Defining parameters
Level: | \( N \) | \(=\) | \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1512.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(5\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1512, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 300 | 96 | 204 |
Cusp forms | 276 | 96 | 180 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1512, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1512.2.c.a | $2$ | $12.073$ | \(\Q(\sqrt{-1}) \) | None | \(-2\) | \(0\) | \(0\) | \(-2\) | \(q+(-i-1)q^{2}+2 i q^{4}+2 i q^{5}+\cdots\) |
1512.2.c.b | $2$ | $12.073$ | \(\Q(\sqrt{-1}) \) | None | \(2\) | \(0\) | \(0\) | \(-2\) | \(q+(-i+1)q^{2}-2 i q^{4}+2 i q^{5}+\cdots\) |
1512.2.c.c | $8$ | $12.073$ | 8.0.3317760000.5 | None | \(0\) | \(0\) | \(0\) | \(-8\) | \(q-\beta _{5}q^{2}+(-\beta _{2}+\beta _{3})q^{4}+(\beta _{5}+\beta _{6}+\cdots)q^{5}+\cdots\) |
1512.2.c.d | $16$ | $12.073$ | \(\Q(\zeta_{40})\) | None | \(0\) | \(0\) | \(0\) | \(-16\) | \(q+\beta_{11} q^{2}-\beta_1 q^{4}+(\beta_{14}+\beta_{11}+\beta_{10})q^{5}+\cdots\) |
1512.2.c.e | $20$ | $12.073$ | 20.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(-20\) | \(q+\beta _{1}q^{2}+\beta _{2}q^{4}+\beta _{14}q^{5}-q^{7}+\beta _{3}q^{8}+\cdots\) |
1512.2.c.f | $24$ | $12.073$ | None | \(0\) | \(0\) | \(0\) | \(24\) | ||
1512.2.c.g | $24$ | $12.073$ | None | \(0\) | \(0\) | \(0\) | \(24\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1512, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1512, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 2}\)