Properties

Label 1512.2.bl.c.1025.5
Level $1512$
Weight $2$
Character 1512.1025
Analytic conductor $12.073$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(593,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.593"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1512 = 2^{3} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1512.bl (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0733807856\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 26x^{14} + 521x^{12} + 3668x^{10} + 19270x^{8} + 25507x^{6} + 25166x^{4} + 8869x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1025.5
Root \(1.29168 + 2.23726i\) of defining polynomial
Character \(\chi\) \(=\) 1512.1025
Dual form 1512.2.bl.c.593.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.680382 + 1.17846i) q^{5} +(2.57416 + 0.611303i) q^{7} +(-3.45534 - 1.99494i) q^{11} -5.53803i q^{13} +(0.611303 - 1.05881i) q^{17} +(1.83184 - 1.05761i) q^{19} +(3.00903 - 1.73726i) q^{23} +(1.57416 - 2.72653i) q^{25} -4.14832i q^{29} +(-1.79607 - 1.03696i) q^{31} +(1.03102 + 3.44945i) q^{35} +(-0.0588079 - 0.101858i) q^{37} +1.87021 q^{41} +9.25582 q^{43} +(1.29763 + 2.24756i) q^{47} +(6.25262 + 3.14719i) q^{49} +(-4.50201 - 2.59923i) q^{53} -5.42928i q^{55} +(-5.60710 + 9.71179i) q^{59} +(-1.26234 + 0.728810i) q^{61} +(6.52632 - 3.76797i) q^{65} +(0.895706 - 1.55141i) q^{67} +14.9296i q^{71} +(8.57940 + 4.95332i) q^{73} +(-7.67509 - 7.24756i) q^{77} +(1.69887 + 2.94253i) q^{79} -4.08041 q^{83} +1.66368 q^{85} +(7.53074 + 13.0436i) q^{89} +(3.38541 - 14.2558i) q^{91} +(2.49270 + 1.43916i) q^{95} -19.0469i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{7} - 18 q^{19} - 12 q^{25} + 24 q^{31} + 16 q^{37} - 52 q^{43} + 44 q^{49} + 6 q^{61} - 4 q^{67} - 12 q^{73} + 34 q^{79} - 68 q^{85} + 102 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1081\) \(1135\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.680382 + 1.17846i 0.304276 + 0.527021i 0.977100 0.212781i \(-0.0682522\pi\)
−0.672824 + 0.739803i \(0.734919\pi\)
\(6\) 0 0
\(7\) 2.57416 + 0.611303i 0.972942 + 0.231051i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −3.45534 1.99494i −1.04182 0.601497i −0.121474 0.992595i \(-0.538762\pi\)
−0.920349 + 0.391097i \(0.872096\pi\)
\(12\) 0 0
\(13\) 5.53803i 1.53597i −0.640467 0.767986i \(-0.721259\pi\)
0.640467 0.767986i \(-0.278741\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.611303 1.05881i 0.148263 0.256799i −0.782323 0.622873i \(-0.785965\pi\)
0.930585 + 0.366075i \(0.119299\pi\)
\(18\) 0 0
\(19\) 1.83184 1.05761i 0.420253 0.242633i −0.274933 0.961463i \(-0.588656\pi\)
0.695185 + 0.718830i \(0.255322\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.00903 1.73726i 0.627426 0.362244i −0.152329 0.988330i \(-0.548677\pi\)
0.779754 + 0.626085i \(0.215344\pi\)
\(24\) 0 0
\(25\) 1.57416 2.72653i 0.314832 0.545306i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.14832i 0.770324i −0.922849 0.385162i \(-0.874146\pi\)
0.922849 0.385162i \(-0.125854\pi\)
\(30\) 0 0
\(31\) −1.79607 1.03696i −0.322584 0.186244i 0.329960 0.943995i \(-0.392965\pi\)
−0.652544 + 0.757751i \(0.726298\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.03102 + 3.44945i 0.174274 + 0.583064i
\(36\) 0 0
\(37\) −0.0588079 0.101858i −0.00966796 0.0167454i 0.861151 0.508349i \(-0.169744\pi\)
−0.870819 + 0.491604i \(0.836411\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.87021 0.292077 0.146039 0.989279i \(-0.453348\pi\)
0.146039 + 0.989279i \(0.453348\pi\)
\(42\) 0 0
\(43\) 9.25582 1.41150 0.705750 0.708461i \(-0.250610\pi\)
0.705750 + 0.708461i \(0.250610\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.29763 + 2.24756i 0.189278 + 0.327840i 0.945010 0.327042i \(-0.106052\pi\)
−0.755731 + 0.654882i \(0.772718\pi\)
\(48\) 0 0
\(49\) 6.25262 + 3.14719i 0.893231 + 0.449598i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.50201 2.59923i −0.618398 0.357032i 0.157847 0.987464i \(-0.449545\pi\)
−0.776245 + 0.630431i \(0.782878\pi\)
\(54\) 0 0
\(55\) 5.42928i 0.732084i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.60710 + 9.71179i −0.729983 + 1.26437i 0.226907 + 0.973916i \(0.427139\pi\)
−0.956890 + 0.290451i \(0.906195\pi\)
\(60\) 0 0
\(61\) −1.26234 + 0.728810i −0.161626 + 0.0933145i −0.578631 0.815589i \(-0.696413\pi\)
0.417006 + 0.908904i \(0.363080\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.52632 3.76797i 0.809490 0.467359i
\(66\) 0 0
\(67\) 0.895706 1.55141i 0.109428 0.189535i −0.806111 0.591765i \(-0.798431\pi\)
0.915539 + 0.402230i \(0.131765\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 14.9296i 1.77182i 0.463858 + 0.885910i \(0.346465\pi\)
−0.463858 + 0.885910i \(0.653535\pi\)
