Properties

Label 1512.2.bl.a
Level 15121512
Weight 22
Character orbit 1512.bl
Analytic conductor 12.07312.073
Analytic rank 00
Dimension 1616
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1512,2,Mod(593,1512)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1512, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1512.593"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 1512=23337 1512 = 2^{3} \cdot 3^{3} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1512.bl (of order 66, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,-2,0,0,0,0,0,0,0,0,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 12.073380785612.0733807856
Analytic rank: 00
Dimension: 1616
Relative dimension: 88 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x16+102x12+1769x8+8100x4+4096 x^{16} + 102x^{12} + 1769x^{8} + 8100x^{4} + 4096 Copy content Toggle raw display
Coefficient ring: Z[a1,,a25]\Z[a_1, \ldots, a_{25}]
Coefficient ring index: 210 2^{10}
Twist minimal: yes
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ5q5β2q7+(β12β7)q11+(β10+β8β2+1)q13+(β11β3)q17+(β14+β13+β1)q19++(β14+β13β10++2)q97+O(q100) q - \beta_{5} q^{5} - \beta_{2} q^{7} + ( - \beta_{12} - \beta_{7}) q^{11} + ( - \beta_{10} + \beta_{8} - \beta_{2} + \cdots - 1) q^{13} + (\beta_{11} - \beta_{3}) q^{17} + (\beta_{14} + \beta_{13} + \cdots - \beta_1) q^{19}+ \cdots + ( - \beta_{14} + \beta_{13} - \beta_{10} + \cdots + 2) q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q2q76q1924q25+24q3126q3716q43+2q49+60q61+2q67+30q73+10q7932q8584q91+O(q100) 16 q - 2 q^{7} - 6 q^{19} - 24 q^{25} + 24 q^{31} - 26 q^{37} - 16 q^{43} + 2 q^{49} + 60 q^{61} + 2 q^{67} + 30 q^{73} + 10 q^{79} - 32 q^{85} - 84 q^{91}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x16+102x12+1769x8+8100x4+4096 x^{16} + 102x^{12} + 1769x^{8} + 8100x^{4} + 4096 : Copy content Toggle raw display

β1\beta_{1}== (327ν15+5280ν13+41600ν1256522ν11+452032ν9++118536192)/33471488 ( - 327 \nu^{15} + 5280 \nu^{13} + 41600 \nu^{12} - 56522 \nu^{11} + 452032 \nu^{9} + \cdots + 118536192 ) / 33471488 Copy content Toggle raw display
β2\beta_{2}== (327ν155280ν13+41600ν12+56522ν11452032ν9++118536192)/33471488 ( 327 \nu^{15} - 5280 \nu^{13} + 41600 \nu^{12} + 56522 \nu^{11} - 452032 \nu^{9} + \cdots + 118536192 ) / 33471488 Copy content Toggle raw display
β3\beta_{3}== (549ν14+56510ν10+1027693ν6+6087412ν2)/2091968 ( 549\nu^{14} + 56510\nu^{10} + 1027693\nu^{6} + 6087412\nu^{2} ) / 2091968 Copy content Toggle raw display
β4\beta_{4}== (549ν157072ν12+56510ν11649824ν8+1027693ν75531584ν4++14324480)/8367872 ( 549 \nu^{15} - 7072 \nu^{12} + 56510 \nu^{11} - 649824 \nu^{8} + 1027693 \nu^{7} - 5531584 \nu^{4} + \cdots + 14324480 ) / 8367872 Copy content Toggle raw display
β5\beta_{5}== (549ν151064ν1456510ν1184752ν101027693ν7++4183936ν)/8367872 ( - 549 \nu^{15} - 1064 \nu^{14} - 56510 \nu^{11} - 84752 \nu^{10} - 1027693 \nu^{7} + \cdots + 4183936 \nu ) / 8367872 Copy content Toggle raw display
β6\beta_{6}== (549ν151064ν14+56510ν1184752ν10+1027693ν7+4183936ν)/8367872 ( 549 \nu^{15} - 1064 \nu^{14} + 56510 \nu^{11} - 84752 \nu^{10} + 1027693 \nu^{7} + \cdots - 4183936 \nu ) / 8367872 Copy content Toggle raw display
