gp: [N,k,chi] = [1512,2,Mod(593,1512)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1512, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 3, 5]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1512.593");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [16,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,-6]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 15 1,\beta_1,\ldots,\beta_{15} 1 , β 1 , … , β 1 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 16 + 102 x 12 + 1769 x 8 + 8100 x 4 + 4096 x^{16} + 102x^{12} + 1769x^{8} + 8100x^{4} + 4096 x 1 6 + 1 0 2 x 1 2 + 1 7 6 9 x 8 + 8 1 0 0 x 4 + 4 0 9 6
x^16 + 102*x^12 + 1769*x^8 + 8100*x^4 + 4096
:
β 1 \beta_{1} β 1 = = =
( − 327 ν 15 + 5280 ν 13 + 41600 ν 12 − 56522 ν 11 + 452032 ν 9 + ⋯ + 118536192 ) / 33471488 ( - 327 \nu^{15} + 5280 \nu^{13} + 41600 \nu^{12} - 56522 \nu^{11} + 452032 \nu^{9} + \cdots + 118536192 ) / 33471488 ( − 3 2 7 ν 1 5 + 5 2 8 0 ν 1 3 + 4 1 6 0 0 ν 1 2 − 5 6 5 2 2 ν 1 1 + 4 5 2 0 3 2 ν 9 + ⋯ + 1 1 8 5 3 6 1 9 2 ) / 3 3 4 7 1 4 8 8
(-327*v^15 + 5280*v^13 + 41600*v^12 - 56522*v^11 + 452032*v^9 + 4068608*v^8 - 2612639*v^7 + 1881760*v^5 + 56411776*v^4 - 16737788*v^3 - 10637952*v + 118536192) / 33471488
β 2 \beta_{2} β 2 = = =
( 327 ν 15 − 5280 ν 13 + 41600 ν 12 + 56522 ν 11 − 452032 ν 9 + ⋯ + 118536192 ) / 33471488 ( 327 \nu^{15} - 5280 \nu^{13} + 41600 \nu^{12} + 56522 \nu^{11} - 452032 \nu^{9} + \cdots + 118536192 ) / 33471488 ( 3 2 7 ν 1 5 − 5 2 8 0 ν 1 3 + 4 1 6 0 0 ν 1 2 + 5 6 5 2 2 ν 1 1 − 4 5 2 0 3 2 ν 9 + ⋯ + 1 1 8 5 3 6 1 9 2 ) / 3 3 4 7 1 4 8 8
(327*v^15 - 5280*v^13 + 41600*v^12 + 56522*v^11 - 452032*v^9 + 4068608*v^8 + 2612639*v^7 - 1881760*v^5 + 56411776*v^4 + 16737788*v^3 + 10637952*v + 118536192) / 33471488
β 3 \beta_{3} β 3 = = =
( 549 ν 14 + 56510 ν 10 + 1027693 ν 6 + 6087412 ν 2 ) / 2091968 ( 549\nu^{14} + 56510\nu^{10} + 1027693\nu^{6} + 6087412\nu^{2} ) / 2091968 ( 5 4 9 ν 1 4 + 5 6 5 1 0 ν 1 0 + 1 0 2 7 6 9 3 ν 6 + 6 0 8 7 4 1 2 ν 2 ) / 2 0 9 1 9 6 8
(549*v^14 + 56510*v^10 + 1027693*v^6 + 6087412*v^2) / 2091968
β 4 \beta_{4} β 4 = = =
( 549 ν 15 − 7072 ν 12 + 56510 ν 11 − 649824 ν 8 + 1027693 ν 7 − 5531584 ν 4 + ⋯ + 14324480 ) / 8367872 ( 549 \nu^{15} - 7072 \nu^{12} + 56510 \nu^{11} - 649824 \nu^{8} + 1027693 \nu^{7} - 5531584 \nu^{4} + \cdots + 14324480 ) / 8367872 ( 5 4 9 ν 1 5 − 7 0 7 2 ν 1 2 + 5 6 5 1 0 ν 1 1 − 6 4 9 8 2 4 ν 8 + 1 0 2 7 6 9 3 ν 7 − 5 5 3 1 5 8 4 ν 4 + ⋯ + 1 4 3 2 4 4 8 0 ) / 8 3 6 7 8 7 2
