Newspace parameters
Level: | \( N \) | \(=\) | \( 1500 = 2^{2} \cdot 3 \cdot 5^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1500.m (of order \(5\), degree \(4\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(11.9775603032\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{5})\) |
Twist minimal: | no (minimal twist has level 300) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
301.1 | 0 | 0.309017 | − | 0.951057i | 0 | 0 | 0 | −3.54704 | 0 | −0.809017 | − | 0.587785i | 0 | ||||||||||||||
301.2 | 0 | 0.309017 | − | 0.951057i | 0 | 0 | 0 | −1.31873 | 0 | −0.809017 | − | 0.587785i | 0 | ||||||||||||||
301.3 | 0 | 0.309017 | − | 0.951057i | 0 | 0 | 0 | −0.595901 | 0 | −0.809017 | − | 0.587785i | 0 | ||||||||||||||
301.4 | 0 | 0.309017 | − | 0.951057i | 0 | 0 | 0 | 1.04684 | 0 | −0.809017 | − | 0.587785i | 0 | ||||||||||||||
301.5 | 0 | 0.309017 | − | 0.951057i | 0 | 0 | 0 | 3.78808 | 0 | −0.809017 | − | 0.587785i | 0 | ||||||||||||||
301.6 | 0 | 0.309017 | − | 0.951057i | 0 | 0 | 0 | 4.62675 | 0 | −0.809017 | − | 0.587785i | 0 | ||||||||||||||
601.1 | 0 | −0.809017 | − | 0.587785i | 0 | 0 | 0 | −4.13266 | 0 | 0.309017 | + | 0.951057i | 0 | ||||||||||||||
601.2 | 0 | −0.809017 | − | 0.587785i | 0 | 0 | 0 | −1.57893 | 0 | 0.309017 | + | 0.951057i | 0 | ||||||||||||||
601.3 | 0 | −0.809017 | − | 0.587785i | 0 | 0 | 0 | −0.957526 | 0 | 0.309017 | + | 0.951057i | 0 | ||||||||||||||
601.4 | 0 | −0.809017 | − | 0.587785i | 0 | 0 | 0 | 2.44380 | 0 | 0.309017 | + | 0.951057i | 0 | ||||||||||||||
601.5 | 0 | −0.809017 | − | 0.587785i | 0 | 0 | 0 | 3.80992 | 0 | 0.309017 | + | 0.951057i | 0 | ||||||||||||||
601.6 | 0 | −0.809017 | − | 0.587785i | 0 | 0 | 0 | 4.41540 | 0 | 0.309017 | + | 0.951057i | 0 | ||||||||||||||
901.1 | 0 | −0.809017 | + | 0.587785i | 0 | 0 | 0 | −4.13266 | 0 | 0.309017 | − | 0.951057i | 0 | ||||||||||||||
901.2 | 0 | −0.809017 | + | 0.587785i | 0 | 0 | 0 | −1.57893 | 0 | 0.309017 | − | 0.951057i | 0 | ||||||||||||||
901.3 | 0 | −0.809017 | + | 0.587785i | 0 | 0 | 0 | −0.957526 | 0 | 0.309017 | − | 0.951057i | 0 | ||||||||||||||
901.4 | 0 | −0.809017 | + | 0.587785i | 0 | 0 | 0 | 2.44380 | 0 | 0.309017 | − | 0.951057i | 0 | ||||||||||||||
901.5 | 0 | −0.809017 | + | 0.587785i | 0 | 0 | 0 | 3.80992 | 0 | 0.309017 | − | 0.951057i | 0 | ||||||||||||||
901.6 | 0 | −0.809017 | + | 0.587785i | 0 | 0 | 0 | 4.41540 | 0 | 0.309017 | − | 0.951057i | 0 | ||||||||||||||
1201.1 | 0 | 0.309017 | + | 0.951057i | 0 | 0 | 0 | −3.54704 | 0 | −0.809017 | + | 0.587785i | 0 | ||||||||||||||
1201.2 | 0 | 0.309017 | + | 0.951057i | 0 | 0 | 0 | −1.31873 | 0 | −0.809017 | + | 0.587785i | 0 | ||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
25.d | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1500.2.m.c | 24 | |
5.b | even | 2 | 1 | 1500.2.m.d | 24 | ||
5.c | odd | 4 | 1 | 300.2.o.a | ✓ | 24 | |
5.c | odd | 4 | 1 | 1500.2.o.c | 24 | ||
15.e | even | 4 | 1 | 900.2.w.c | 24 | ||
25.d | even | 5 | 1 | inner | 1500.2.m.c | 24 | |
25.d | even | 5 | 1 | 7500.2.a.n | 12 | ||
25.e | even | 10 | 1 | 1500.2.m.d | 24 | ||
25.e | even | 10 | 1 | 7500.2.a.m | 12 | ||
25.f | odd | 20 | 1 | 300.2.o.a | ✓ | 24 | |
25.f | odd | 20 | 1 | 1500.2.o.c | 24 | ||
25.f | odd | 20 | 2 | 7500.2.d.g | 24 | ||
75.l | even | 20 | 1 | 900.2.w.c | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
300.2.o.a | ✓ | 24 | 5.c | odd | 4 | 1 | |
300.2.o.a | ✓ | 24 | 25.f | odd | 20 | 1 | |
900.2.w.c | 24 | 15.e | even | 4 | 1 | ||
900.2.w.c | 24 | 75.l | even | 20 | 1 | ||
1500.2.m.c | 24 | 1.a | even | 1 | 1 | trivial | |
1500.2.m.c | 24 | 25.d | even | 5 | 1 | inner | |
1500.2.m.d | 24 | 5.b | even | 2 | 1 | ||
1500.2.m.d | 24 | 25.e | even | 10 | 1 | ||
1500.2.o.c | 24 | 5.c | odd | 4 | 1 | ||
1500.2.o.c | 24 | 25.f | odd | 20 | 1 | ||
7500.2.a.m | 12 | 25.e | even | 10 | 1 | ||
7500.2.a.n | 12 | 25.d | even | 5 | 1 | ||
7500.2.d.g | 24 | 25.f | odd | 20 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \(T_{7}^{12} - \cdots\) acting on \(S_{2}^{\mathrm{new}}(1500, [\chi])\).