\(72\) 0 0
\(73\) 8.57940 + 4.95332i 1.00414 + 0.579742i 0.909471 0.415767i \(-0.136487\pi\)
0.0946711 + 0.995509i \(0.469820\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −7.67509 7.24756i −0.874657 0.825936i
\(78\) 0 0
\(79\) 1.69887 + 2.94253i 0.191138 + 0.331060i 0.945628 0.325252i \(-0.105449\pi\)
−0.754490 + 0.656312i \(0.772116\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.08041 −0.447883 −0.223941 0.974603i \(-0.571892\pi\)
−0.223941 + 0.974603i \(0.571892\pi\)
\(84\) 0 0
\(85\) 1.66368 0.180451
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.53074 + 13.0436i 0.798257 + 1.38262i 0.920750 + 0.390153i \(0.127578\pi\)
−0.122493 + 0.992469i \(0.539089\pi\)
\(90\) 0 0
\(91\) 3.38541 14.2558i 0.354888 1.49441i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.49270 + 1.43916i 0.255745 + 0.147655i
\(96\) 0 0
\(97\) 19.0469i 1.93392i −0.254925 0.966961i \(-0.582051\pi\)
0.254925 0.966961i \(-0.417949\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.49284 11.2459i 0.646062 1.11901i −0.337994 0.941148i \(-0.609748\pi\)
0.984055 0.177863i \(-0.0569184\pi\)
\(102\) 0 0
\(103\) 10.2829 5.93685i 1.01321 0.584975i 0.101078 0.994879i \(-0.467771\pi\)
0.912129 + 0.409903i \(0.134438\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.77415 + 3.91106i −0.654882 + 0.378096i −0.790324 0.612689i \(-0.790088\pi\)
0.135442 + 0.990785i \(0.456755\pi\)
\(108\) 0 0
\(109\) 3.98988 6.91068i 0.382161 0.661923i −0.609210 0.793009i \(-0.708513\pi\)
0.991371 + 0.131086i \(0.0418466\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 19.3734i 1.82250i −0.411854 0.911250i \(-0.635119\pi\)
0.411854 0.911250i \(-0.364881\pi\)
\(114\) 0 0
\(115\) 4.09458 + 2.36400i 0.381821 + 0.220445i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.22085 2.35185i 0.203585 0.215594i
\(120\) 0 0
\(121\) 2.45957 + 4.26011i 0.223598 + 0.387282i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.0879 0.991735
\(126\) 0 0
\(127\) −19.4236 −1.72356 −0.861782 0.507279i \(-0.830651\pi\)
−0.861782 + 0.507279i \(0.830651\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.04195 12.1970i −0.615258 1.06566i −0.990339 0.138666i \(-0.955719\pi\)
0.375081 0.926992i \(-0.377615\pi\)
\(132\) 0 0
\(133\) 5.36197 1.60266i 0.464942 0.138968i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.56044 2.63297i −0.389624 0.224950i 0.292373 0.956304i \(-0.405555\pi\)
−0.681997 + 0.731355i \(0.738888\pi\)
\(138\) 0 0
\(139\) 5.34431i 0.453299i −0.973976 0.226649i \(-0.927223\pi\)
0.973976 0.226649i \(-0.0727771\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −11.0480 + 19.1358i −0.923883 + 1.60021i
\(144\) 0 0
\(145\) 4.88861 2.82244i 0.405977 0.234391i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.51725 3.76274i 0.533914 0.308255i −0.208695 0.977981i \(-0.566922\pi\)
0.742609 + 0.669725i \(0.233588\pi\)
\(150\) 0 0
\(151\) −3.08952 + 5.35120i −0.251421 + 0.435474i −0.963917 0.266202i \(-0.914231\pi\)
0.712496 + 0.701676i \(0.247565\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.82212i 0.226678i
\(156\) 0 0
\(157\) 5.65135 + 3.26281i 0.451027 + 0.260401i 0.708264 0.705948i \(-0.249479\pi\)
−0.257237 + 0.966348i \(0.582812\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.80772 2.63257i 0.694146 0.207475i
\(162\) 0 0
\(163\) 11.1479 + 19.3088i 0.873173 + 1.51238i 0.858697 + 0.512484i \(0.171275\pi\)
0.0144761 + 0.999895i \(0.495392\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 9.00213 0.696606 0.348303 0.937382i \(-0.386758\pi\)
0.348303 + 0.937382i \(0.386758\pi\)
\(168\) 0 0
\(169\) −17.6697 −1.35921
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −10.3651 17.9528i −0.788042 1.36493i −0.927165 0.374653i \(-0.877762\pi\)
0.139123 0.990275i \(-0.455572\pi\)
\(174\) 0 0
\(175\) 5.71888 6.05623i 0.432307 0.457808i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.60158 + 3.81143i 0.493425 + 0.284879i 0.725994 0.687701i \(-0.241380\pi\)
−0.232569 + 0.972580i \(0.574713\pi\)
\(180\) 0 0
\(181\) 12.8974i 0.958659i 0.877635 + 0.479329i \(0.159120\pi\)
−0.877635 + 0.479329i \(0.840880\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.0800236 0.138605i 0.00588345 0.0101904i
\(186\) 0 0
\(187\) −4.22452 + 2.43903i −0.308927 + 0.178359i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −19.0263 + 10.9848i −1.37669 + 0.794834i −0.991760 0.128111i \(-0.959109\pi\)
−0.384933 + 0.922945i \(0.625775\pi\)
\(192\) 0 0
\(193\) −10.1249 + 17.5368i −0.728805 + 1.26233i 0.228584 + 0.973524i \(0.426591\pi\)
−0.957389 + 0.288803i \(0.906743\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 21.6026i 1.53912i 0.638573 + 0.769561i \(0.279525\pi\)
