i \(-0.468277\pi\)
0.0994967 + 0.995038i \(0.468277\pi\)
\(504\) 0 0
\(505\) −10.9404 −0.486841
\(506\) 10.9831 + 38.2096i 0.488260 + 1.69862i
\(507\) 0 0
\(508\) 16.4969 10.3381i 0.731933 0.458678i
\(509\) 28.2457i 1.25197i −0.779837 0.625983i \(-0.784698\pi\)
0.779837 0.625983i \(-0.215302\pi\)
\(510\) 0 0
\(511\) 9.79655 0.433374
\(512\) −18.3830 13.1935i −0.812419 0.583074i
\(513\) 0 0
\(514\) 9.52966 2.73925i 0.420335 0.120823i
\(515\) 30.9356i 1.36318i
\(516\) 0 0
\(517\) 23.3675i 1.02770i
\(518\) 3.49428 + 12.1564i 0.153530 + 0.534121i
\(519\) 0 0
\(520\) 10.7107 11.9419i 0.469696 0.523687i
\(521\) 30.4655 1.33472 0.667359 0.744737i \(-0.267425\pi\)
0.667359 + 0.744737i \(0.267425\pi\)
\(522\) 0 0
\(523\) 36.5909i 1.60001i 0.599994 + 0.800004i \(0.295169\pi\)
−0.599994 + 0.800004i \(0.704831\pi\)
\(524\) −17.7695 28.3556i −0.776264 1.23872i
\(525\) 0 0
\(526\) 32.7397 9.41085i 1.42752 0.410332i
\(527\) 32.3992 1.41133
\(528\) 0 0
\(529\) 32.9405 1.43219
\(530\) −7.99444 + 2.29796i −0.347256 + 0.0998169i
\(531\) 0 0
\(532\) −1.75550 2.80133i −0.0761105 0.121453i
\(533\) 9.43104i 0.408504i
\(534\) 0 0
\(535\) 3.92167 0.169548
\(536\) −18.3851 16.4897i −0.794116 0.712245i
\(537\) 0 0
\(538\) 5.66130 + 19.6953i 0.244076 + 0.849124i
\(539\) 3.75866i 0.161897i
\(540\) 0 0
\(541\) 42.8045i 1.84031i 0.391556 + 0.920154i \(0.371937\pi\)
−0.391556 + 0.920154i \(0.628063\pi\)
\(542\) 38.4725 11.0587i 1.65254 0.475012i
\(543\) 0 0
\(544\) 3.48188 20.1265i 0.149284 0.862916i
\(545\) −15.2752 −0.654319
\(546\) 0 0
\(547\) 6.57128i 0.280968i 0.990083 + 0.140484i \(0.0448658\pi\)
−0.990083 + 0.140484i \(0.955134\pi\)
\(548\) −25.7424 + 16.1319i −1.09966 + 0.689121i
\(549\) 0 0
\(550\) −2.42531 8.43750i −0.103416 0.359776i
\(551\) 3.94446 0.168040
\(552\) 0 0
\(553\) −7.24388 −0.308041
\(554\) 3.79083 + 13.1880i 0.161057 + 0.560306i
\(555\) 0 0
\(556\) −9.90176 15.8007i −0.419928 0.670098i
\(557\) 31.2762i 1.32521i −0.748967 0.662607i \(-0.769450\pi\)
0.748967 0.662607i \(-0.230550\pi\)
\(558\) 0 0
\(559\) −5.65943 −0.239368
\(560\) 6.58695 + 3.19163i 0.278349 + 0.134871i
\(561\) 0 0
\(562\) −21.8028 + 6.26710i −0.919697 + 0.264362i
\(563\) 3.69436i 0.155699i 0.996965 + 0.0778493i \(0.0248053\pi\)
−0.996965 + 0.0778493i \(0.975195\pi\)
\(564\) 0 0
\(565\) 32.1875i 1.35414i
\(566\) −4.31029 14.9952i −0.181175 0.630296i
\(567\) 0 0
\(568\) −23.4607 + 26.1575i −0.984390 + 1.09754i
\(569\) −11.6082 −0.486641 −0.243320 0.969946i \(-0.578237\pi\)
−0.243320 + 0.969946i \(0.578237\pi\)
\(570\) 0 0
\(571\) 26.8739i 1.12464i −0.826920 0.562319i \(-0.809909\pi\)
0.826920 0.562319i \(-0.190091\pi\)
\(572\) −19.7430 + 12.3723i −0.825495 + 0.517310i
\(573\) 0 0
\(574\) 4.13577 1.18880i 0.172624 0.0496197i
\(575\) −12.3529 −0.515150
\(576\) 0 0