(549*v^15 - 7072*v^12 + 56510*v^11 - 649824*v^8 + 1027693*v^7 - 5531584*v^4 + 6087412*v^3 + 4183936*v + 14324480) / 8367872
β 5 \beta_{5} β 5 = = =
( − 549 ν 15 − 1064 ν 14 − 56510 ν 11 − 84752 ν 10 − 1027693 ν 7 + ⋯ + 4183936 ν ) / 8367872 ( - 549 \nu^{15} - 1064 \nu^{14} - 56510 \nu^{11} - 84752 \nu^{10} - 1027693 \nu^{7} + \cdots + 4183936 \nu ) / 8367872 ( − 5 4 9 ν 1 5 − 1 0 6 4 ν 1 4 − 5 6 5 1 0 ν 1 1 − 8 4 7 5 2 ν 1 0 − 1 0 2 7 6 9 3 ν 7 + ⋯ + 4 1 8 3 9 3 6 ν ) / 8 3 6 7 8 7 2
(-549*v^15 - 1064*v^14 - 56510*v^11 - 84752*v^10 - 1027693*v^7 + 349816*v^6 - 6087412*v^3 + 11994976*v^2 + 4183936*v) / 8367872
β 6 \beta_{6} β 6 = = =
( 549 ν 15 − 1064 ν 14 + 56510 ν 11 − 84752 ν 10 + 1027693 ν 7 + ⋯ − 4183936 ν ) / 8367872 ( 549 \nu^{15} - 1064 \nu^{14} + 56510 \nu^{11} - 84752 \nu^{10} + 1027693 \nu^{7} + \cdots - 4183936 \nu ) / 8367872 ( 5 4 9 ν 1 5 − 1 0 6 4 ν 1 4 + 5 6 5 1 0 ν 1 1 − 8 4 7 5 2 ν 1 0 + 1 0 2 7 6 9 3 ν 7 + ⋯ − 4 1 8 3 9 3 6 ν ) / 8 3 6 7 8 7 2
(549*v^15 - 1064*v^14 + 56510*v^11 - 84752*v^10 + 1027693*v^7 + 349816*v^6 + 6087412*v^3 + 11994976*v^2 - 4183936*v) / 8367872
β 7 \beta_{7} β 7 = = =
( − 2179 ν 14 − 211906 ν 10 − 2908171 ν 6 − 8080812 ν 2 ) / 2091968 ( -2179\nu^{14} - 211906\nu^{10} - 2908171\nu^{6} - 8080812\nu^{2} ) / 2091968 ( − 2 1 7 9 ν 1 4 − 2 1 1 9 0 6 ν 1 0 − 2 9 0 8 1 7 1 ν 6 − 8 0 8 0 8 1 2 ν 2 ) / 2 0 9 1 9 6 8
(-2179*v^14 - 211906*v^10 - 2908171*v^6 - 8080812*v^2) / 2091968
β 8 \beta_{8} β 8 = = =
( 5817 ν 15 − 4256 ν 13 + 621622 ν 11 − 339008 ν 9 + 12889569 ν 7 + ⋯ + 33471488 ) / 66942976 ( 5817 \nu^{15} - 4256 \nu^{13} + 621622 \nu^{11} - 339008 \nu^{9} + 12889569 \nu^{7} + \cdots + 33471488 ) / 66942976 ( 5 8 1 7 ν 1 5 − 4 2 5 6 ν 1 3 + 6 2 1 6 2 2 ν 1 1 − 3 3 9 0 0 8 ν 9 + 1 2 8 8 9 5 6 9 ν 7 + ⋯ + 3 3 4 7 1 4 8 8 ) / 6 6 9 4 2 9 7 6
(5817*v^15 - 4256*v^13 + 621622*v^11 - 339008*v^9 + 12889569*v^7 + 1399264*v^5 + 69244036*v^3 + 47979904*v + 33471488) / 66942976
β 9 \beta_{9} β 9 = = =
( 5817 ν 15 + 4392 ν 14 + 4256 ν 13 + 621622 ν 11 + 452080 ν 10 + ⋯ − 47979904 ν ) / 33471488 ( 5817 \nu^{15} + 4392 \nu^{14} + 4256 \nu^{13} + 621622 \nu^{11} + 452080 \nu^{10} + \cdots - 47979904 \nu ) / 33471488 ( 5 8 1 7 ν 1 5 + 4 3 9 2 ν 1 4 + 4 2 5 6 ν 1 3 + 6 2 1 6 2 2 ν 1 1 + 4 5 2 0 8 0 ν 1 0 + ⋯ − 4 7 9 7 9 9 0 4 ν ) / 3 3 4 7 1 4 8 8
(5817*v^15 + 4392*v^14 + 4256*v^13 + 621622*v^11 + 452080*v^10 + 339008*v^9 + 12889569*v^7 + 8221544*v^6 - 1399264*v^5 + 69244036*v^3 + 48699296*v^2 - 47979904*v) / 33471488
