Properties

Label 1512.2.c.e
Level $1512$
Weight $2$
Character orbit 1512.c
Analytic conductor $12.073$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(757,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.757"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: 20.0.1646001224014411784746814245175296.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + x^{18} + 4x^{16} + 8x^{12} + 4x^{10} + 32x^{8} + 256x^{4} + 256x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + \beta_{2} q^{4} + \beta_{14} q^{5} - q^{7} + \beta_{3} q^{8} + (\beta_{17} - 1) q^{10} + ( - \beta_{14} - \beta_{12} + \cdots + \beta_{3}) q^{11} + ( - \beta_{13} - \beta_{2}) q^{13}+ \cdots + \beta_1 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 2 q^{4} - 20 q^{7} - 12 q^{10} - 14 q^{16} + 8 q^{22} - 28 q^{25} + 2 q^{28} + 36 q^{31} - 6 q^{34} - 16 q^{40} - 18 q^{46} + 20 q^{49} + 94 q^{52} + 48 q^{55} + 66 q^{58} + 22 q^{64} + 12 q^{70}+ \cdots + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} + x^{18} + 4x^{16} + 8x^{12} + 4x^{10} + 32x^{8} + 256x^{4} + 256x^{2} + 1024 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} + 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - \nu^{18} + 11 \nu^{16} - 24 \nu^{14} - 48 \nu^{12} + 120 \nu^{10} - 100 \nu^{8} + 1168 \nu^{6} + \cdots + 512 ) / 1792 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - \nu^{19} - 3 \nu^{17} + 4 \nu^{15} - 6 \nu^{13} + 8 \nu^{11} - 100 \nu^{9} - 120 \nu^{7} + \cdots - 832 \nu ) / 896 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{19} + 3 \nu^{17} - 4 \nu^{15} + 6 \nu^{13} - 8 \nu^{11} + 100 \nu^{9} + 120 \nu^{7} + \cdots + 1728 \nu ) / 896 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - \nu^{19} - 10 \nu^{17} + 11 \nu^{15} - 20 \nu^{13} - 48 \nu^{11} - 44 \nu^{9} + 188 \nu^{7} + \cdots - 3072 \nu ) / 896 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( \nu^{19} + 3 \nu^{17} - 4 \nu^{15} + 6 \nu^{13} - 8 \nu^{11} + 100 \nu^{9} - 328 \nu^{7} + \cdots + 1728 \nu ) / 896 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( -\nu^{18} + 4\nu^{16} - 3\nu^{14} + 8\nu^{12} - 48\nu^{10} - 44\nu^{8} + 20\nu^{6} - 16\nu^{4} - 288\nu^{2} + 512 ) / 448 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 5 \nu^{18} + 27 \nu^{16} - 36 \nu^{14} - 16 \nu^{12} - 72 \nu^{10} + 620 \nu^{8} + 352 \nu^{6} + \cdots + 6144 ) / 1792 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( \nu^{19} - 3\nu^{17} - 16\nu^{13} + 8\nu^{11} - 28\nu^{9} + 16\nu^{7} - 128\nu^{5} + 256\nu^{3} - 768\nu ) / 512 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( \nu^{18} + \nu^{16} + 4\nu^{14} + 8\nu^{10} + 4\nu^{8} + 32\nu^{6} + 256\nu^{2} + 256 ) / 256 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 9 \nu^{19} - 15 \nu^{17} + 20 \nu^{15} + 40 \nu^{13} + 40 \nu^{11} - 220 \nu^{9} + 128 \nu^{7} + \cdots - 1024 \nu ) / 3584 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( -\nu^{18} + 3\nu^{16} + 