−0.638573 + 0.769561i \(0.720475\pi\)
\(198\) 0 0
\(199\) 4.66776 + 2.69493i 0.330889 + 0.191039i 0.656236 0.754556i \(-0.272148\pi\)
−0.325347 + 0.945595i \(0.605481\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.53588 10.6785i 0.177984 0.749481i
\(204\) 0 0
\(205\) 1.27246 + 2.20396i 0.0888721 + 0.153931i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −8.43950 −0.583772
\(210\) 0 0
\(211\) −27.8621 −1.91811 −0.959055 0.283221i \(-0.908597\pi\)
−0.959055 + 0.283221i \(0.908597\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.29749 + 10.9076i 0.429485 + 0.743890i
\(216\) 0 0
\(217\) −3.98948 3.76725i −0.270824 0.255738i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −5.86371 3.38541i −0.394436 0.227727i
\(222\) 0 0
\(223\) 7.53887i 0.504840i 0.967618 + 0.252420i \(0.0812264\pi\)
−0.967618 + 0.252420i \(0.918774\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 11.3246 19.6148i 0.751639 1.30188i −0.195388 0.980726i \(-0.562597\pi\)
0.947028 0.321152i \(-0.104070\pi\)
\(228\) 0 0
\(229\) −5.47493 + 3.16095i −0.361793 + 0.208882i −0.669867 0.742481i \(-0.733649\pi\)
0.308074 + 0.951362i \(0.400316\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5.06800 + 2.92601i −0.332016 + 0.191689i −0.656736 0.754121i \(-0.728063\pi\)
0.324720 + 0.945810i \(0.394730\pi\)
\(234\) 0 0
\(235\) −1.76576 + 3.05839i −0.115186 + 0.199508i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 10.5052i 0.679527i 0.940511 + 0.339764i \(0.110347\pi\)
−0.940511 + 0.339764i \(0.889653\pi\)
\(240\) 0 0
\(241\) −10.0626 5.80964i −0.648188 0.374232i 0.139574 0.990212i \(-0.455427\pi\)
−0.787762 + 0.615980i \(0.788760\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0.545347 + 9.50972i 0.0348410 + 0.607554i
\(246\) 0 0
\(247\) −5.85709 10.1448i −0.372677 0.645496i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4.24234 −0.267774 −0.133887 0.990997i \(-0.542746\pi\)
−0.133887 + 0.990997i \(0.542746\pi\)
\(252\) 0 0
\(253\) −13.8629 −0.871556
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.98083 + 3.43090i 0.123561 + 0.214014i 0.921169 0.389162i \(-0.127235\pi\)
−0.797609 + 0.603175i \(0.793902\pi\)
\(258\) 0 0
\(259\) −0.0891147 0.298149i −0.00553732 0.0185261i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 18.7613 + 10.8318i 1.15687 + 0.667920i 0.950552 0.310565i \(-0.100518\pi\)
0.206319 + 0.978485i \(0.433852\pi\)
\(264\) 0 0
\(265\) 7.07388i 0.434545i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.24231 + 2.15175i −0.0757453 + 0.131195i −0.901410 0.432966i \(-0.857467\pi\)
0.825665 + 0.564161i \(0.190800\pi\)
\(270\) 0 0
\(271\) −9.97493 + 5.75903i −0.605934 + 0.349836i −0.771372 0.636384i \(-0.780429\pi\)
0.165439 + 0.986220i \(0.447096\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −10.8785 + 6.28072i −0.656000 + 0.378742i
\(276\) 0 0
\(277\) −4.75565 + 8.23702i −0.285739 + 0.494914i −0.972788 0.231696i \(-0.925572\pi\)
0.687049 + 0.726611i \(0.258906\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 15.3670i 0.916720i −0.888767 0.458360i \(-0.848437\pi\)
0.888767 0.458360i \(-0.151563\pi\)
\(282\) 0 0
\(283\) 1.86966 + 1.07945i 0.111140 + 0.0641665i 0.554539 0.832157i \(-0.312894\pi\)
−0.443400 + 0.896324i \(0.646228\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.81422 + 1.14326i 0.284174 + 0.0674847i
\(288\) 0 0
\(289\) 7.75262 + 13.4279i 0.456036 + 0.789878i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.81382 0.398068 0.199034 0.979993i \(-0.436220\pi\)
0.199034 + 0.979993i \(0.436220\pi\)
\(294\) 0 0
\(295\) −15.2599 −0.888465
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −9.62101 16.6641i −0.556397 0.963709i
\(300\) 0 0
\(301\) 23.8260 + 5.65811i 1.37331 + 0.326128i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.71774 0.991738i −0.0983575 0.0567867i
\(306\) 0 0
\(307\) 23.4648i 1.33921i −0.742718 0.669604i \(-0.766464\pi\)
0.742718 0.669604i \(-0.233536\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.85780 + 4.94986i −0.162051 + 0.280681i −0.935604 0.353051i \(-0.885144\pi\)
0.773553 + 0.633731i \(0.218478\pi\)
\(312\) 0 0
\(313\) −20.5371 + 11.8571i −1.16083 + 0.670203i −0.951502 0.307643i \(-0.900460\pi\)
−0.209324 + 0.977846i \(0.567126\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 23.8780 13.7860i 1.34112 0.774296i 0.354149 0.935189i \(-0.384771\pi\)
0.986972 + 0.160893i \(0.0514374\pi\)
\(318\) 0 0
\(319\) −8.27566 + 14.3339i −0.463348 + 0.802542i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.58609i 0.143894i
\(324\) 0 0
\(325\) −15.0996 8.71775i −0.837574 0.483574i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.96637 + 6.57882i 0.108409 + 0.362702i
\(330\) 0 0
