Properties

Label 1512.2.c
Level $1512$
Weight $2$
Character orbit 1512.c
Rep. character $\chi_{1512}(757,\cdot)$
Character field $\Q$
Dimension $96$
Newform subspaces $7$
Sturm bound $576$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(576\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(5\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1512, [\chi])\).

Total New Old
Modular forms 300 96 204
Cusp forms 276 96 180
Eisenstein series 24 0 24

Trace form

\( 96 q - 4 q^{4} - 4 q^{10} - 20 q^{16} + 24 q^{22} - 96 q^{25} + 16 q^{28} - 16 q^{31} + 36 q^{34} + 24 q^{40} - 4 q^{46} + 96 q^{49} + 24 q^{52} + 32 q^{55} - 44 q^{58} + 20 q^{64} + 12 q^{70} - 40 q^{76}+ \cdots + 84 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1512, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1512.2.c.a 1512.c 8.b $2$ $12.073$ \(\Q(\sqrt{-1}) \) None 1512.2.c.a \(-2\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-i-1)q^{2}+2 i q^{4}+2 i q^{5}+\cdots\)
1512.2.c.b 1512.c 8.b $2$ $12.073$ \(\Q(\sqrt{-1}) \) None 1512.2.c.a \(2\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-i+1)q^{2}-2 i q^{4}+2 i q^{5}+\cdots\)
1512.2.c.c 1512.c 8.b $8$ $12.073$ 8.0.3317760000.5 None 1512.2.c.c \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{2}+(-\beta _{2}+\beta _{3})q^{4}+(\beta _{5}+\beta _{6}+\cdots)q^{5}+\cdots\)
1512.2.c.d 1512.c 8.b $16$ $12.073$ \(\Q(\zeta_{40})\) None 1512.2.c.d \(0\) \(0\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta_{11} q^{2}-\beta_1 q^{4}+(\beta_{14}+\beta_{11}+\beta_{10})q^{5}+\cdots\)
1512.2.c.e 1512.c 8.b $20$ $12.073$ 20.0.\(\cdots\).1 None 1512.2.c.e \(0\) \(0\) \(0\) \(-20\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{2}q^{4}+\beta _{14}q^{5}-q^{7}+\beta _{3}q^{8}+\cdots\)
1512.2.c.f 1512.c 8.b $24$ $12.073$ None 1512.2.c.f \(0\) \(0\) \(0\) \(24\) $\mathrm{SU}(2)[C_{2}]$
1512.2.c.g 1512.c 8.b $24$ $12.073$ None 1512.2.c.g \(0\) \(0\) \(0\) \(24\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(1512, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1512, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 2}\)