Properties

Label 150.4.g
Level $150$
Weight $4$
Character orbit 150.g
Rep. character $\chi_{150}(31,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $64$
Newform subspaces $4$
Sturm bound $120$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 150.g (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 25 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 4 \)
Sturm bound: \(120\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(150, [\chi])\).

Total New Old
Modular forms 376 64 312
Cusp forms 344 64 280
Eisenstein series 32 0 32

Trace form

\( 64 q + 4 q^{2} - 64 q^{4} - 6 q^{5} - 12 q^{6} + 4 q^{7} + 16 q^{8} - 144 q^{9} + 32 q^{10} - 168 q^{11} - 44 q^{13} + 18 q^{15} - 256 q^{16} - 316 q^{17} - 144 q^{18} - 148 q^{19} - 224 q^{20} - 84 q^{21}+ \cdots + 1008 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(150, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
150.4.g.a 150.g 25.d $12$ $8.850$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 150.4.g.a \(-6\) \(9\) \(-10\) \(-44\) $\mathrm{SU}(2)[C_{5}]$ \(q-2\beta _{1}q^{2}+(3-3\beta _{1}+3\beta _{3}+3\beta _{5}+\cdots)q^{3}+\cdots\)
150.4.g.b 150.g 25.d $16$ $8.850$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 150.4.g.b \(-8\) \(-12\) \(15\) \(46\) $\mathrm{SU}(2)[C_{5}]$ \(q-2\beta _{6}q^{2}+(-3+3\beta _{4}+3\beta _{5}+3\beta _{6}+\cdots)q^{3}+\cdots\)
150.4.g.c 150.g 25.d $16$ $8.850$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 150.4.g.c \(8\) \(-12\) \(5\) \(12\) $\mathrm{SU}(2)[C_{5}]$ \(q+(2-2\beta _{1}+2\beta _{2}-2\beta _{3})q^{2}-3\beta _{1}q^{3}+\cdots\)
150.4.g.d 150.g 25.d $20$ $8.850$ \(\mathbb{Q}[x]/(x^{20} - \cdots)\) None 150.4.g.d \(10\) \(15\) \(-16\) \(-10\) $\mathrm{SU}(2)[C_{5}]$ \(q-2\beta _{3}q^{2}+3\beta _{5}q^{3}-4\beta _{5}q^{4}+(\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(150, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(150, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)