β 10 \beta_{10} β 1 0 = = =
( − 14601 ν 15 + 4256 ν 13 − 1525782 ν 11 + 339008 ν 9 − 29332657 ν 7 + ⋯ − 33471488 ) / 66942976 ( - 14601 \nu^{15} + 4256 \nu^{13} - 1525782 \nu^{11} + 339008 \nu^{9} - 29332657 \nu^{7} + \cdots - 33471488 ) / 66942976 ( − 1 4 6 0 1 ν 1 5 + 4 2 5 6 ν 1 3 − 1 5 2 5 7 8 2 ν 1 1 + 3 3 9 0 0 8 ν 9 − 2 9 3 3 2 6 5 7 ν 7 + ⋯ − 3 3 4 7 1 4 8 8 ) / 6 6 9 4 2 9 7 6
(-14601*v^15 + 4256*v^13 - 1525782*v^11 + 339008*v^9 - 29332657*v^7 - 1399264*v^5 - 166642628*v^3 - 114922880*v - 33471488) / 66942976
β 11 \beta_{11} β 1 1 = = =
( 14465 ν 15 + 41736 ν 14 − 26080 ν 13 + 1412710 ν 11 + 4181680 ν 10 + ⋯ − 48630144 ν ) / 33471488 ( 14465 \nu^{15} + 41736 \nu^{14} - 26080 \nu^{13} + 1412710 \nu^{11} + 4181680 \nu^{10} + \cdots - 48630144 \nu ) / 33471488 ( 1 4 4 6 5 ν 1 5 + 4 1 7 3 6 ν 1 4 − 2 6 0 8 0 ν 1 3 + 1 4 1 2 7 1 0 ν 1 1 + 4 1 8 1 6 8 0 ν 1 0 + ⋯ − 4 8 6 3 0 1 4 4 ν ) / 3 3 4 7 1 4 8 8
(14465*v^15 + 41736*v^14 - 26080*v^13 + 1412710*v^11 + 4181680*v^10 - 2486336*v^9 + 19711849*v^7 + 66032584*v^6 - 30087648*v^5 + 53227684*v^3 + 215215392*v^2 - 48630144*v) / 33471488
β 12 \beta_{12} β 1 2 = = =
( 15119 ν 15 + 17432 ν 14 − 15520 ν 13 + 1525754 ν 11 + 1695248 ν 10 + ⋯ − 69906048 ν ) / 33471488 ( 15119 \nu^{15} + 17432 \nu^{14} - 15520 \nu^{13} + 1525754 \nu^{11} + 1695248 \nu^{10} + \cdots - 69906048 \nu ) / 33471488 ( 1 5 1 1 9 ν 1 5 + 1 7 4 3 2 ν 1 4 − 1 5 5 2 0 ν 1 3 + 1 5 2 5 7 5 4 ν 1 1 + 1 6 9 5 2 4 8 ν 1 0 + ⋯ − 6 9 9 0 6 0 4 8 ν ) / 3 3 4 7 1 4 8 8
(15119*v^15 + 17432*v^14 - 15520*v^13 + 1525754*v^11 + 1695248*v^10 - 1582272*v^9 + 24937127*v^7 + 23265368*v^6 - 26324128*v^5 + 86703260*v^3 + 64646496*v^2 - 69906048*v) / 33471488
β 13 \beta_{13} β 1 3 = = =
( 34747 ν 15 + 47904 ν 13 − 64768 ν 12 + 3447042 ν 11 + 4633664 ν 9 + ⋯ − 150668288 ) / 66942976 ( 34747 \nu^{15} + 47904 \nu^{13} - 64768 \nu^{12} + 3447042 \nu^{11} + 4633664 \nu^{9} + \cdots - 150668288 ) / 66942976 ( 3 4 7 4 7 ν 1 5 + 4 7 9 0 4 ν 1 3 − 6 4 7 6 8 ν 1 2 + 3 4 4 7 0 4 2 ν 1 1 + 4 6 3 3 6 6 4 ν 9 + ⋯ − 1 5 0 6 6 8 2 8 8 ) / 6 6 9 4 2 9 7 6
(34747*v^15 + 47904*v^13 - 64768*v^12 + 3447042*v^11 + 4633664*v^9 - 6102784*v^8 + 52313267*v^7 + 61574560*v^5 - 70500864*v^4 + 175699404*v^3 + 145240192*v - 150668288) / 66942976
β 14 \beta_{14} β 1 4 = = =