\(331\) 15.5135 + 26.8702i 0.852699 + 1.47692i 0.878763 + 0.477258i \(0.158369\pi\)
−0.0260646 + 0.999660i \(0.508298\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.43769 0.133185
\(336\) 0 0
\(337\) −5.07153 −0.276264 −0.138132 0.990414i \(-0.544110\pi\)
−0.138132 + 0.990414i \(0.544110\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.13736 + 7.16611i 0.224050 + 0.388067i
\(342\) 0 0
\(343\) 14.1714 + 11.9236i 0.765182 + 0.643814i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −14.6580 8.46278i −0.786880 0.454306i 0.0519827 0.998648i \(-0.483446\pi\)
−0.838863 + 0.544342i \(0.816779\pi\)
\(348\) 0 0
\(349\) 32.5007i 1.73972i −0.493295 0.869862i \(-0.664208\pi\)
0.493295 0.869862i \(-0.335792\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.13006 + 1.95732i −0.0601469 + 0.104177i −0.894531 0.447006i \(-0.852490\pi\)
0.834384 + 0.551183i \(0.185824\pi\)
\(354\) 0 0
\(355\) −17.5939 + 10.1578i −0.933787 + 0.539122i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3.26915 + 1.88744i −0.172539 + 0.0996155i −0.583783 0.811910i \(-0.698428\pi\)
0.411243 + 0.911526i \(0.365095\pi\)
\(360\) 0 0
\(361\) −7.26291 + 12.5797i −0.382258 + 0.662091i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 13.4806i 0.705606i
\(366\) 0 0
\(367\) 18.5602 + 10.7157i 0.968832 + 0.559355i 0.898880 0.438195i \(-0.144382\pi\)
0.0699521 + 0.997550i \(0.477715\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −9.99997 9.44294i −0.519173 0.490253i
\(372\) 0 0
\(373\) 9.93974 + 17.2161i 0.514660 + 0.891417i 0.999855 + 0.0170115i \(0.00541518\pi\)
−0.485195 + 0.874406i \(0.661251\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −22.9735 −1.18320
\(378\) 0 0
\(379\) −12.0982 −0.621442 −0.310721 0.950501i \(-0.600570\pi\)
−0.310721 + 0.950501i \(0.600570\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4.53360 + 7.85243i 0.231656 + 0.401240i 0.958296 0.285779i \(-0.0922522\pi\)
−0.726639 + 0.687019i \(0.758919\pi\)
\(384\) 0 0
\(385\) 3.31894 13.9759i 0.169149 0.712275i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 14.6818 + 8.47656i 0.744398 + 0.429779i 0.823666 0.567075i \(-0.191925\pi\)
−0.0792680 + 0.996853i \(0.525258\pi\)
\(390\) 0 0
\(391\) 4.24798i 0.214829i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2.31176 + 4.00408i −0.116317 + 0.201467i
\(396\) 0 0
\(397\) −26.8809 + 15.5197i −1.34911 + 0.778910i −0.988124 0.153660i \(-0.950894\pi\)
−0.360989 + 0.932570i \(0.617561\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 19.0581 11.0032i 0.951716 0.549474i 0.0581027 0.998311i \(-0.481495\pi\)
0.893614 + 0.448837i \(0.148162\pi\)
\(402\) 0 0
\(403\) −5.74272 + 9.94669i −0.286065 + 0.495480i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.469273i 0.0232610i
\(408\) 0 0
\(409\) −0.0925434 0.0534300i −0.00457598 0.00264194i 0.497710 0.867343i \(-0.334174\pi\)
−0.502286 + 0.864701i \(0.667508\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −20.3704 + 21.5721i −1.00236 + 1.06149i
\(414\) 0 0
\(415\) −2.77623 4.80858i −0.136280 0.236044i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −9.58338 −0.468179 −0.234089 0.972215i \(-0.575211\pi\)
−0.234089 + 0.972215i \(0.575211\pi\)
\(420\) 0 0
\(421\) −18.7607 −0.914341 −0.457170 0.889379i \(-0.651137\pi\)
−0.457170 + 0.889379i \(0.651137\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.92458 3.33347i −0.0933558 0.161697i
\(426\) 0 0
\(427\) −3.69498 + 1.10440i −0.178813 + 0.0534459i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 28.1409 + 16.2472i 1.35550 + 0.782598i 0.989013 0.147826i \(-0.0472274\pi\)
0.366486 + 0.930424i \(0.380561\pi\)
\(432\) 0 0
\(433\) 20.8051i 0.999830i −0.866075 0.499915i \(-0.833365\pi\)
0.866075 0.499915i \(-0.166635\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.67470 6.36477i 0.175785 0.304468i
\(438\) 0 0
\(439\) −0.649605 + 0.375050i −0.0310039 + 0.0179001i −0.515422 0.856937i \(-0.672365\pi\)
0.484418 + 0.874837i \(0.339031\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −16.2819 + 9.40037i −0.773577 + 0.446625i −0.834149 0.551539i \(-0.814041\pi\)
0.0605722 + 0.998164i \(0.480707\pi\)
\(444\) 0 0
\(445\) −10.2476 + 17.7493i −0.485781 + 0.841397i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 29.4094i 1.38792i −0.720016 0.693958i \(-0.755865\pi\)
0.720016 0.693958i \(-0.244135\pi\)
\(450\) 0 0
\(451\) −6.46220 3.73095i −0.304293 0.175684i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 19.1032 5.70981i 0.895570 0.267680i
\(456\) 0 0
\(457\) 3.62733 + 6.28273i 0.169680 + 0.293894i 0.938307 0.345803i \(-0.112393\pi\)
−0.768628 + 0.639696i \(0.779060\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −36.0906 −1.68091 −0.840454 0.541883i \(-0.817712\pi\)
