Properties

Label 150.4.c.b.49.1
Level $150$
Weight $4$
Character 150.49
Analytic conductor $8.850$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,4,Mod(49,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.49");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 150.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.85028650086\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 150.49
Dual form 150.4.c.b.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} -3.00000i q^{3} -4.00000 q^{4} -6.00000 q^{6} -23.0000i q^{7} +8.00000i q^{8} -9.00000 q^{9} -30.0000 q^{11} +12.0000i q^{12} +29.0000i q^{13} -46.0000 q^{14} +16.0000 q^{16} -78.0000i q^{17} +18.0000i q^{18} -149.000 q^{19} -69.0000 q^{21} +60.0000i q^{22} +150.000i q^{23} +24.0000 q^{24} +58.0000 q^{26} +27.0000i q^{27} +92.0000i q^{28} +234.000 q^{29} -217.000 q^{31} -32.0000i q^{32} +90.0000i q^{33} -156.000 q^{34} +36.0000 q^{36} -146.000i q^{37} +298.000i q^{38} +87.0000 q^{39} -156.000 q^{41} +138.000i q^{42} -433.000i q^{43} +120.000 q^{44} +300.000 q^{46} -30.0000i q^{47} -48.0000i q^{48} -186.000 q^{49} -234.000 q^{51} -116.000i q^{52} -552.000i q^{53} +54.0000 q^{54} +184.000 q^{56} +447.000i q^{57} -468.000i q^{58} +270.000 q^{59} +275.000 q^{61} +434.000i q^{62} +207.000i q^{63} -64.0000 q^{64} +180.000 q^{66} -803.000i q^{67} +312.000i q^{68} +450.000 q^{69} +660.000 q^{71} -72.0000i q^{72} -646.000i q^{73} -292.000 q^{74} +596.000 q^{76} +690.000i q^{77} -174.000i q^{78} -992.000 q^{79} +81.0000 q^{81} +312.000i q^{82} -846.000i q^{83} +276.000 q^{84} -866.000 q^{86} -702.000i q^{87} -240.000i q^{88} +1488.00 q^{89} +667.000 q^{91} -600.000i q^{92} +651.000i q^{93} -60.0000 q^{94} -96.0000 q^{96} +319.000i q^{97} +372.000i q^{98} +270.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} - 12 q^{6} - 18 q^{9} - 60 q^{11} - 92 q^{14} + 32 q^{16} - 298 q^{19} - 138 q^{21} + 48 q^{24} + 116 q^{26} + 468 q^{29} - 434 q^{31} - 312 q^{34} + 72 q^{36} + 174 q^{39} - 312 q^{41} + 240 q^{44}+ \cdots + 540 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.00000i − 0.707107i
\(3\) − 3.00000i − 0.577350i
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) −6.00000 −0.408248
\(7\) − 23.0000i − 1.24188i −0.783857 0.620942i \(-0.786750\pi\)
0.783857 0.620942i \(-0.213250\pi\)
\(8\) 8.00000i 0.353553i
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) −30.0000 −0.822304 −0.411152 0.911567i \(-0.634873\pi\)
−0.411152 + 0.911567i \(0.634873\pi\)
\(12\) 12.0000i 0.288675i
\(13\) 29.0000i 0.618704i 0.950948 + 0.309352i \(0.100112\pi\)
−0.950948 + 0.309352i \(0.899888\pi\)
\(14\) −46.0000 −0.878144
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) − 78.0000i − 1.11281i −0.830911 0.556405i \(-0.812180\pi\)
0.830911 0.556405i \(-0.187820\pi\)
\(18\) 18.0000i 0.235702i
\(19\) −149.000 −1.79910 −0.899551 0.436815i \(-0.856106\pi\)
−0.899551 + 0.436815i \(0.856106\pi\)
\(20\) 0 0
\(21\) −69.0000 −0.717002
\(22\) 60.0000i 0.581456i
\(23\) 150.000i 1.35988i 0.733269 + 0.679938i \(0.237993\pi\)
−0.733269 + 0.679938i \(0.762007\pi\)
\(24\) 24.0000 0.204124
\(25\) 0 0
\(26\) 58.0000 0.437490
\(27\) 27.0000i 0.192450i
\(28\) 92.0000i 0.620942i
\(29\) 234.000 1.49837 0.749185 0.662361i \(-0.230446\pi\)
0.749185 + 0.662361i \(0.230446\pi\)
\(30\) 0 0
\(31\) −217.000 −1.25724 −0.628619 0.777714i \(-0.716379\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) − 32.0000i − 0.176777i
\(33\) 90.0000i 0.474757i
\(34\) −156.000 −0.786876
\(35\) 0 0
\(36\) 36.0000 0.166667