( − 35401 ν 15 − 37344 ν 13 + 18432 ν 12 − 3560086 ν 11 − 3729600 ν 9 + ⋯ + 86404096 ) / 66942976 ( - 35401 \nu^{15} - 37344 \nu^{13} + 18432 \nu^{12} - 3560086 \nu^{11} - 3729600 \nu^{9} + \cdots + 86404096 ) / 66942976 ( − 3 5 4 0 1 ν 1 5 − 3 7 3 4 4 ν 1 3 + 1 8 4 3 2 ν 1 2 − 3 5 6 0 0 8 6 ν 1 1 − 3 7 2 9 6 0 0 ν 9 + ⋯ + 8 6 4 0 4 0 9 6 ) / 6 6 9 4 2 9 7 6
(-35401*v^15 - 37344*v^13 + 18432*v^12 - 3560086*v^11 - 3729600*v^9 + 2034432*v^8 - 57538545*v^7 - 57811040*v^5 + 42322688*v^4 - 209174980*v^3 - 166516096*v + 86404096) / 66942976
β 15 \beta_{15} β 1 5 = = =
( 10141 ν 15 − 18672 ν 14 − 10912 ν 13 + 1017166 ν 11 − 1864800 ν 10 + ⋯ − 48305024 ν ) / 16735744 ( 10141 \nu^{15} - 18672 \nu^{14} - 10912 \nu^{13} + 1017166 \nu^{11} - 1864800 \nu^{10} + \cdots - 48305024 \nu ) / 16735744 ( 1 0 1 4 1 ν 1 5 − 1 8 6 7 2 ν 1 4 − 1 0 9 1 2 ν 1 3 + 1 0 1 7 1 6 6 ν 1 1 − 1 8 6 4 8 0 0 ν 1 0 + ⋯ − 4 8 3 0 5 0 2 4 ν ) / 1 6 7 3 5 7 4 4
(10141*v^15 - 18672*v^14 - 10912*v^13 + 1017166*v^11 - 1864800*v^10 - 1073664*v^9 + 16300709*v^7 - 28905520*v^6 - 15743456*v^5 + 61235860*v^3 - 83258048*v^2 - 48305024*v) / 16735744
ν \nu ν = = =
( − β 10 − β 8 − β 6 + β 5 ) / 2 ( -\beta_{10} - \beta_{8} - \beta_{6} + \beta_{5} ) / 2 ( − β 1 0 − β 8 − β 6 + β 5 ) / 2
(-b10 - b8 - b6 + b5) / 2
ν 2 \nu^{2} ν 2 = = =
( β 7 − β 6 − β 5 + 3 β 3 ) / 2 ( \beta_{7} - \beta_{6} - \beta_{5} + 3\beta_{3} ) / 2 ( β 7 − β 6 − β 5 + 3 β 3 ) / 2
(b7 - b6 - b5 + 3*b3) / 2
ν 3 \nu^{3} ν 3 = = =
( − β 15 + 2 β 12 − β 11 − 5 β 10 − 3 β 9 − 13 β 8 + β 7 + ⋯ + 4 ) / 2 ( - \beta_{15} + 2 \beta_{12} - \beta_{11} - 5 \beta_{10} - 3 \beta_{9} - 13 \beta_{8} + \beta_{7} + \cdots + 4 ) / 2 ( − β 1 5 + 2 β 1 2 − β 1 1 − 5 β 1 0 − 3 β 9 − 1 3 β 8 + β 7 + ⋯ + 4 ) / 2
(-b15 + 2*b12 - b11 - 5*b10 - 3*b9 - 13*b8 + b7 + 5*b6 - 5*b5 + 2*b3 + 2*b2 - 2*b1 + 4) / 2
ν 4 \nu^{4} ν 4 = = =
( − 13 β 14 − 13 β 13 + 9 β 10 + 9 β 8 + 18 β 4 − 4 β 2 + 9 β 1 − 61 ) / 2 ( -13\beta_{14} - 13\beta_{13} + 9\beta_{10} + 9\beta_{8} + 18\beta_{4} - 4\beta_{2} + 9\beta _1 - 61 ) / 2 ( − 1 3 β 1 4 − 1 3 β 1 3 + 9 β 1 0 + 9 β 8 + 1 8 β 4 − 4 β 2 + 9 β 1 − 6 1 ) / 2
(-13*b14 - 13*b13 + 9*b10 + 9*b8 + 18*b4 - 4*b2 + 9*b1 - 61) / 2
ν 5 \nu^{5} ν 5 = = =
( − 11 β 15 + 2 β 14 − 2 β 13 + 26 β 12 − 11 β 11 + 35 β 10 + ⋯ − 42 ) / 2 ( - 11 \beta_{15} + 2 \beta_{14} - 2 \beta_{13} + 26 \beta_{12} - 11 \beta_{11} + 35 \beta_{10} + \cdots - 42 ) / 2 ( − 1 1 β 1 5 + 2 β 1 4 − 2 β 1 3 + 2 6 β 1 2 − 1 1 β 1 1 + 3 5 β 1 0 + ⋯ − 4 2 ) / 2