−0.840454 + 0.541883i \(0.817712\pi\)
\(462\) 0 0
\(463\) −22.9337 −1.06582 −0.532909 0.846172i \(-0.678901\pi\)
−0.532909 + 0.846172i \(0.678901\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11.2752 19.5293i −0.521755 0.903706i −0.999680 0.0253053i \(-0.991944\pi\)
0.477925 0.878401i \(-0.341389\pi\)
\(468\) 0 0
\(469\) 3.25407 3.44603i 0.150259 0.159123i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −31.9820 18.4648i −1.47053 0.849013i
\(474\) 0 0
\(475\) 6.65941i 0.305555i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 19.7007 34.1226i 0.900148 1.55910i 0.0728476 0.997343i \(-0.476791\pi\)
0.827301 0.561759i \(-0.189875\pi\)
\(480\) 0 0
\(481\) −0.564094 + 0.325680i −0.0257205 + 0.0148497i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 22.4459 12.9592i 1.01922 0.588446i
\(486\) 0 0
\(487\) −7.01029 + 12.1422i −0.317667 + 0.550215i −0.980001 0.198994i \(-0.936233\pi\)
0.662334 + 0.749209i \(0.269566\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8.76186i 0.395417i −0.980261 0.197709i \(-0.936650\pi\)
0.980261 0.197709i \(-0.0633500\pi\)
\(492\) 0 0
\(493\) −4.39228 2.53588i −0.197818 0.114210i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.12652 + 38.4312i −0.409380 + 1.72388i
\(498\) 0 0
\(499\) −4.32475 7.49068i −0.193602 0.335329i 0.752839 0.658205i \(-0.228684\pi\)
−0.946441 + 0.322876i \(0.895350\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 43.4918 1.93920 0.969602 0.244686i \(-0.0786850\pi\)
0.969602 + 0.244686i \(0.0786850\pi\)
\(504\) 0 0
\(505\) 17.6704 0.786324
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 19.2594 + 33.3583i 0.853658 + 1.47858i 0.877885 + 0.478872i \(0.158954\pi\)
−0.0242268 + 0.999706i \(0.507712\pi\)
\(510\) 0 0
\(511\) 19.0568 + 17.9952i 0.843022 + 0.796063i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 13.9926 + 8.07865i 0.616589 + 0.355988i
\(516\) 0 0
\(517\) 10.3548i 0.455402i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.28884 + 12.6246i −0.319330 + 0.553096i −0.980348 0.197274i \(-0.936791\pi\)
0.661018 + 0.750370i \(0.270125\pi\)
\(522\) 0 0
\(523\) −23.4207 + 13.5220i −1.02412 + 0.591274i −0.915294 0.402787i \(-0.868042\pi\)
−0.108823 + 0.994061i \(0.534708\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.19589 + 1.26780i −0.0956544 + 0.0552261i
\(528\) 0 0
\(529\) −5.46383 + 9.46363i −0.237558 + 0.411462i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 10.3573i 0.448623i
\(534\) 0 0
\(535\) −9.21802 5.32203i −0.398530 0.230091i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −15.3265 23.3482i −0.660157 1.00568i
\(540\) 0 0
\(541\) 12.4056 + 21.4871i 0.533358 + 0.923804i 0.999241 + 0.0389572i \(0.0124036\pi\)
−0.465882 + 0.884847i \(0.654263\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 10.8586 0.465130
\(546\) 0 0
\(547\) 2.63297 0.112578 0.0562888 0.998415i \(-0.482073\pi\)
0.0562888 + 0.998415i \(0.482073\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −4.38732 7.59906i −0.186906 0.323731i
\(552\) 0 0
\(553\) 2.57439 + 8.61307i 0.109474 + 0.366265i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −22.2079 12.8217i −0.940978 0.543274i −0.0507110 0.998713i \(-0.516149\pi\)
−0.890267 + 0.455440i \(0.849482\pi\)
\(558\) 0 0
\(559\) 51.2590i 2.16802i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14.7349 25.5215i 0.621000 1.07560i −0.368299 0.929707i \(-0.620060\pi\)
0.989300 0.145897i \(-0.0466068\pi\)
\(564\) 0 0
\(565\) 22.8307 13.1813i 0.960496 0.554543i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −19.4963 + 11.2562i −0.817329 + 0.471885i −0.849495 0.527597i \(-0.823093\pi\)
0.0321653 + 0.999483i \(0.489760\pi\)
\(570\) 0 0
\(571\) 17.1255 29.6622i 0.716679 1.24132i −0.245629 0.969364i \(-0.578995\pi\)
0.962308 0.271961i \(-0.0876720\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 10.9389i 0.456185i
\(576\) 0 0
\(577\) 34.8118 + 20.0986i 1.44923 + 0.836715i 0.998436 0.0559112i \(-0.0178064\pi\)
0.450797 + 0.892626i \(0.351140\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −10.5036 2.49436i −0.435764 0.103484i
\(582\) 0 0
\(583\) 10.3706 + 17.9625i 0.429508 + 0.743929i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −15.9446 −0.658104 −0.329052 0.944312i \(-0.606729\pi\)
−0.329052 + 0.944312i \(0.606729\pi\)
\(588\) 0 0
\(589\) −4.38682 −0.180756
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 17.0760 + 29.5766i 0.701229 + 1.21456i 0.968035 + 0.250814i \(0.0806982\pi\)
−0.266807 + 0.963750i \(0.585968\pi\)
\(594\) 0 0
\(595\) 4.28257 + 1.01701i 0.175568 + 0.0416934i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −10.5191 6.07319i −0.429797 0.248144i 0.269463 0.963011i \(-0.413154\pi\)