β7\beta_{7}== (2179ν14211906ν102908171ν68080812ν2)/2091968 ( -2179\nu^{14} - 211906\nu^{10} - 2908171\nu^{6} - 8080812\nu^{2} ) / 2091968 Copy content Toggle raw display
β8\beta_{8}== (5817ν154256ν13+621622ν11339008ν9+12889569ν7++33471488)/66942976 ( 5817 \nu^{15} - 4256 \nu^{13} + 621622 \nu^{11} - 339008 \nu^{9} + 12889569 \nu^{7} + \cdots + 33471488 ) / 66942976 Copy content Toggle raw display
β9\beta_{9}== (5817ν15+4392ν14+4256ν13+621622ν11+452080ν10+47979904ν)/33471488 ( 5817 \nu^{15} + 4392 \nu^{14} + 4256 \nu^{13} + 621622 \nu^{11} + 452080 \nu^{10} + \cdots - 47979904 \nu ) / 33471488 Copy content Toggle raw display
β10\beta_{10}== (14601ν15+4256ν131525782ν11+339008ν929332657ν7+33471488)/66942976 ( - 14601 \nu^{15} + 4256 \nu^{13} - 1525782 \nu^{11} + 339008 \nu^{9} - 29332657 \nu^{7} + \cdots - 33471488 ) / 66942976 Copy content Toggle raw display
β11\beta_{11}== (14465ν15+41736ν1426080ν13+1412710ν11+4181680ν10+48630144ν)/33471488 ( 14465 \nu^{15} + 41736 \nu^{14} - 26080 \nu^{13} + 1412710 \nu^{11} + 4181680 \nu^{10} + \cdots - 48630144 \nu ) / 33471488 Copy content Toggle raw display
β12\beta_{12}== (15119ν15+17432ν1415520ν13+1525754ν11+1695248ν10+69906048ν)/33471488 ( 15119 \nu^{15} + 17432 \nu^{14} - 15520 \nu^{13} + 1525754 \nu^{11} + 1695248 \nu^{10} + \cdots - 69906048 \nu ) / 33471488 Copy content Toggle raw display
β13\beta_{13}== (34747ν15+47904ν1364768ν12+3447042ν11+4633664ν9+150668288)/66942976 ( 34747 \nu^{15} + 47904 \nu^{13} - 64768 \nu^{12} + 3447042 \nu^{11} + 4633664 \nu^{9} + \cdots - 150668288 ) / 66942976 Copy content Toggle raw display
β14\beta_{14}== (35401ν1537344ν13+18432ν123560086ν113729600ν9++86404096)/66942976 ( - 35401 \nu^{15} - 37344 \nu^{13} + 18432 \nu^{12} - 3560086 \nu^{11} - 3729600 \nu^{9} + \cdots + 86404096 ) / 66942976 Copy content Toggle raw display
β15\beta_{15}== (10141ν1518672ν1410912ν13+1017166ν111864800ν10+48305024ν)/16735744 ( 10141 \nu^{15} - 18672 \nu^{14} - 10912 \nu^{13} + 1017166 \nu^{11} - 1864800 \nu^{10} + \cdots - 48305024 \nu ) / 16735744 Copy content Toggle raw display
ν\nu== (β10β8β6+β5)/2 ( -\beta_{10} - \beta_{8} - \beta_{6} + \beta_{5} ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β7β6β5+3β3)/2 ( \beta_{7} - \beta_{6} - \beta_{5} + 3\beta_{3} ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (β15+2β12β115β103β913β8+β7++4)/2 ( - \beta_{15} + 2 \beta_{12} - \beta_{11} - 5 \beta_{10} - 3 \beta_{9} - 13 \beta_{8} + \beta_{7} + \cdots + 4 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (13β1413β13+9β10+9β8+18β44β2+9β161)/2 ( -13\beta_{14} - 13\beta_{13} + 9\beta_{10} + 9\beta_{8} + 18\beta_{4} - 4\beta_{2} + 9\beta _1 - 61 ) / 2 Copy content Toggle raw display
ν5\nu^{5}== (11β15+2β142β13+26β1211β11+35β10+42)/2 ( - 11 \beta_{15} + 2 \beta_{14} - 2 \beta_{13} + 26 \beta_{12} - 11 \beta_{11} + 35 \beta_{10} + \cdots - 42 ) / 2 Copy content Toggle raw display
ν6\nu^{6}== (26β1526β1126β9107β7+77β6+77β5103β3)/2 ( 26\beta_{15} - 26\beta_{11} - 26\beta_{9} - 107\beta_{7} + 77\beta_{6} + 77\beta_{5} - 103\beta_{3} ) / 2 Copy content Toggle raw display