(-11*b15 + 2*b14 - 2*b13 + 26*b12 - 11*b11 + 35*b10 - 29*b9 + 119*b8 + 13*b7 + 35*b6 - 35*b5 + 20*b3 - 26*b2 + 24*b1 - 42) / 2
ν 6 \nu^{6} ν 6 = = =
( 26 β 15 − 26 β 11 − 26 β 9 − 107 β 7 + 77 β 6 + 77 β 5 − 103 β 3 ) / 2 ( 26\beta_{15} - 26\beta_{11} - 26\beta_{9} - 107\beta_{7} + 77\beta_{6} + 77\beta_{5} - 103\beta_{3} ) / 2 ( 2 6 β 1 5 − 2 6 β 1 1 − 2 6 β 9 − 1 0 7 β 7 + 7 7 β 6 + 7 7 β 5 − 1 0 3 β 3 ) / 2
(26*b15 - 26*b11 - 26*b9 - 107*b7 + 77*b6 + 77*b5 - 103*b3) / 2
ν 7 \nu^{7} ν 7 = = =
( 107 β 15 + 24 β 14 − 24 β 13 − 262 β 12 + 107 β 11 + 285 β 10 + ⋯ − 388 ) / 2 ( 107 \beta_{15} + 24 \beta_{14} - 24 \beta_{13} - 262 \beta_{12} + 107 \beta_{11} + 285 \beta_{10} + \cdots - 388 ) / 2 ( 1 0 7 β 1 5 + 2 4 β 1 4 − 2 4 β 1 3 − 2 6 2 β 1 2 + 1 0 7 β 1 1 + 2 8 5 β 1 0 + ⋯ − 3 8 8 ) / 2
(107*b15 + 24*b14 - 24*b13 - 262*b12 + 107*b11 + 285*b10 + 257*b9 + 1061*b8 - 131*b7 - 285*b6 + 285*b5 - 182*b3 - 262*b2 + 238*b1 - 388) / 2
ν 8 \nu^{8} ν 8 = = =
( 1261 β 14 + 1261 β 13 − 673 β 10 − 673 β 8 − 1346 β 4 + 524 β 2 + ⋯ + 4269 ) / 2 ( 1261 \beta_{14} + 1261 \beta_{13} - 673 \beta_{10} - 673 \beta_{8} - 1346 \beta_{4} + 524 \beta_{2} + \cdots + 4269 ) / 2 ( 1 2 6 1 β 1 4 + 1 2 6 1 β 1 3 − 6 7 3 β 1 0 − 6 7 3 β 8 − 1 3 4 6 β 4 + 5 2 4 β 2 + ⋯ + 4 2 6 9 ) / 2
(1261*b14 + 1261*b13 - 673*b10 - 673*b8 - 1346*b4 + 524*b2 - 737*b1 + 4269) / 2
ν 9 \nu^{9} ν 9 = = =
( 999 β 15 − 230 β 14 + 230 β 13 − 2458 β 12 + 999 β 11 − 2471 β 10 + ⋯ + 3510 ) / 2 ( 999 \beta_{15} - 230 \beta_{14} + 230 \beta_{13} - 2458 \beta_{12} + 999 \beta_{11} - 2471 \beta_{10} + \cdots + 3510 ) / 2 ( 9 9 9 β 1 5 − 2 3 0 β 1 4 + 2 3 0 β 1 3 − 2 4 5 8 β 1 2 + 9 9 9 β 1 1 − 2 4 7 1 β 1 0 + ⋯ + 3 5 1 0 ) / 2
(999*b15 - 230*b14 + 230*b13 - 2458*b12 + 999*b11 - 2471*b10 + 2281*b9 - 9491*b8 - 1229*b7 - 2471*b6 + 2471*b5 - 1640*b3 + 2458*b2 - 2228*b1 + 3510) / 2
ν 10 \nu^{10} ν 1 0 = = =
( − 2458 β 15 + 2458 β 11 + 2458 β 9 + 9155 β 7 − 5981 β 6 + ⋯ + 7183 β 3 ) / 2 ( - 2458 \beta_{15} + 2458 \beta_{11} + 2458 \beta_{9} + 9155 \beta_{7} - 5981 \beta_{6} + \cdots + 7183 \beta_{3} ) / 2 ( − 2 4 5 8 β 1 5 + 2 4 5 8 β 1 1 + 2 4 5 8 β 9 + 9 1 5 5 β 7 − 5 9 8 1 β 6 + ⋯ + 7 1 8 3 β 3 ) / 2
(-2458*b15 + 2458*b11 + 2458*b9 + 9155*b7 - 5981*b6 - 5981*b5 + 7183*b3) / 2
ν 11 \nu^{11} ν 1 1 = = =
( − 9155 β 15 − 2100 β 14 + 2100 β 13 + 22510 β 12 − 9155 β 11 + ⋯ + 31656 ) / 2 ( - 9155 \beta_{15} - 2100 \beta_{14} + 2100 \beta_{13} + 22510 \beta_{12} - 9155 \beta_{11} + \cdots + 31656 ) / 2 ( − 9 1 5 5 β 1 5 − 2 1 0 0 β 1 4 + 2 1 0 0 β 1 3 + 2 2 5 1 0 β 1 2 − 9 1 5 5 β 1 1 + ⋯ + 3 1 6 5 6 ) / 2