\(577\) 10.2051 0.424843 0.212421 0.977178i \(-0.431865\pi\)
0.212421 + 0.977178i \(0.431865\pi\)
\(578\) −5.38580 + 1.54812i −0.224020 + 0.0643932i
\(579\) 0 0
\(580\) −7.40016 + 4.63743i −0.307275 + 0.192559i
\(581\) 8.99325i 0.373103i
\(582\) 0 0
\(583\) 12.0817 0.500371
\(584\) 18.5009 20.6275i 0.765573 0.853574i
\(585\) 0 0
\(586\) −4.28756 14.9162i −0.177118 0.616181i
\(587\) 25.0075i 1.03217i 0.856538 + 0.516085i \(0.172611\pi\)
−0.856538 + 0.516085i \(0.827389\pi\)
\(588\) 0 0
\(589\) 14.8321i 0.611146i
\(590\) −30.9312 + 8.89100i −1.27342 + 0.366037i
\(591\) 0 0
\(592\) 32.1954 + 15.5999i 1.32322 + 0.641153i
\(593\) 43.4040 1.78239 0.891195 0.453620i \(-0.149868\pi\)
0.891195 + 0.453620i \(0.149868\pi\)
\(594\) 0 0
\(595\) 6.60717i 0.270867i
\(596\) 3.52935 + 5.63194i 0.144568 + 0.230693i
\(597\) 0 0
\(598\) 9.05676 + 31.5079i 0.370358 + 1.28845i
\(599\) −2.47057 −0.100945 −0.0504724 0.998725i \(-0.516073\pi\)
−0.0504724 + 0.998725i \(0.516073\pi\)
\(600\) 0 0
\(601\) −13.2142 −0.539018 −0.269509 0.962998i \(-0.586861\pi\)
−0.269509 + 0.962998i \(0.586861\pi\)
\(602\) −0.713383 2.48181i −0.0290753 0.101151i
\(603\) 0 0
\(604\) 20.9734 13.1434i 0.853397 0.534795i
\(605\) 5.72296i 0.232671i
\(606\) 0 0
\(607\) 29.4562 1.19559 0.597796 0.801649i \(-0.296043\pi\)
0.597796 + 0.801649i \(0.296043\pi\)
\(608\) −9.21373 1.59397i −0.373666 0.0646442i
\(609\) 0 0
\(610\) 24.6712 7.09159i 0.998907 0.287130i
\(611\) 19.2690i 0.779539i
\(612\) 0 0
\(613\) 16.9457i 0.684429i −0.939622 0.342215i \(-0.888823\pi\)
0.939622 0.342215i \(-0.111177\pi\)
\(614\) 11.0246 + 38.3538i 0.444916 + 1.54783i
\(615\) 0 0
\(616\) −7.91421 7.09827i −0.318873 0.285998i
\(617\) 42.1917 1.69858 0.849288 0.527930i \(-0.177032\pi\)
0.849288 + 0.527930i \(0.177032\pi\)
\(618\) 0 0
\(619\) 47.7508i 1.91927i −0.281256 0.959633i \(-0.590751\pi\)
0.281256 0.959633i \(-0.409249\pi\)
\(620\) 17.4379 + 27.8264i 0.700321 + 1.11753i
\(621\) 0 0
\(622\) −33.0493 + 9.49982i −1.32515 + 0.380908i
\(623\) −1.54944 −0.0620770
\(624\) 0 0
\(625\) −14.0142 −0.560569
\(626\) −11.2750 + 3.24095i −0.450641 + 0.129534i
\(627\) 0 0
\(628\) 13.7863 + 21.9995i 0.550135 + 0.877875i
\(629\) 32.2942i 1.28765i
\(630\) 0 0
\(631\) 29.3539 1.16856 0.584279 0.811553i \(-0.301377\pi\)
0.584279 + 0.811553i \(0.301377\pi\)
\(632\) −13.6802 + 15.2527i −0.544167 + 0.606719i
\(633\) 0 0
\(634\) 0.354284 + 1.23253i 0.0140704 + 0.0489501i
\(635\) 17.8124i 0.706863i
\(636\) 0 0
\(637\) 3.09942i 0.122803i
\(638\) 12.1908 3.50418i 0.482638 0.138732i
\(639\) 0 0
\(640\) 19.1598 7.84200i 0.757358 0.309982i
\(641\) 15.2796 0.603509 0.301754 0.953386i \(-0.402428\pi\)
0.301754 + 0.953386i \(0.402428\pi\)
\(642\) 0 0
\(643\) 26.8547i 1.05905i 0.848295 + 0.529524i \(0.177629\pi\)
−0.848295 + 0.529524i \(0.822371\pi\)
