Properties

Label 150.6.a.d
Level $150$
Weight $6$
Character orbit 150.a
Self dual yes
Analytic conductor $24.058$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 150.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(24.0575729719\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 6)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 4q^{2} + 9q^{3} + 16q^{4} - 36q^{6} - 176q^{7} - 64q^{8} + 81q^{9} + O(q^{10}) \) \( q - 4q^{2} + 9q^{3} + 16q^{4} - 36q^{6} - 176q^{7} - 64q^{8} + 81q^{9} - 60q^{11} + 144q^{12} + 658q^{13} + 704q^{14} + 256q^{16} + 414q^{17} - 324q^{18} + 956q^{19} - 1584q^{21} + 240q^{22} - 600q^{23} - 576q^{24} - 2632q^{26} + 729q^{27} - 2816q^{28} + 5574q^{29} - 3592q^{31} - 1024q^{32} - 540q^{33} - 1656q^{34} + 1296q^{36} + 8458q^{37} - 3824q^{38} + 5922q^{39} + 19194q^{41} + 6336q^{42} - 13316q^{43} - 960q^{44} + 2400q^{46} + 19680q^{47} + 2304q^{48} + 14169q^{49} + 3726q^{51} + 10528q^{52} + 31266q^{53} - 2916q^{54} + 11264q^{56} + 8604q^{57} - 22296q^{58} + 26340q^{59} - 31090q^{61} + 14368q^{62} - 14256q^{63} + 4096q^{64} + 2160q^{66} + 16804q^{67} + 6624q^{68} - 5400q^{69} + 6120q^{71} - 5184q^{72} + 25558q^{73} - 33832q^{74} + 15296q^{76} + 10560q^{77} - 23688q^{78} + 74408q^{79} + 6561q^{81} - 76776q^{82} + 6468q^{83} - 25344q^{84} + 53264q^{86} + 50166q^{87} + 3840q^{88} - 32742q^{89} - 115808q^{91} - 9600q^{92} - 32328q^{93} - 78720q^{94} - 9216q^{96} - 166082q^{97} - 56676q^{98} - 4860q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−4.00000 9.00000 16.0000 0 −36.0000 −176.000 −64.0000 81.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(5\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.6.a.d 1
3.b odd 2 1 450.6.a.m 1
5.b even 2 1 6.6.a.a 1
5.c odd 4 2 150.6.c.b 2
15.d odd 2 1 18.6.a.b 1
15.e even 4 2 450.6.c.j 2
20.d odd 2 1 48.6.a.c 1
35.c odd 2 1 294.6.a.m 1
35.i odd 6 2 294.6.e.a 2
35.j even 6 2 294.6.e.g 2
40.e odd 2 1 192.6.a.g 1
40.f even 2 1 192.6.a.o 1
45.h odd 6 2 162.6.c.h 2
45.j even 6 2 162.6.c.e 2
55.d odd 2 1 726.6.a.a 1
60.h even 2 1 144.6.a.j 1
65.d even 2 1 1014.6.a.c 1
80.k odd 4 2 768.6.d.p 2
80.q even 4 2 768.6.d.c 2
105.g even 2 1 882.6.a.a 1
120.i odd 2 1 576.6.a.j 1
120.m even 2 1 576.6.a.i 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.6.a.a 1 5.b even 2 1
18.6.a.b 1 15.d odd 2 1
48.6.a.c 1 20.d odd 2 1
144.6.a.j 1 60.h even 2 1
150.6.a.d 1 1.a even 1 1 trivial
150.6.c.b 2 5.c odd 4 2
162.6.c.e 2 45.j even 6 2
162.6.c.h 2 45.h odd 6 2
192.6.a.g 1 40.e odd 2 1
192.6.a.o 1 40.f even 2 1
294.6.a.m 1 35.c odd 2 1
294.6.e.a 2 35.i odd 6 2
294.6.e.g 2 35.j even 6 2
450.6.a.m 1 3.b odd 2 1
450.6.c.j 2 15.e even 4 2
576.6.a.i 1 120.m even 2 1
576.6.a.j 1 120.i odd 2 1
726.6.a.a 1 55.d odd 2 1
768.6.d.c 2 80.q even 4 2
768.6.d.p 2 80.k odd 4 2
882.6.a.a 1 105.g even 2 1
1014.6.a.c 1 65.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} + 176 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(150))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 4 + T \)
$3$ \( -9 + T \)
$5$ \( T \)
$7$ \( 176 + T \)
$11$ \( 60 + T \)
$13$ \( -658 + T \)
$17$ \( -414 + T \)
$19$ \( -956 + T \)
$23$ \( 600 + T \)
$29$ \( -5574 + T \)
$31$ \( 3592 + T \)
$37$ \( -8458 + T \)
$41$ \( -19194 + T \)
$43$ \( 13316 + T \)
$47$ \( -19680 + T \)
$53$ \( -31266 + T \)
$59$ \( -26340 + T \)
$61$ \( 31090 + T \)
$67$ \( -16804 + T \)
$71$ \( -6120 + T \)
$73$ \( -25558 + T \)
$79$ \( -74408 + T \)
$83$ \( -6468 + T \)
$89$ \( 32742 + T \)
$97$ \( 166082 + T \)
show more
show less