(-9155*b15 - 2100*b14 + 2100*b13 + 22510*b12 - 9155*b11 - 21961*b10 - 20401*b9 - 85273*b8 + 11255*b7 + 21961*b6 - 21961*b5 + 14778*b3 + 22510*b2 - 20410*b1 + 31656) / 2
ν 12 \nu^{12} ν 1 2 = = =
( − 105701 β 14 − 105701 β 13 + 53617 β 10 + 53617 β 8 + 107234 β 4 + ⋯ − 340501 ) / 2 ( - 105701 \beta_{14} - 105701 \beta_{13} + 53617 \beta_{10} + 53617 \beta_{8} + 107234 \beta_{4} + \cdots - 340501 ) / 2 ( − 1 0 5 7 0 1 β 1 4 − 1 0 5 7 0 1 β 1 3 + 5 3 6 1 7 β 1 0 + 5 3 6 1 7 β 8 + 1 0 7 2 3 4 β 4 + ⋯ − 3 4 0 5 0 1 ) / 2
(-105701*b14 - 105701*b13 + 53617*b10 + 53617*b8 + 107234*b4 - 45020*b2 + 60681*b1 - 340501) / 2
ν 13 \nu^{13} ν 1 3 = = =
( − 83191 β 15 + 18978 β 14 − 18978 β 13 + 204338 β 12 − 83191 β 11 + ⋯ − 285530 ) / 2 ( - 83191 \beta_{15} + 18978 \beta_{14} - 18978 \beta_{13} + 204338 \beta_{12} - 83191 \beta_{11} + \cdots - 285530 ) / 2 ( − 8 3 1 9 1 β 1 5 + 1 8 9 7 8 β 1 4 − 1 8 9 7 8 β 1 3 + 2 0 4 3 3 8 β 1 2 − 8 3 1 9 1 β 1 1 + ⋯ − 2 8 5 5 3 0 ) / 2
(-83191*b15 + 18978*b14 - 18978*b13 + 204338*b12 - 83191*b11 + 197059*b10 - 183361*b9 + 768119*b8 + 102169*b7 + 197059*b6 - 197059*b5 + 133276*b3 - 204338*b2 + 185360*b1 - 285530) / 2
ν 14 \nu^{14} ν 1 4 = = =
( 204338 β 15 − 204338 β 11 − 204338 β 9 − 753139 β 7 + 482589 β 6 + ⋯ − 572199 β 3 ) / 2 ( 204338 \beta_{15} - 204338 \beta_{11} - 204338 \beta_{9} - 753139 \beta_{7} + 482589 \beta_{6} + \cdots - 572199 \beta_{3} ) / 2 ( 2 0 4 3 3 8 β 1 5 − 2 0 4 3 3 8 β 1 1 − 2 0 4 3 3 8 β 9 − 7 5 3 1 3 9 β 7 + 4 8 2 5 8 9 β 6 + ⋯ − 5 7 2 1 9 9 β 3 ) / 2
(204338*b15 - 204338*b11 - 204338*b9 - 753139*b7 + 482589*b6 + 482589*b5 - 572199*b3) / 2
ν 15 \nu^{15} ν 1 5 = = =
( 753139 β 15 + 171232 β 14 − 171232 β 13 − 1848742 β 12 + 753139 β 11 + ⋯ − 2576476 ) / 2 ( 753139 \beta_{15} + 171232 \beta_{14} - 171232 \beta_{13} - 1848742 \beta_{12} + 753139 \beta_{11} + \cdots - 2576476 ) / 2 ( 7 5 3 1 3 9 β 1 5 + 1 7 1 2 3 2 β 1 4 − 1 7 1 2 3 2 β 1 3 − 1 8 4 8 7 4 2 β 1 2 + 7 5 3 1 3 9 β 1 1 + ⋯ − 2 5 7 6 4 7 6 ) / 2
(753139*b15 + 171232*b14 - 171232*b13 - 1848742*b12 + 753139*b11 + 1774821*b10 + 1652105*b9 + 6927773*b8 - 924371*b7 - 1774821*b6 + 1774821*b5 - 1202622*b3 - 1848742*b2 + 1677510*b1 - 2576476) / 2
Character values
We give the values of χ \chi χ on generators for ( Z / 1512 Z ) × \left(\mathbb{Z}/1512\mathbb{Z}\right)^\times ( Z / 1 5 1 2 Z ) × .