−0.699260 + 0.714867i \(0.746487\pi\)
\(600\) 0 0
\(601\) 9.15890i 0.373599i 0.982398 + 0.186800i \(0.0598115\pi\)
−0.982398 + 0.186800i \(0.940188\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.34690 + 5.79700i −0.136071 + 0.235681i
\(606\) 0 0
\(607\) 35.6897 20.6055i 1.44860 0.836350i 0.450202 0.892927i \(-0.351352\pi\)
0.998398 + 0.0565772i \(0.0180187\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.4470 7.18630i 0.503553 0.290726i
\(612\) 0 0
\(613\) −6.38396 + 11.0573i −0.257846 + 0.446602i −0.965665 0.259792i \(-0.916346\pi\)
0.707819 + 0.706394i \(0.249679\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 16.7469i 0.674204i 0.941468 + 0.337102i \(0.109447\pi\)
−0.941468 + 0.337102i \(0.890553\pi\)
\(618\) 0 0
\(619\) 14.4869 + 8.36399i 0.582276 + 0.336177i 0.762037 0.647533i \(-0.224199\pi\)
−0.179762 + 0.983710i \(0.557533\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 11.4117 + 38.1800i 0.457202 + 1.52965i
\(624\) 0 0
\(625\) −0.326779 0.565998i −0.0130712 0.0226399i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −0.143798 −0.00573359
\(630\) 0 0
\(631\) 15.5056 0.617268 0.308634 0.951181i \(-0.400128\pi\)
0.308634 + 0.951181i \(0.400128\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −13.2154 22.8898i −0.524439 0.908355i
\(636\) 0 0
\(637\) 17.4292 34.6272i 0.690570 1.37198i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 31.9557 + 18.4496i 1.26217 + 0.728717i 0.973495 0.228709i \(-0.0734505\pi\)
0.288679 + 0.957426i \(0.406784\pi\)
\(642\) 0 0
\(643\) 4.05288i 0.159830i −0.996802 0.0799149i \(-0.974535\pi\)
0.996802 0.0799149i \(-0.0254649\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −8.79083 + 15.2262i −0.345603 + 0.598602i −0.985463 0.169889i \(-0.945659\pi\)
0.639860 + 0.768492i \(0.278992\pi\)
\(648\) 0 0
\(649\) 38.7489 22.3717i 1.52103 0.878165i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −12.6252 + 7.28915i −0.494062 + 0.285247i −0.726258 0.687422i \(-0.758742\pi\)
0.232196 + 0.972669i \(0.425409\pi\)
\(654\) 0 0
\(655\) 9.58242 16.5972i 0.374416 0.648508i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 9.82212i 0.382615i −0.981530 0.191308i \(-0.938727\pi\)
0.981530 0.191308i \(-0.0612728\pi\)
\(660\) 0 0
\(661\) 3.79036 + 2.18836i 0.147428 + 0.0851175i 0.571899 0.820324i \(-0.306207\pi\)
−0.424472 + 0.905441i \(0.639540\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.53685 + 5.22843i 0.214710 + 0.202750i
\(666\) 0 0
\(667\) −7.20673 12.4824i −0.279046 0.483321i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.81573 0.224514
\(672\) 0 0
\(673\) −39.7808 −1.53344 −0.766719 0.641982i \(-0.778112\pi\)
−0.766719 + 0.641982i \(0.778112\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 21.6256 + 37.4566i 0.831139 + 1.43957i 0.897136 + 0.441755i \(0.145644\pi\)
−0.0659972 + 0.997820i \(0.521023\pi\)
\(678\) 0 0
\(679\) 11.6434 49.0298i 0.446834 1.88159i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −18.3170 10.5753i −0.700881 0.404654i 0.106794 0.994281i \(-0.465941\pi\)
−0.807675 + 0.589627i \(0.799275\pi\)
\(684\) 0 0
\(685\) 7.16570i 0.273787i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −14.3946 + 24.9322i −0.548392 + 0.949842i
\(690\) 0 0
\(691\) −2.03537 + 1.17512i −0.0774290 + 0.0447036i −0.538215 0.842808i \(-0.680901\pi\)
0.460786 + 0.887511i \(0.347568\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6.29804 3.63617i 0.238898 0.137928i
\(696\) 0 0
\(697\) 1.14326 1.98019i 0.0433042 0.0750051i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 35.3730i 1.33602i 0.744153 + 0.668010i \(0.232853\pi\)
−0.744153 + 0.668010i \(0.767147\pi\)
\(702\) 0 0
\(703\) −0.215453 0.124392i −0.00812597 0.00469153i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 23.5883 24.9797i 0.887129 0.939460i
\(708\) 0 0
\(709\) −9.49611 16.4477i −0.356634 0.617708i 0.630762 0.775976i \(-0.282742\pi\)
−0.987396 + 0.158268i \(0.949409\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −7.20591 −0.269863
\(714\) 0 0
\(715\) −30.0675 −1.12446
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −22.1934 38.4401i −0.827674 1.43357i −0.899858 0.436183i \(-0.856330\pi\)
0.0721838 0.997391i \(-0.477003\pi\)
\(720\) 0 0
\(721\) 30.0991 8.99643i 1.12095 0.335044i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −11.3105 6.53013i −0.420062 0.242523i
\(726\) 0 0
\(727\) 6.50373i 0.241210i −0.992701 0.120605i \(-0.961517\pi\)
0.992701 0.120605i \(-0.0384834\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 5.65811 9.80014i 0.209273 0.362471i
\(732\) 0 0
\(733\) 6.03997 3.48718i 0.223091 0.128802i −0.384290 0.923213i \(-0.625554\pi\)