ν7\nu^{7}== (107β15+24β1424β13262β12+107β11+285β10+388)/2 ( 107 \beta_{15} + 24 \beta_{14} - 24 \beta_{13} - 262 \beta_{12} + 107 \beta_{11} + 285 \beta_{10} + \cdots - 388 ) / 2 Copy content Toggle raw display
ν8\nu^{8}== (1261β14+1261β13673β10673β81346β4+524β2++4269)/2 ( 1261 \beta_{14} + 1261 \beta_{13} - 673 \beta_{10} - 673 \beta_{8} - 1346 \beta_{4} + 524 \beta_{2} + \cdots + 4269 ) / 2 Copy content Toggle raw display
ν9\nu^{9}== (999β15230β14+230β132458β12+999β112471β10++3510)/2 ( 999 \beta_{15} - 230 \beta_{14} + 230 \beta_{13} - 2458 \beta_{12} + 999 \beta_{11} - 2471 \beta_{10} + \cdots + 3510 ) / 2 Copy content Toggle raw display
ν10\nu^{10}== (2458β15+2458β11+2458β9+9155β75981β6++7183β3)/2 ( - 2458 \beta_{15} + 2458 \beta_{11} + 2458 \beta_{9} + 9155 \beta_{7} - 5981 \beta_{6} + \cdots + 7183 \beta_{3} ) / 2 Copy content Toggle raw display
ν11\nu^{11}== (9155β152100β14+2100β13+22510β129155β11++31656)/2 ( - 9155 \beta_{15} - 2100 \beta_{14} + 2100 \beta_{13} + 22510 \beta_{12} - 9155 \beta_{11} + \cdots + 31656 ) / 2 Copy content Toggle raw display
ν12\nu^{12}== (105701β14105701β13+53617β10+53617β8+107234β4+340501)/2 ( - 105701 \beta_{14} - 105701 \beta_{13} + 53617 \beta_{10} + 53617 \beta_{8} + 107234 \beta_{4} + \cdots - 340501 ) / 2 Copy content Toggle raw display
ν13\nu^{13}== (83191β15+18978β1418978β13+204338β1283191β11+285530)/2 ( - 83191 \beta_{15} + 18978 \beta_{14} - 18978 \beta_{13} + 204338 \beta_{12} - 83191 \beta_{11} + \cdots - 285530 ) / 2 Copy content Toggle raw display
ν14\nu^{14}== (204338β15204338β11204338β9753139β7+482589β6+572199β3)/2 ( 204338 \beta_{15} - 204338 \beta_{11} - 204338 \beta_{9} - 753139 \beta_{7} + 482589 \beta_{6} + \cdots - 572199 \beta_{3} ) / 2 Copy content Toggle raw display
ν15\nu^{15}== (753139β15+171232β14171232β131848742β12+753139β11+2576476)/2 ( 753139 \beta_{15} + 171232 \beta_{14} - 171232 \beta_{13} - 1848742 \beta_{12} + 753139 \beta_{11} + \cdots - 2576476 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1512Z)×\left(\mathbb{Z}/1512\mathbb{Z}\right)^\times.

nn 757757 785785 10811081 11351135
χ(n)\chi(n) 11 1-1 β8\beta_{8} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
593.1
2.12464 + 2.12464i
1.35296 + 1.35296i
1.12962 1.12962i
0.615924 0.615924i
−0.615924 0.615924i
−1.12962 1.12962i
−1.35296 + 1.35296i
−2.12464 + 2.12464i
2.12464 2.12464i
1.35296 1.35296i
1.12962 + 1.12962i
0.615924 + 0.615924i
−0.615924 + 0.615924i
−1.12962 + 1.12962i
−1.35296 1.35296i
−2.12464 2.12464i
0 0 0 −2.12464 + 3.67999i 0 −0.715432 2.54719i 0 0 0
593.2 0 0 0 −1.35296 + 2.34339i 0 0.204106 + 2.63787i 0 0 0
593.3 0 0 0 −1.12962 + 1.95656i 0 2.62257 + 0.349446i 0 0 0
593.4 0 0 0 −0.615924 + 1.06681i 0 −2.61125 + 0.425899i 0 0 0
593.5 0 0 0 0.615924 1.06681i 0 −2.61125 + 0.425899i 0 0 0
593.6 0 0 0 1.12962 1.95656i 0 2.62257 + 0.349446i 0 0 0
593.7 0 0 0 1.35296 2.34339i 0 0.204106 + 2.63787i 0 0 0
593.8 0 0 0 2.12464 3.67999i 0 −0.715432 2.54719i 0 0 0
1025.1 0 0 0 −2.12464 3.67999i 0 −0.715432 + 2.54719i 0 0 0
1025.2 0 0 0 −1.35296 2.34339i 0 0.204106 2.63787i 0 0 0
1025.3 0 0 0 −1.12962 1.95656i 0 2.62257 0.349446i 0 0 0
1025.4 0 0 0 −0.615924 1.06681i 0 −2.61125 0.425899i 0 0 0
1025.5 0 0 0 0.615924 + 1.06681i 0 −2.61125 0.425899i 0 0 0