n n n
757 757 7 5 7
785 785 7 8 5
1081 1081 1 0 8 1
1135 1135 1 1 3 5
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
β 8 \beta_{8} β 8
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 5 16 + 32 T 5 14 + 716 T 5 12 + 7712 T 5 10 + 59536 T 5 8 + 264640 T 5 6 + ⋯ + 1048576 T_{5}^{16} + 32 T_{5}^{14} + 716 T_{5}^{12} + 7712 T_{5}^{10} + 59536 T_{5}^{8} + 264640 T_{5}^{6} + \cdots + 1048576 T 5 1 6 + 3 2 T 5 1 4 + 7 1 6 T 5 1 2 + 7 7 1 2 T 5 1 0 + 5 9 5 3 6 T 5 8 + 2 6 4 6 4 0 T 5 6 + ⋯ + 1 0 4 8 5 7 6
T5^16 + 32*T5^14 + 716*T5^12 + 7712*T5^10 + 59536*T5^8 + 264640*T5^6 + 833792*T5^4 + 1097728*T5^2 + 1048576
acting on S 2 n e w ( 1512 , [ χ ] ) S_{2}^{\mathrm{new}}(1512, [\chi]) S 2 n e w ( 1 5 1 2 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 16 T^{16} T 1 6
T^16
3 3 3
T 16 T^{16} T 1 6
T^16
5 5 5
T 16 + 32 T 14 + ⋯ + 1048576 T^{16} + 32 T^{14} + \cdots + 1048576 T 1 6 + 3 2 T 1 4 + ⋯ + 1 0 4 8 5 7 6
T^16 + 32*T^14 + 716*T^12 + 7712*T^10 + 59536*T^8 + 264640*T^6 + 833792*T^4 + 1097728*T^2 + 1048576
7 7 7
( T 8 + T 7 − 7 T 5 + ⋯ + 2401 ) 2 (T^{8} + T^{7} - 7 T^{5} + \cdots + 2401)^{2} ( T 8 + T 7 − 7 T 5 + ⋯ + 2 4 0 1 ) 2
(T^8 + T^7 - 7*T^5 - 82*T^4 - 49*T^3 + 343*T + 2401)^2
11 11 1 1
T 16 + ⋯ + 157351936 T^{16} + \cdots + 157351936 T 1 6 + ⋯ + 1 5 7 3 5 1 9 3 6
T^16 - 48*T^14 + 1516*T^12 - 27168*T^10 + 352656*T^8 - 2994240*T^6 + 18502912*T^4 - 66834432*T^2 + 157351936
13 13 1 3
( T 8 + 61 T 6 + ⋯ + 12544 ) 2 (T^{8} + 61 T^{6} + \cdots + 12544)^{2} ( T 8 + 6 1 T 6 + ⋯ + 1 2 5 4 4 ) 2
(T^8 + 61*T^6 + 1007*T^4 + 6179*T^2 + 12544)^2
17 17 1 7
T 16 + ⋯ + 533794816 T^{16} + \cdots + 533794816 T 1 6 + ⋯ + 5 3 3 7 9 4 8 1 6
T^16 + 76*T^14 + 4124*T^12 + 103216*T^10 + 1857232*T^8 + 14937728*T^6 + 86556416*T^4 + 258025472*T^2 + 533794816
19 19 1 9
( T 8 + 3 T 7 + ⋯ + 256 ) 2 (T^{8} + 3 T^{7} + \cdots + 256)^{2} ( T 8 + 3 T 7 + ⋯ + 2 5 6 ) 2
(T^8 + 3*T^7 - 23*T^6 - 78*T^5 + 620*T^4 + 1872*T^3 + 2144*T^2 + 1152*T + 256)^2
23 23 2 3
( T 4 − 4 T 2 + 16 ) 4 (T^{4} - 4 T^{2} + 16)^{4} ( T 4 − 4 T 2 + 1 6 ) 4
(T^4 - 4*T^2 + 16)^4
29 29 2 9
( T 8 + 252 T 6 + ⋯ + 1032256 ) 2 (T^{8} + 252 T^{6} + \cdots + 1032256)^{2} ( T 8 + 2 5 2 T 6 + ⋯ + 1 0 3 2 2 5 6 ) 2
(T^8 + 252*T^6 + 20372*T^4 + 528096*T^2 + 1032256)^2
31 31 3 1
( T 8 − 12 T 7 + ⋯ + 9409 ) 2 (T^{8} - 12 T^{7} + \cdots + 9409)^{2} ( T 8 − 1 2 T 7 + ⋯ + 9 4 0 9 ) 2
(T^8 - 12*T^7 + 4*T^6 + 528*T^5 + 113*T^4 - 21120*T^3 + 81068*T^2 - 46560*T + 9409)^2
37 37 3 7
( T 8 + 13 T 7 + ⋯ + 196 ) 2 (T^{8} + 13 T^{7} + \cdots + 196)^{2} ( T 8 + 1 3 T 7 + ⋯ + 1 9 6 ) 2
(T^8 + 13*T^7 + 178*T^6 + 529*T^5 + 4294*T^4 + 3271*T^3 + 104203*T^2 + 4522*T + 196)^2
