gp: [N,k,chi] = [1512,2,Mod(1,1512)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1512, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1512.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [2,0,0,0,1,0,2,0,0,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of β = 1 2 ( 1 + 33 ) \beta = \frac{1}{2}(1 + \sqrt{33}) β = 2 1 ( 1 + 3 3 ) .
We also show the integral q q q -expansion of the trace form .
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
p p p
Sign
2 2 2
+ 1 +1 + 1
3 3 3
+ 1 +1 + 1
7 7 7
− 1 -1 − 1
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( Γ 0 ( 1512 ) ) S_{2}^{\mathrm{new}}(\Gamma_0(1512)) S 2 n e w ( Γ 0 ( 1 5 1 2 ) ) :
T 5 2 − T 5 − 8 T_{5}^{2} - T_{5} - 8 T 5 2 − T 5 − 8
T5^2 - T5 - 8
T 11 T_{11} T 1 1
T11
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 2 T^{2} T 2
T^2
3 3 3
T 2 T^{2} T 2
T^2
5 5 5
T 2 − T − 8 T^{2} - T - 8 T 2 − T − 8
T^2 - T - 8
7 7 7
( T − 1 ) 2 (T - 1)^{2} ( T − 1 ) 2
(T - 1)^2
11 11 1 1
T 2 T^{2} T 2
T^2
13 13 1 3
T 2 − 3 T − 6 T^{2} - 3T - 6 T 2 − 3 T − 6
T^2 - 3*T - 6
17 17 1 7
( T − 1 ) 2 (T - 1)^{2} ( T − 1 ) 2
(T - 1)^2
19 19 1 9
T 2 − 2 T − 32 T^{2} - 2T - 32 T 2 − 2 T − 3 2
T^2 - 2*T - 32
23 23 2 3
T 2 + 5 T − 2 T^{2} + 5T - 2 T 2 + 5 T − 2
T^2 + 5*T - 2
29 29 2 9
T 2 − 7 T + 4 T^{2} - 7T + 4 T 2 − 7 T + 4
T^2 - 7*T + 4
31 31 3 1
T 2 − 11 T + 22 T^{2} - 11T + 22 T 2 − 1 1 T + 2 2
T^2 - 11*T + 22
37 37 3 7
T 2 − 3 T − 6 T^{2} - 3T - 6 T 2 − 3 T − 6
T^2 - 3*T - 6
41 41 4 1
T 2 + 7 T − 62 T^{2} + 7T - 62 T 2 + 7 T − 6 2
T^2 + 7*T - 62
43 43 4 3
T 2 − 4 T − 29 T^{2} - 4T - 29 T 2 − 4 T − 2 9
T^2 - 4*T - 29
47 47 4 7
T 2 + 5 T − 2 T^{2} + 5T - 2 T 2 + 5 T − 2
T^2 + 5*T - 2
53 53 5 3
T 2 − 7 T − 62 T^{2} - 7T - 62 T 2 − 7 T − 6 2
T^2 - 7*T - 62
59 59 5 9
T 2 + 12 T + 3 T^{2} + 12T + 3 T 2 + 1 2 T + 3
T^2 + 12*T + 3
61 61 6 1
T 2 − 14 T + 16 T^{2} - 14T + 16 T 2 − 1 4 T + 1 6
T^2 - 14*T + 16
67 67 6 7
T 2 − 15 T + 48 T^{2} - 15T + 48 T 2 − 1 5 T + 4 8
T^2 - 15*T + 48
71 71 7 1
T 2 + 9 T + 12 T^{2} + 9T + 12 T 2 + 9 T + 1 2
T^2 + 9*T + 12
73 73 7 3
( T − 10 ) 2 (T - 10)^{2} ( T − 1 0 ) 2
(T - 10)^2
79 79 7 9
T 2 + T − 74 T^{2} + T - 74 T 2 + T − 7 4
T^2 + T - 74
83 83 8 3
T 2 − 3 T − 204 T^{2} - 3T - 204 T 2 − 3 T − 2 0 4
T^2 - 3*T - 204
89 89 8 9
T 2 − 11 T + 22 T^{2} - 11T + 22 T 2 − 1 1 T + 2 2
T^2 - 11*T + 22
97 97 9 7
T 2 + 4 T − 128 T^{2} + 4T - 128 T 2 + 4 T − 1 2 8
T^2 + 4*T - 128
show more
show less