\(644\) −12.6754 + 7.94327i −0.499482 + 0.313008i
\(645\) 0 0
\(646\) −2.33180 8.11217i −0.0917433 0.319169i
\(647\) −13.6808 −0.537850 −0.268925 0.963161i \(-0.586668\pi\)
−0.268925 + 0.963161i \(0.586668\pi\)
\(648\) 0 0
\(649\) 46.7450 1.83490
\(650\) −1.99993 6.95762i −0.0784436 0.272900i
\(651\) 0 0
\(652\) −6.55386 10.4583i −0.256669 0.409578i
\(653\) 5.65064i 0.221127i 0.993869 + 0.110563i \(0.0352655\pi\)
−0.993869 + 0.110563i \(0.964734\pi\)
\(654\) 0 0
\(655\) 30.6167 1.19629
\(656\) 5.30731 10.9533i 0.207216 0.427655i
\(657\) 0 0
\(658\) 8.44997 2.42890i 0.329414 0.0946882i
\(659\) 24.7127i 0.962669i −0.876537 0.481334i \(-0.840152\pi\)
0.876537 0.481334i \(-0.159848\pi\)
\(660\) 0 0
\(661\) 20.1467i 0.783615i 0.920047 + 0.391807i \(0.128150\pi\)
−0.920047 + 0.391807i \(0.871850\pi\)
\(662\) 12.4106 + 43.1758i 0.482354 + 1.67808i
\(663\) 0 0
\(664\) 18.9361 + 16.9839i 0.734865 + 0.659102i
\(665\) 3.02470 0.117293
\(666\) 0 0
\(667\) 17.8479i 0.691072i
\(668\) −9.74659 + 6.10786i −0.377107 + 0.236320i
\(669\) 0 0
\(670\) 21.7163 6.24224i 0.838976 0.241159i
\(671\) −37.2845 −1.43935
\(672\) 0 0
\(673\) −23.0926 −0.890155 −0.445077 0.895492i \(-0.646824\pi\)
−0.445077 + 0.895492i \(0.646824\pi\)
\(674\) −46.7871 + 13.4487i −1.80217 + 0.518024i
\(675\) 0 0
\(676\) 5.75126 3.60412i 0.221202 0.138620i
\(677\) 5.41515i 0.208121i 0.994571 + 0.104061i \(0.0331836\pi\)
−0.994571 + 0.104061i \(0.966816\pi\)
\(678\) 0 0
\(679\) −10.2583 −0.393679
\(680\) 13.9120 + 12.4777i 0.533501 + 0.478498i
\(681\) 0 0
\(682\) −13.1765 45.8403i −0.504556 1.75532i
\(683\) 16.5403i 0.632898i −0.948609 0.316449i \(-0.897509\pi\)
0.948609 0.316449i \(-0.102491\pi\)
\(684\) 0 0
\(685\) 27.7951i 1.06200i
\(686\) 1.35918 0.390688i 0.0518936 0.0149165i
\(687\) 0 0
\(688\) −6.57292 3.18484i −0.250590 0.121421i
\(689\) 9.96261 0.379545
\(690\) 0 0
\(691\) 17.8893i 0.680542i 0.940327 + 0.340271i \(0.110519\pi\)
−0.940327 + 0.340271i \(0.889481\pi\)
\(692\) 8.59922 + 13.7222i 0.326893 + 0.521638i
\(693\) 0 0
\(694\) −9.20505 32.0238i −0.349419 1.21561i
\(695\) 17.0606 0.647147
\(696\) 0 0
\(697\) 10.9869 0.416160
\(698\) 11.1774 + 38.8854i 0.423070 + 1.47183i
\(699\) 0 0
\(700\) 2.79901 1.75404i 0.105793 0.0662966i
\(701\) 28.6956i 1.08382i −0.840437 0.541909i \(-0.817702\pi\)
0.840437 0.541909i \(-0.182298\pi\)
\(702\) 0 0
\(703\) 14.7840 0.557590
\(704\) −29.8922 + 3.25894i −1.12660 + 0.122826i
\(705\) 0 0
\(706\) −9.56647 + 2.74983i −0.360039 + 0.103491i
\(707\) 5.97880i 0.224856i
\(708\) 0 0
\(709\) 43.2083i 1.62272i −0.584546 0.811360i \(-0.698728\pi\)
0.584546 0.811360i \(-0.301272\pi\)
\(710\) −8.88117 30.8970i −0.333304 1.15954i
\(711\) 0 0
\(712\) −2.92614 + 3.26249i −0.109662 + 0.122267i
\(713\) −67.1122 −2.51337
\(714\) 0 0