1025.6 0 0 0 1.12962 + 1.95656i 0 2.62257 0.349446i 0 0 0
1025.7 0 0 0 1.35296 + 2.34339i 0 0.204106 2.63787i 0 0 0
1025.8 0 0 0 2.12464 + 3.67999i 0 −0.715432 + 2.54719i 0 0 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 593.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.d odd 6 1 inner
21.g even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1512.2.bl.a 16
3.b odd 2 1 inner 1512.2.bl.a 16
7.d odd 6 1 inner 1512.2.bl.a 16
21.g even 6 1 inner 1512.2.bl.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1512.2.bl.a 16 1.a even 1 1 trivial
1512.2.bl.a 16 3.b odd 2 1 inner
1512.2.bl.a 16 7.d odd 6 1 inner
1512.2.bl.a 16 21.g even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T516+32T514+716T512+7712T510+59536T58+264640T56++1048576 T_{5}^{16} + 32 T_{5}^{14} + 716 T_{5}^{12} + 7712 T_{5}^{10} + 59536 T_{5}^{8} + 264640 T_{5}^{6} + \cdots + 1048576 acting on S2new(1512,[χ])S_{2}^{\mathrm{new}}(1512, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T16 T^{16} Copy content Toggle raw display
33 T16 T^{16} Copy content Toggle raw display
55 T16+32T14++1048576 T^{16} + 32 T^{14} + \cdots + 1048576 Copy content Toggle raw display
77 (T8+T77T5++2401)2 (T^{8} + T^{7} - 7 T^{5} + \cdots + 2401)^{2} Copy content Toggle raw display
1111 T16++157351936 T^{16} + \cdots + 157351936 Copy content Toggle raw display
1313 (T8+61T6++12544)2 (T^{8} + 61 T^{6} + \cdots + 12544)^{2} Copy content Toggle raw display
1717 T16++533794816 T^{16} + \cdots + 533794816 Copy content Toggle raw display
1919 (T8+3T7++256)2 (T^{8} + 3 T^{7} + \cdots + 256)^{2} Copy content Toggle raw display
2323 (T44T2+16)4 (T^{4} - 4 T^{2} + 16)^{4} Copy content Toggle raw display
2929 (T8+252T6++1032256)2 (T^{8} + 252 T^{6} + \cdots + 1032256)^{2} Copy content Toggle raw display
3131 (T812T7++9409)2 (T^{8} - 12 T^{7} + \cdots + 9409)^{2} Copy content Toggle raw display
3737 (T8+13T7++196)2 (T^{8} + 13 T^{7} + \cdots + 196)^{2} Copy content Toggle raw display
4141 (T8172T6++440896)2 (T^{8} - 172 T^{6} + \cdots + 440896)^{2} Copy content Toggle raw display
4343 (T+1)16 (T + 1)^{16} Copy content Toggle raw display
4747 T16++578183827456 T^{16} + \cdots + 578183827456 Copy content Toggle raw display
5353 T16288T14++65536 T^{16} - 288 T^{14} + \cdots + 65536 Copy content Toggle raw display
5959 T16++1032386052096 T^{16} + \cdots + 1032386052096 Copy content Toggle raw display
6161 (T830T7++1996569)2 (T^{8} - 30 T^{7} + \cdots + 1996569)^{2} Copy content Toggle raw display
6767 (T8T7+50T6++784)2 (T^{8} - T^{7} + 50 T^{6} + \cdots + 784)^{2} Copy content Toggle raw display
7171 (T8+524T6++205520896)2 (T^{8} + 524 T^{6} + \cdots + 205520896)^{2} Copy content Toggle raw display
7373 (T815T7++21381376)2 (T^{8} - 15 T^{7} + \cdots + 21381376)^{2} Copy content Toggle raw display
7979 (T85T7++839056)2 (T^{8} - 5 T^{7} + \cdots + 839056)^{2} Copy content Toggle raw display
8383 (T8244T6++3211264)2 (T^{8} - 244 T^{6} + \cdots + 3211264)^{2} Copy content Toggle raw display
8989 T16+376T14++65536 T^{16} + 376 T^{14} + \cdots + 65536 Copy content Toggle raw display
9797 (T8+140T6++167281)2 (T^{8} + 140 T^{6} + \cdots + 167281)^{2} Copy content Toggle raw display
show more
show less