41 41 4 1
( T 8 − 172 T 6 + ⋯ + 440896 ) 2 (T^{8} - 172 T^{6} + \cdots + 440896)^{2} ( T 8 − 1 7 2 T 6 + ⋯ + 4 4 0 8 9 6 ) 2
(T^8 - 172*T^6 + 8372*T^4 - 133280*T^2 + 440896)^2
43 43 4 3
( T + 1 ) 16 (T + 1)^{16} ( T + 1 ) 1 6
(T + 1)^16
47 47 4 7
T 16 + ⋯ + 578183827456 T^{16} + \cdots + 578183827456 T 1 6 + ⋯ + 5 7 8 1 8 3 8 2 7 4 5 6
T^16 + 212*T^14 + 31964*T^12 + 2228432*T^10 + 112247248*T^8 + 3073995904*T^6 + 58598264576*T^4 + 198965118976*T^2 + 578183827456
53 53 5 3
T 16 − 288 T 14 + ⋯ + 65536 T^{16} - 288 T^{14} + \cdots + 65536 T 1 6 − 2 8 8 T 1 4 + ⋯ + 6 5 5 3 6
T^16 - 288*T^14 + 61216*T^12 - 5830656*T^10 + 410616576*T^8 - 4638867456*T^6 + 45578395648*T^4 - 54657024*T^2 + 65536
59 59 5 9
T 16 + ⋯ + 1032386052096 T^{16} + \cdots + 1032386052096 T 1 6 + ⋯ + 1 0 3 2 3 8 6 0 5 2 0 9 6
T^16 + 144*T^14 + 13644*T^12 + 733536*T^10 + 28565136*T^8 + 727600320*T^6 + 13488622848*T^4 + 146166902784*T^2 + 1032386052096
61 61 6 1
( T 8 − 30 T 7 + ⋯ + 1996569 ) 2 (T^{8} - 30 T^{7} + \cdots + 1996569)^{2} ( T 8 − 3 0 T 7 + ⋯ + 1 9 9 6 5 6 9 ) 2
(T^8 - 30*T^7 + 282*T^6 + 540*T^5 - 14229*T^4 - 23652*T^3 + 550098*T^2 + 1856682*T + 1996569)^2
67 67 6 7
( T 8 − T 7 + 50 T 6 + ⋯ + 784 ) 2 (T^{8} - T^{7} + 50 T^{6} + \cdots + 784)^{2} ( T 8 − T 7 + 5 0 T 6 + ⋯ + 7 8 4 ) 2
(T^8 - T^7 + 50*T^6 - 169*T^5 + 2482*T^4 - 5285*T^3 + 13253*T^2 + 3052*T + 784)^2
71 71 7 1
( T 8 + 524 T 6 + ⋯ + 205520896 ) 2 (T^{8} + 524 T^{6} + \cdots + 205520896)^{2} ( T 8 + 5 2 4 T 6 + ⋯ + 2 0 5 5 2 0 8 9 6 ) 2
(T^8 + 524*T^6 + 97572*T^4 + 7588928*T^2 + 205520896)^2
73 73 7 3
( T 8 − 15 T 7 + ⋯ + 21381376 ) 2 (T^{8} - 15 T^{7} + \cdots + 21381376)^{2} ( T 8 − 1 5 T 7 + ⋯ + 2 1 3 8 1 3 7 6 ) 2
(T^8 - 15*T^7 - 73*T^6 + 2220*T^5 + 11228*T^4 - 452880*T^3 + 3805552*T^2 - 14149440*T + 21381376)^2
79 79 7 9
( T 8 − 5 T 7 + ⋯ + 839056 ) 2 (T^{8} - 5 T^{7} + \cdots + 839056)^{2} ( T 8 − 5 T 7 + ⋯ + 8 3 9 0 5 6 ) 2
(T^8 - 5*T^7 + 272*T^6 - 1523*T^5 + 66988*T^4 - 331453*T^3 + 2127893*T^2 + 1263164*T + 839056)^2
83 83 8 3
( T 8 − 244 T 6 + ⋯ + 3211264 ) 2 (T^{8} - 244 T^{6} + \cdots + 3211264)^{2} ( T 8 − 2 4 4 T 6 + ⋯ + 3 2 1 1 2 6 4 ) 2
(T^8 - 244*T^6 + 16112*T^4 - 395456*T^2 + 3211264)^2
89 89 8 9
T 16 + 376 T 14 + ⋯ + 65536 T^{16} + 376 T^{14} + \cdots + 65536 T 1 6 + 3 7 6 T 1 4 + ⋯ + 6 5 5 3 6
T^16 + 376*T^14 + 107372*T^12 + 12762496*T^10 + 1151946256*T^8 + 390989504*T^6 + 123636992*T^4 + 2945024*T^2 + 65536
97 97 9 7
( T 8 + 140 T 6 + ⋯ + 167281 ) 2 (T^{8} + 140 T^{6} + \cdots + 167281)^{2} ( T 8 + 1 4 0 T 6 + ⋯ + 1 6 7 2 8 1 ) 2
(T^8 + 140*T^6 + 5462*T^4 + 65452*T^2 + 167281)^2
show more
show less