\(715\) 21.3173i 0.797221i
\(716\) 16.3688 + 26.1205i 0.611732 + 0.976168i
\(717\) 0 0
\(718\) −17.9766 + 5.16727i −0.670881 + 0.192841i
\(719\) −40.7179 −1.51852 −0.759261 0.650786i \(-0.774440\pi\)
−0.759261 + 0.650786i \(0.774440\pi\)
\(720\) 0 0
\(721\) −16.9060 −0.629611
\(722\) 22.1107 6.35559i 0.822875 0.236531i
\(723\) 0 0
\(724\) 6.44463 + 10.2840i 0.239513 + 0.382202i
\(725\) 3.94119i 0.146372i
\(726\) 0 0
\(727\) −1.96551 −0.0728967 −0.0364483 0.999336i \(-0.511604\pi\)
−0.0364483 + 0.999336i \(0.511604\pi\)
\(728\) −6.52611 5.85328i −0.241874 0.216937i
\(729\) 0 0
\(730\) 7.00361 + 24.3651i 0.259215 + 0.901792i
\(731\) 6.59310i 0.243854i
\(732\) 0 0
\(733\) 39.1211i 1.44497i −0.691386 0.722486i \(-0.742999\pi\)
0.691386 0.722486i \(-0.257001\pi\)
\(734\) 15.8385 4.55268i 0.584609 0.168042i
\(735\) 0 0
\(736\) −7.21240 + 41.6902i −0.265853 + 1.53672i
\(737\) −32.8190 −1.20890
\(738\) 0 0
\(739\) 36.1851i 1.33109i −0.746357 0.665546i \(-0.768199\pi\)
0.746357 0.665546i \(-0.231801\pi\)
\(740\) −27.7362 + 17.3813i −1.01960 + 0.638950i
\(741\) 0 0
\(742\) 1.25581 + 4.36887i 0.0461021 + 0.160386i
\(743\) −20.1222 −0.738210 −0.369105 0.929388i \(-0.620336\pi\)
−0.369105 + 0.929388i \(0.620336\pi\)
\(744\) 0 0
\(745\) −6.08103 −0.222792
\(746\) 3.85041 + 13.3953i 0.140974 + 0.490438i
\(747\) 0 0
\(748\) −14.4134 23.0001i −0.527005 0.840966i
\(749\) 2.14315i 0.0783089i
\(750\) 0 0
\(751\) −36.2627 −1.32324 −0.661622 0.749838i \(-0.730131\pi\)
−0.661622 + 0.749838i \(0.730131\pi\)
\(752\) 10.8436 22.3792i 0.395425 0.816085i
\(753\) 0 0
\(754\) 10.0526 2.88957i 0.366095 0.105232i
\(755\) 22.6459i 0.824167i
\(756\) 0 0
\(757\) 53.6865i 1.95127i 0.219401 + 0.975635i \(0.429590\pi\)
−0.219401 + 0.975635i \(0.570410\pi\)
\(758\) −13.5014 46.9705i −0.490393 1.70605i
\(759\) 0 0
\(760\) 5.71219 6.36880i 0.207203 0.231021i
\(761\) 37.3332 1.35333 0.676664 0.736292i \(-0.263425\pi\)
0.676664 + 0.736292i \(0.263425\pi\)
\(762\) 0 0
\(763\) 8.34775i 0.302209i
\(764\) −4.68815 + 2.93791i −0.169611 + 0.106290i
\(765\) 0 0
\(766\) 15.5045 4.45668i 0.560200 0.161026i
\(767\) 38.5462 1.39182
\(768\) 0 0
\(769\) 15.5423 0.560469 0.280235 0.959932i \(-0.409588\pi\)
0.280235 + 0.959932i \(0.409588\pi\)
\(770\) 9.34820 2.68709i 0.336886 0.0968359i
\(771\) 0 0
\(772\) −30.4680 + 19.0933i −1.09657 + 0.687183i
\(773\) 39.0073i 1.40299i 0.712672 + 0.701497i \(0.247485\pi\)
−0.712672 + 0.701497i \(0.752515\pi\)
\(774\) 0 0
\(775\) 14.8198 0.532343
\(776\) −19.3730 + 21.5999i −0.695450 + 0.775391i
\(777\) 0 0
\(778\) −14.5763 50.7100i −0.522585 1.81804i
\(779\) 5.02972i 0.180209i
\(780\) 0 0
\(781\) 46.6933i 1.67082i
\(782\) −36.7059 + 10.5509i −1.31260 + 0.377299i
\(783\) 0 0
\(784\) 1.74419 3.59969i 0.0622926 0.128560i
\(785\) −23.7537 −0.847807
\(786\) 0 0