16\nu^{12} - 8\nu^{10} + 28\nu^{8} - 16\nu^{6} + 128\nu^{4} - 256\nu^{2} + 512 ) / 256 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( \nu^{19} + \nu^{17} + 4\nu^{15} + 8\nu^{11} + 4\nu^{9} + 32\nu^{7} + 256\nu^{3} + 256\nu ) / 256 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( -3\nu^{18} - 2\nu^{16} + 5\nu^{14} - 4\nu^{12} - 32\nu^{10} - 20\nu^{8} + 4\nu^{6} + 64\nu^{4} - 416\nu^{2} - 704 ) / 448 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( 13 \nu^{18} - 3 \nu^{16} + 4 \nu^{14} + 64 \nu^{12} + 8 \nu^{10} + 180 \nu^{8} + 608 \nu^{6} + \cdots + 512 ) / 1792 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( - 17 \nu^{19} - 37 \nu^{17} - 16 \nu^{15} + 24 \nu^{13} + 248 \nu^{11} + 92 \nu^{9} + \cdots - 9216 \nu ) / 3584 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} - 1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{7} + \beta_{6} - \beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{18} + \beta_{17} + \beta_{5} - \beta_{2} + 1 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -2\beta_{9} + \beta_{7} - \beta_{6} - 2\beta_{3} + \beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( \beta_{18} + \beta_{17} + 2\beta_{11} - 2\beta_{10} - \beta_{5} - 2\beta_{4} + \beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 2\beta_{19} + 2\beta_{16} - 2\beta_{14} + 4\beta_{9} + 2\beta_{8} - \beta_{7} - 5\beta_{6} + 2\beta_{3} - \beta_1 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( -3\beta_{18} - 3\beta_{17} + 4\beta_{15} - 2\beta_{11} - 6\beta_{10} + 3\beta_{5} - 3\beta_{2} + 1 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 6\beta_{19} + 6\beta_{16} - 2\beta_{14} + 4\beta_{12} - 6\beta_{8} + \beta_{7} + 5\beta_{6} - 6\beta_{3} - 3\beta_1 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 7\beta_{18} - \beta_{17} + 12\beta_{15} - 8\beta_{13} - 6\beta_{11} - 2\beta_{10} + \beta_{5} + 3\beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( 2 \beta_{19} - 6 \beta_{16} + 26 \beta_{14} - 20 \beta_{12} - 2 \beta_{8} - 5 \beta_{7} + \cdots - 17 \beta_1 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 3 \beta_{18} + 21 \beta_{17} + 4 \beta_{15} + 40 \beta_{13} - 2 \beta_{11} - 6 \beta_{10} - 5 \beta_{5} + \cdots + 5 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 6 \beta_{19} + 46 \beta_{16} - 18 \beta_{14} - 28 \beta_{12} + 16 \beta_{9} + 26 \beta_{8} + \cdots + 25 \beta_1 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 37 \beta_{18} - 29 \beta_{17} + 12 \beta_{15} + 56 \beta_{13} + 10 \beta_{11} + 30 \beta_{10} + \cdots - 173 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( - 30 \beta_{19} + 26 \beta_{16} - 70 \beta_{14} - 20 \beta_{12} - 40 \beta_{9} - 34 \beta_{8} + \cdots - 177 \beta_1 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( 37 \beta_{18} - 67 \beta_{17} - 60 \beta_{15} + 40 \beta_{13} + 6 \beta_{11} + 50 \beta_{10} + \cdots - 139 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( - 50 \beta_{19} - 10 \beta_{16} + 166 \beta_{14} + 100 \beta_{12} + 24 \beta_{9} - 30 \beta_{8} + \cdots - 183 \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
