Newspace parameters
Level: | \( N \) | \(=\) | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 150.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(34.5081125430\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\zeta_{8})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{5} \) |
Twist minimal: | no (minimal twist has level 6) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring
\(\beta_{1}\) | \(=\) |
\( \zeta_{8}^{2} \)
|
\(\beta_{2}\) | \(=\) |
\( 4\zeta_{8}^{3} + 4\zeta_{8} \)
|
\(\beta_{3}\) | \(=\) |
\( -4\zeta_{8}^{3} + 4\zeta_{8} \)
|
\(\zeta_{8}\) | \(=\) |
\( ( \beta_{3} + \beta_{2} ) / 8 \)
|
\(\zeta_{8}^{2}\) | \(=\) |
\( \beta_1 \)
|
\(\zeta_{8}^{3}\) | \(=\) |
\( ( -\beta_{3} + \beta_{2} ) / 8 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(127\) |
\(\chi(n)\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
149.1 |
|
−5.65685 | 16.9706 | − | 21.0000i | 32.0000 | 0 | −96.0000 | + | 118.794i | 2.00000i | −181.019 | −153.000 | − | 712.764i | 0 | ||||||||||||||||||||||||
149.2 | −5.65685 | 16.9706 | + | 21.0000i | 32.0000 | 0 | −96.0000 | − | 118.794i | − | 2.00000i | −181.019 | −153.000 | + | 712.764i | 0 | ||||||||||||||||||||||||
149.3 | 5.65685 | −16.9706 | − | 21.0000i | 32.0000 | 0 | −96.0000 | − | 118.794i | 2.00000i | 181.019 | −153.000 | + | 712.764i | 0 | |||||||||||||||||||||||||
149.4 | 5.65685 | −16.9706 | + | 21.0000i | 32.0000 | 0 | −96.0000 | + | 118.794i | − | 2.00000i | 181.019 | −153.000 | − | 712.764i | 0 | ||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 150.7.b.a | 4 | |
3.b | odd | 2 | 1 | inner | 150.7.b.a | 4 | |
5.b | even | 2 | 1 | inner | 150.7.b.a | 4 | |
5.c | odd | 4 | 1 | 6.7.b.a | ✓ | 2 | |
5.c | odd | 4 | 1 | 150.7.d.a | 2 | ||
15.d | odd | 2 | 1 | inner | 150.7.b.a | 4 | |
15.e | even | 4 | 1 | 6.7.b.a | ✓ | 2 | |
15.e | even | 4 | 1 | 150.7.d.a | 2 | ||
20.e | even | 4 | 1 | 48.7.e.b | 2 | ||
35.f | even | 4 | 1 | 294.7.b.a | 2 | ||
40.i | odd | 4 | 1 | 192.7.e.c | 2 | ||
40.k | even | 4 | 1 | 192.7.e.f | 2 | ||
45.k | odd | 12 | 2 | 162.7.d.b | 4 | ||
45.l | even | 12 | 2 | 162.7.d.b | 4 | ||
60.l | odd | 4 | 1 | 48.7.e.b | 2 | ||
105.k | odd | 4 | 1 | 294.7.b.a | 2 | ||
120.q | odd | 4 | 1 | 192.7.e.f | 2 | ||
120.w | even | 4 | 1 | 192.7.e.c | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
6.7.b.a | ✓ | 2 | 5.c | odd | 4 | 1 | |
6.7.b.a | ✓ | 2 | 15.e | even | 4 | 1 | |
48.7.e.b | 2 | 20.e | even | 4 | 1 | ||
48.7.e.b | 2 | 60.l | odd | 4 | 1 | ||
150.7.b.a | 4 | 1.a | even | 1 | 1 | trivial | |
150.7.b.a | 4 | 3.b | odd | 2 | 1 | inner | |
150.7.b.a | 4 | 5.b | even | 2 | 1 | inner | |
150.7.b.a | 4 | 15.d | odd | 2 | 1 | inner | |
150.7.d.a | 2 | 5.c | odd | 4 | 1 | ||
150.7.d.a | 2 | 15.e | even | 4 | 1 | ||
162.7.d.b | 4 | 45.k | odd | 12 | 2 | ||
162.7.d.b | 4 | 45.l | even | 12 | 2 | ||
192.7.e.c | 2 | 40.i | odd | 4 | 1 | ||
192.7.e.c | 2 | 120.w | even | 4 | 1 | ||
192.7.e.f | 2 | 40.k | even | 4 | 1 | ||
192.7.e.f | 2 | 120.q | odd | 4 | 1 | ||
294.7.b.a | 2 | 35.f | even | 4 | 1 | ||
294.7.b.a | 2 | 105.k | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{2} + 4 \)
acting on \(S_{7}^{\mathrm{new}}(150, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} - 32)^{2} \)
$3$
\( T^{4} + 306 T^{2} + 531441 \)
$5$
\( T^{4} \)
$7$
\( (T^{2} + 4)^{2} \)
$11$
\( (T^{2} + 1152)^{2} \)
$13$
\( (T^{2} + 8702500)^{2} \)
$17$
\( (T^{2} - 20072448)^{2} \)
$19$
\( (T + 5258)^{4} \)
$23$
\( (T^{2} - 105067008)^{2} \)
$29$
\( (T^{2} + 4867200)^{2} \)
$31$
\( (T - 22898)^{4} \)
$37$
\( (T^{2} + 1159947364)^{2} \)
$41$
\( (T^{2} + 281129472)^{2} \)
$43$
\( (T^{2} + 41036836)^{2} \)
$47$
\( (T^{2} - 32359680000)^{2} \)
$53$
\( (T^{2} - 37074734208)^{2} \)
$59$
\( (T^{2} + 106810722432)^{2} \)
$61$
\( (T + 62566)^{4} \)
$67$
\( (T^{2} + 192455935204)^{2} \)
$71$
\( (T^{2} + 4654195200)^{2} \)
$73$
\( (T^{2} + 533644860100)^{2} \)
$79$
\( (T + 340562)^{4} \)
$83$
\( (T^{2} - 246267234432)^{2} \)
$89$
\( (T^{2} + 149556367872)^{2} \)
$97$
\( (T^{2} + 79009339396)^{2} \)
show more
show less