Defining parameters
| Level: | \( N \) | \(=\) | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 150.g (of order \(5\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 25 \) |
| Character field: | \(\Q(\zeta_{5})\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(120\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(150, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 376 | 64 | 312 |
| Cusp forms | 344 | 64 | 280 |
| Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(150, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 150.4.g.a | $12$ | $8.850$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(-6\) | \(9\) | \(-10\) | \(-44\) | \(q-2\beta _{1}q^{2}+(3-3\beta _{1}+3\beta _{3}+3\beta _{5}+\cdots)q^{3}+\cdots\) |
| 150.4.g.b | $16$ | $8.850$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(-8\) | \(-12\) | \(15\) | \(46\) | \(q-2\beta _{6}q^{2}+(-3+3\beta _{4}+3\beta _{5}+3\beta _{6}+\cdots)q^{3}+\cdots\) |
| 150.4.g.c | $16$ | $8.850$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(8\) | \(-12\) | \(5\) | \(12\) | \(q+(2-2\beta _{1}+2\beta _{2}-2\beta _{3})q^{2}-3\beta _{1}q^{3}+\cdots\) |
| 150.4.g.d | $20$ | $8.850$ | \(\mathbb{Q}[x]/(x^{20} - \cdots)\) | None | \(10\) | \(15\) | \(-16\) | \(-10\) | \(q-2\beta _{3}q^{2}+3\beta _{5}q^{3}-4\beta _{5}q^{4}+(\beta _{2}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(150, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(150, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)