757.1
−1.37874 0.314750i
−1.37874 + 0.314750i
−1.19566 0.755240i
−1.19566 + 0.755240i
−0.885915 1.10234i
−0.885915 + 1.10234i
−0.725842 1.21374i
−0.725842 + 1.21374i
−0.328272 1.37559i
−0.328272 + 1.37559i
0.328272 1.37559i
0.328272 + 1.37559i
0.725842 1.21374i
0.725842 + 1.21374i
0.885915 1.10234i
0.885915 + 1.10234i
1.19566 0.755240i
1.19566 + 0.755240i
1.37874 0.314750i
1.37874 + 0.314750i
−1.37874 0.314750i 0 1.80186 + 0.867919i 0.114591i 0 −1.00000 −2.21113 1.76377i 0 −0.0360676 + 0.157992i
757.2 −1.37874 + 0.314750i 0 1.80186 0.867919i 0.114591i 0 −1.00000 −2.21113 + 1.76377i 0 −0.0360676 0.157992i
757.3 −1.19566 0.755240i 0 0.859226 + 1.80603i 3.16969i 0 −1.00000 0.336637 2.80832i 0 −2.39387 + 3.78988i
757.4 −1.19566 + 0.755240i 0 0.859226 1.80603i 3.16969i 0 −1.00000 0.336637 + 2.80832i 0 −2.39387 3.78988i
757.5 −0.885915 1.10234i 0 −0.430309 + 1.95316i 3.50133i 0 −1.00000 2.53426 1.25599i 0 3.85966 3.10188i
757.6 −0.885915 + 1.10234i 0 −0.430309 1.95316i 3.50133i 0 −1.00000 2.53426 + 1.25599i 0 3.85966 + 3.10188i
757.7 −0.725842 1.21374i 0 −0.946308 + 1.76196i 3.06888i 0 −1.00000 2.82542 0.130337i 0 −3.72481 + 2.22752i
757.8 −0.725842 + 1.21374i 0 −0.946308 1.76196i 3.06888i 0 −1.00000 2.82542 + 0.130337i 0 −3.72481 2.22752i
757.9 −0.328272 1.37559i 0 −1.78447 + 0.903134i 0.512447i 0 −1.00000 1.82813 + 2.15822i 0 −0.704915 + 0.168222i
757.10 −0.328272 + 1.37559i 0 −1.78447 0.903134i 0.512447i 0 −1.00000 1.82813 2.15822i 0 −0.704915 0.168222i
757.11 0.328272 1.37559i 0 −1.78447 0.903134i 0.512447i 0 −1.00000 −1.82813 + 2.15822i 0 −0.704915 0.168222i
757.12 0.328272 + 1.37559i 0 −1.78447 + 0.903134i 0.512447i 0 −1.00000 −1.82813 2.15822i 0 −0.704915 + 0.168222i
757.13 0.725842 1.21374i 0 −0.946308 1.76196i 3.06888i 0 −1.00000 −2.82542 0.130337i 0 −3.72481 2.22752i
757.14 0.725842 + 1.21374i 0 −0.946308 + 1.76196i 3.06888i 0 −1.00000 −2.82542 + 0.130337i 0 −3.72481 + 2.22752i
757.15 0.885915 1.10234i 0 −0.430309 1.95316i 3.50133i 0 −1.00000 −2.53426 1.25599i 0 3.85966 + 3.10188i
757.16 0.885915 + 1.10234i 0 −0.430309 + 1.95316i 3.50133i 0 −1.00000 −2.53426 + 1.25599i 0 3.85966 3.10188i
757.17 1.19566 0.755240i 0 0.859226 1.80603i 3.16969i 0 −1.00000 −0.336637 2.80832i 0 −2.39387 3.78988i
757.18 1.19566 + 0.755240i 0 0.859226 + 1.80603i 3.16969i 0 −1.00000 −0.336637 + 2.80832i 0 −2.39387 + 3.78988i
757.19 1.37874 0.314750i 0 1.80186 0.867919i 0.114591i 0 −1.00000 2.21113 1.76377i 0 −0.0360676 0.157992i
757.20 1.37874 + 0.314750i 0 1.80186 + 0.867919i 0.114591i 0 −1.00000 2.21113 + 1.76377i 0 −0.0360676 + 0.157992i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 757.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
8.b even 2 1 inner
24.h odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1512.2.c.e 20