0.607381 + 0.794411i \(0.292220\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.18994 + 3.57376i −0.228009 + 0.131641i
\(738\) 0 0
\(739\) 4.29705 7.44271i 0.158069 0.273784i −0.776103 0.630606i \(-0.782806\pi\)
0.934172 + 0.356822i \(0.116140\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 38.3233i 1.40595i 0.711217 + 0.702973i \(0.248144\pi\)
−0.711217 + 0.702973i \(0.751856\pi\)
\(744\) 0 0
\(745\) 8.86844 + 5.12019i 0.324914 + 0.187589i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −19.8286 + 5.92664i −0.724522 + 0.216555i
\(750\) 0 0
\(751\) 21.4927 + 37.2264i 0.784279 + 1.35841i 0.929429 + 0.369002i \(0.120300\pi\)
−0.145150 + 0.989410i \(0.546366\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −8.40820 −0.306006
\(756\) 0 0
\(757\) −33.0768 −1.20220 −0.601098 0.799175i \(-0.705270\pi\)
−0.601098 + 0.799175i \(0.705270\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8.00334 + 13.8622i 0.290121 + 0.502504i 0.973838 0.227243i \(-0.0729711\pi\)
−0.683717 + 0.729747i \(0.739638\pi\)
\(762\) 0 0
\(763\) 14.4951 15.3502i 0.524758 0.555714i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 53.7841 + 31.0523i 1.94203 + 1.12123i
\(768\) 0 0
\(769\) 29.5755i 1.06652i −0.845951 0.533260i \(-0.820967\pi\)
0.845951 0.533260i \(-0.179033\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 17.8887 30.9841i 0.643411 1.11442i −0.341255 0.939971i \(-0.610852\pi\)
0.984666 0.174450i \(-0.0558148\pi\)
\(774\) 0 0
\(775\) −5.65461 + 3.26469i −0.203120 + 0.117271i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.42592 1.97796i 0.122746 0.0708676i
\(780\) 0 0
\(781\) 29.7837 51.5869i 1.06574 1.84592i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8.87982i 0.316934i
\(786\) 0 0
\(787\) 32.8710 + 18.9781i 1.17172 + 0.676496i 0.954086 0.299534i \(-0.0968311\pi\)
0.217639 + 0.976029i \(0.430164\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 11.8430 49.8704i 0.421090 1.77319i
\(792\) 0 0
\(793\) 4.03617 + 6.99085i 0.143329 + 0.248252i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −24.5926 −0.871114 −0.435557 0.900161i \(-0.643449\pi\)
−0.435557 + 0.900161i \(0.643449\pi\)
\(798\) 0 0
\(799\) 3.17298 0.112252
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −19.7631 34.2308i −0.697426 1.20798i
\(804\) 0 0
\(805\) 9.09498 + 8.58836i 0.320556 + 0.302700i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −28.2123 16.2884i −0.991892 0.572669i −0.0860527 0.996291i \(-0.527425\pi\)
−0.905839 + 0.423621i \(0.860759\pi\)
\(810\) 0 0
\(811\) 4.24282i 0.148986i 0.997222 + 0.0744928i \(0.0237338\pi\)
−0.997222 + 0.0744928i \(0.976266\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −15.1697 + 26.2747i −0.531371 + 0.920361i
\(816\) 0 0
\(817\) 16.9552 9.78907i 0.593186 0.342476i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.36483 + 0.787984i −0.0476328 + 0.0275008i −0.523627 0.851947i \(-0.675422\pi\)
0.475994 + 0.879448i \(0.342088\pi\)
\(822\) 0 0
\(823\) −16.4537 + 28.4987i −0.573540 + 0.993401i 0.422658 + 0.906289i \(0.361097\pi\)
−0.996199 + 0.0871119i \(0.972236\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 40.7480i 1.41695i −0.705737 0.708474i \(-0.749384\pi\)
0.705737 0.708474i \(-0.250616\pi\)
\(828\) 0 0
\(829\) −0.386563 0.223182i −0.0134259 0.00775145i 0.493272 0.869875i \(-0.335801\pi\)
−0.506698 + 0.862124i \(0.669134\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 7.15451 4.69644i 0.247889 0.162722i
\(834\) 0 0
\(835\) 6.12488 + 10.6086i 0.211960 + 0.367126i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −15.3454 −0.529783 −0.264892 0.964278i \(-0.585336\pi\)
−0.264892 + 0.964278i \(0.585336\pi\)
\(840\) 0 0
\(841\) 11.7914 0.406600
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −12.0222 20.8230i −0.413575 0.716333i
\(846\) 0 0
\(847\) 3.72712 + 12.4697i 0.128066 + 0.428466i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.353909 0.204330i −0.0121319 0.00700433i
\(852\) 0 0
\(853\) 37.9300i 1.29870i 0.760490 + 0.649350i \(0.224959\pi\)
−0.760490 + 0.649350i \(0.775041\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 18.7381 32.4553i 0.640080 1.10865i −0.345334 0.938480i \(-0.612234\pi\)
0.985414 0.170172i \(-0.0544322\pi\)
\(858\) 0 0
\(859\) 24.5565 14.1777i 0.837856 0.483736i −0.0186789 0.999826i \(-0.505946\pi\)
0.856535 + 0.516089i \(0.172613\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −3.57855 + 2.06607i −0.121815 + 0.0703300i −0.559669 0.828716i \(-0.689072\pi\)
0.437854 + 0.899046i \(0.355739\pi\)
\(864\) 0 0
\(865\) 14.1044 24.4296i 0.479564 0.830630i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 13.5566i 0.459875i
\(870\) 0 0