3.b odd 2 1 inner 1512.2.c.e 20
4.b odd 2 1 6048.2.c.e 20
8.b even 2 1 inner 1512.2.c.e 20
8.d odd 2 1 6048.2.c.e 20
12.b even 2 1 6048.2.c.e 20
24.f even 2 1 6048.2.c.e 20
24.h odd 2 1 inner 1512.2.c.e 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1512.2.c.e 20 1.a even 1 1 trivial
1512.2.c.e 20 3.b odd 2 1 inner
1512.2.c.e 20 8.b even 2 1 inner
1512.2.c.e 20 24.h odd 2 1 inner
6048.2.c.e 20 4.b odd 2 1
6048.2.c.e 20 8.d odd 2 1
6048.2.c.e 20 12.b even 2 1
6048.2.c.e 20 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1512, [\chi])\):

\( T_{5}^{10} + 32T_{5}^{8} + 342T_{5}^{6} + 1252T_{5}^{4} + 321T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{17}^{10} - 131T_{17}^{8} + 5266T_{17}^{6} - 69022T_{17}^{4} + 319757T_{17}^{2} - 395839 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} + T^{18} + \cdots + 1024 \) Copy content Toggle raw display
$3$ \( T^{20} \) Copy content Toggle raw display
$5$ \( (T^{10} + 32 T^{8} + \cdots + 4)^{2} \) Copy content Toggle raw display
$7$ \( (T + 1)^{20} \) Copy content Toggle raw display
$11$ \( (T^{10} + 76 T^{8} + \cdots + 5184)^{2} \) Copy content Toggle raw display
$13$ \( (T^{10} + 47 T^{8} + \cdots + 24304)^{2} \) Copy content Toggle raw display
$17$ \( (T^{10} - 131 T^{8} + \cdots - 395839)^{2} \) Copy content Toggle raw display
$19$ \( (T^{10} + 120 T^{8} + \cdots + 3668416)^{2} \) Copy content Toggle raw display
$23$ \( (T^{10} - 91 T^{8} + \cdots - 97216)^{2} \) Copy content Toggle raw display
$29$ \( (T^{10} + 101 T^{8} + \cdots + 63504)^{2} \) Copy content Toggle raw display
$31$ \( (T^{5} - 9 T^{4} + 16 T^{3} + \cdots + 4)^{4} \) Copy content Toggle raw display
$37$ \( (T^{10} + 348 T^{8} + \cdots + 425308096)^{2} \) Copy content Toggle raw display
$41$ \( (T^{10} - 220 T^{8} + \cdots - 3928816)^{2} \) Copy content Toggle raw display
$43$ \( (T^{10} + 299 T^{8} + \cdots + 2771431)^{2} \) Copy content Toggle raw display
$47$ \( (T^{10} - 360 T^{8} + \cdots - 593088156)^{2} \) Copy content Toggle raw display
$53$ \( (T^{10} + 337 T^{8} + \cdots + 20736)^{2} \) Copy content Toggle raw display
$59$ \( (T^{10} + 141 T^{8} + \cdots + 169)^{2} \) Copy content Toggle raw display
$61$ \( (T^{10} + 424 T^{8} + \cdots + 1063074816)^{2} \) Copy content Toggle raw display
$67$ \( (T^{10} + 175 T^{8} + \cdots + 31497984)^{2} \) Copy content Toggle raw display
$71$ \( (T^{10} - 367 T^{8} + \cdots - 1142784)^{2} \) Copy content Toggle raw display
$73$ \( (T^{5} - 216 T^{3} + \cdots - 11664)^{4} \) Copy content Toggle raw display
$79$ \( (T^{5} - 16 T^{4} + \cdots + 9882)^{4} \) Copy content Toggle raw display
$83$ \( (T^{10} + 692 T^{8} + \cdots + 4368152464)^{2} \) Copy content Toggle raw display
$89$ \( (T^{10} - 343 T^{8} + \cdots - 21458944)^{2} \) Copy content Toggle raw display
$97$ \( (T^{5} - 14 T^{4} + \cdots - 23296)^{4} \) Copy content Toggle raw display
show more
show less