\(871\) −8.59174 4.96044i −0.291120 0.168078i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 28.5421 + 6.77809i 0.964901 + 0.229141i
\(876\) 0 0
\(877\) 16.2089 + 28.0747i 0.547337 + 0.948015i 0.998456 + 0.0555515i \(0.0176917\pi\)
−0.451119 + 0.892464i \(0.648975\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 43.7257 1.47316 0.736579 0.676352i \(-0.236440\pi\)
0.736579 + 0.676352i \(0.236440\pi\)
\(882\) 0 0
\(883\) 42.9555 1.44557 0.722783 0.691075i \(-0.242863\pi\)
0.722783 + 0.691075i \(0.242863\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 6.80382 + 11.7846i 0.228450 + 0.395687i 0.957349 0.288935i \(-0.0933010\pi\)
−0.728899 + 0.684621i \(0.759968\pi\)
\(888\) 0 0
\(889\) −49.9994 11.8737i −1.67693 0.398231i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.75409 + 2.74478i 0.159090 + 0.0918504i
\(894\) 0 0
\(895\) 10.3729i 0.346728i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.30165 + 7.45068i −0.143468 + 0.248494i
\(900\) 0 0
\(901\) −5.50418 + 3.17784i −0.183371 + 0.105869i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −15.1991 + 8.77518i −0.505234 + 0.291697i
\(906\) 0 0
\(907\) −22.8112 + 39.5102i −0.757433 + 1.31191i 0.186722 + 0.982413i \(0.440214\pi\)
−0.944155 + 0.329500i \(0.893120\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 36.9894i 1.22551i 0.790271 + 0.612757i \(0.209940\pi\)
−0.790271 + 0.612757i \(0.790060\pi\)
\(912\) 0 0
\(913\) 14.0992 + 8.14017i 0.466615 + 0.269400i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −10.6710 35.7018i −0.352389 1.17898i
\(918\) 0 0
\(919\) −4.35168 7.53732i −0.143549 0.248633i 0.785282 0.619138i \(-0.212518\pi\)
−0.928830 + 0.370505i \(0.879185\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 82.6806 2.72147
\(924\) 0 0
\(925\) −0.370292 −0.0121751
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 7.53951 + 13.0588i 0.247363 + 0.428446i 0.962793 0.270239i \(-0.0871026\pi\)
−0.715430 + 0.698684i \(0.753769\pi\)
\(930\) 0 0
\(931\) 14.7823 0.847710i 0.484470 0.0277826i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5.74857 3.31894i −0.187998 0.108541i
\(936\) 0 0
\(937\) 2.48603i 0.0812150i 0.999175 + 0.0406075i \(0.0129293\pi\)
−0.999175 + 0.0406075i \(0.987071\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −21.2383 + 36.7859i −0.692350 + 1.19919i 0.278715 + 0.960374i \(0.410091\pi\)
−0.971066 + 0.238812i \(0.923242\pi\)
\(942\) 0 0
\(943\) 5.62751 3.24904i 0.183257 0.105803i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −26.8300 + 15.4903i −0.871856 + 0.503367i −0.867965 0.496626i \(-0.834572\pi\)
−0.00389169 + 0.999992i \(0.501239\pi\)
\(948\) 0 0
\(949\) 27.4316 47.5129i 0.890467 1.54233i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 51.8636i 1.68003i −0.542564 0.840014i \(-0.682547\pi\)
0.542564 0.840014i \(-0.317453\pi\)
\(954\) 0 0
\(955\) −25.8902 14.9477i −0.837789 0.483698i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −10.1298 9.56550i −0.327107 0.308886i
\(960\) 0 0
\(961\) −13.3494 23.1219i −0.430626 0.745867i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −27.5551 −0.887031
\(966\) 0 0
\(967\) 4.31643 0.138807 0.0694036 0.997589i \(-0.477890\pi\)
0.0694036 + 0.997589i \(0.477890\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −19.6891 34.1026i −0.631854 1.09440i −0.987172 0.159658i \(-0.948961\pi\)
0.355319 0.934745i \(-0.384372\pi\)
\(972\) 0 0
\(973\) 3.26699 13.7571i 0.104735 0.441033i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −7.42640 4.28763i −0.237592 0.137174i 0.376478 0.926426i \(-0.377135\pi\)
−0.614069 + 0.789252i \(0.710468\pi\)
\(978\) 0 0
\(979\) 60.0935i 1.92060i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −14.0576 + 24.3485i −0.448368 + 0.776596i −0.998280 0.0586265i \(-0.981328\pi\)
0.549912 + 0.835223i \(0.314661\pi\)
\(984\) 0 0
\(985\) −25.4577 + 14.6980i −0.811150 + 0.468318i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 27.8510 16.0798i 0.885611 0.511308i
\(990\) 0 0
\(991\) 13.4036 23.2157i 0.425778 0.737470i −0.570714 0.821149i \(-0.693334\pi\)
0.996493 + 0.0836789i \(0.0266670\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 7.33433i 0.232514i
\(996\) 0 0
\(997\) 17.6764 + 10.2055i 0.559817 + 0.323211i 0.753072 0.657938i \(-0.228571\pi\)
−0.193255 + 0.981149i \(0.561904\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1512.2.bl.c.1025.5 yes 16
3.2 odd 2 inner 1512.2.bl.c.1025.4 yes 16
7.5 odd 6 inner 1512.2.bl.c.593.4 16
21.5 even 6 inner 1512.2.bl.c.593.5 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1512.2.bl.c.593.4 16 7.5 odd 6 inner
1512.2.bl.c.593.5 yes 16 21.5 even 6 inner
1512.2.bl.c.1025.4 yes 16 3.2 odd 2 inner
1512.2.bl.c.1025.5 yes 16 1.1 even 1 trivial