\(37\) − 146.000i − 0.648710i −0.945936 0.324355i \(-0.894853\pi\)
0.945936 0.324355i \(-0.105147\pi\)
\(38\) 298.000i 1.27216i
\(39\) 87.0000 0.357209
\(40\) 0 0
\(41\) −156.000 −0.594222 −0.297111 0.954843i \(-0.596023\pi\)
−0.297111 + 0.954843i \(0.596023\pi\)
\(42\) 138.000i 0.506997i
\(43\) − 433.000i − 1.53563i −0.640675 0.767813i \(-0.721345\pi\)
0.640675 0.767813i \(-0.278655\pi\)
\(44\) 120.000 0.411152
\(45\) 0 0
\(46\) 300.000 0.961578
\(47\) − 30.0000i − 0.0931053i −0.998916 0.0465527i \(-0.985176\pi\)
0.998916 0.0465527i \(-0.0148235\pi\)
\(48\) − 48.0000i − 0.144338i
\(49\) −186.000 −0.542274
\(50\) 0 0
\(51\) −234.000 −0.642481
\(52\) − 116.000i − 0.309352i
\(53\) − 552.000i − 1.43062i −0.698806 0.715312i \(-0.746285\pi\)
0.698806 0.715312i \(-0.253715\pi\)
\(54\) 54.0000 0.136083
\(55\) 0 0
\(56\) 184.000 0.439072
\(57\) 447.000i 1.03871i
\(58\) − 468.000i − 1.05951i
\(59\) 270.000 0.595780 0.297890 0.954600i \(-0.403717\pi\)
0.297890 + 0.954600i \(0.403717\pi\)
\(60\) 0 0
\(61\) 275.000 0.577215 0.288608 0.957447i \(-0.406808\pi\)
0.288608 + 0.957447i \(0.406808\pi\)
\(62\) 434.000i 0.889001i
\(63\) 207.000i 0.413961i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) 180.000 0.335704
\(67\) − 803.000i − 1.46421i −0.681192 0.732105i \(-0.738538\pi\)
0.681192 0.732105i \(-0.261462\pi\)
\(68\) 312.000i 0.556405i
\(69\) 450.000 0.785125
\(70\) 0 0
\(71\) 660.000 1.10321 0.551603 0.834107i \(-0.314016\pi\)
0.551603 + 0.834107i \(0.314016\pi\)
\(72\) − 72.0000i − 0.117851i
\(73\) − 646.000i − 1.03573i −0.855461 0.517867i \(-0.826726\pi\)
0.855461 0.517867i \(-0.173274\pi\)
\(74\) −292.000 −0.458707
\(75\) 0 0
\(76\) 596.000 0.899551
\(77\) 690.000i 1.02121i
\(78\) − 174.000i − 0.252585i
\(79\) −992.000 −1.41277 −0.706384 0.707829i \(-0.749675\pi\)
−0.706384 + 0.707829i \(0.749675\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 312.000i 0.420178i
\(83\) − 846.000i − 1.11880i −0.828897 0.559401i \(-0.811031\pi\)
0.828897 0.559401i \(-0.188969\pi\)
\(84\) 276.000 0.358501
\(85\) 0 0
\(86\) −866.000 −1.08585
\(87\) − 702.000i − 0.865084i
\(88\) − 240.000i − 0.290728i
\(89\) 1488.00 1.77222 0.886111 0.463474i \(-0.153397\pi\)
0.886111 + 0.463474i \(0.153397\pi\)
\(90\) 0 0
\(91\) 667.000 0.768358
\(92\) − 600.000i − 0.679938i
\(93\) 651.000i 0.725866i
\(94\) −60.0000 −0.0658354
\(95\) 0 0
\(96\) −96.0000 −0.102062
\(97\) 319.000i 0.333913i 0.985964 + 0.166956i \(0.0533939\pi\)
−0.985964 + 0.166956i \(0.946606\pi\)
\(98\) 372.000i 0.383446i
\(99\) 270.000 0.274101
\(100\) 0 0
\(101\) −792.000 −0.780267 −0.390133 0.920758i \(-0.627571\pi\)
−0.390133 + 0.920758i \(0.627571\pi\)
\(102\) 468.000i 0.454303i
\(103\) 812.000i 0.776784i 0.921494 + 0.388392i \(0.126969\pi\)
−0.921494 + 0.388392i \(0.873031\pi\)
\(104\) −232.000 −0.218745
\(105\) 0 0
\(106\) −1104.00 −1.01160
\(107\) 1416.00i 1.27934i 0.768648 + 0.639672i \(0.220930\pi\)
−0.768648 + 0.639672i \(0.779070\pi\)
\(108\) − 108.000i − 0.0962250i
\(109\) 55.0000 0.0483307 0.0241653 0.999708i \(-0.492307\pi\)
0.0241653 + 0.999708i \(0.492307\pi\)
\(110\) 0 0
\(111\) −438.000 −0.374533
\(112\) − 368.000i − 0.310471i
\(113\) 1404.00i 1.16882i 0.811457 + 0.584412i \(0.198675\pi\)
−0.811457 + 0.584412i \(0.801325\pi\)
\(114\) 894.000 0.734480
\(115\) 0 0
\(116\) −936.000 −0.749185
\(117\) − 261.000i − 0.206235i
\(118\) − 540.000i − 0.421280i
\(119\) −1794.00 −1.38198
\(120\) 0 0
\(121\) −431.000 −0.323817
\(122\) − 550.000i − 0.408153i
\(123\) 468.000i 0.343074i
\(124\) 868.000 0.628619
\(125\) 0 0
\(126\) 414.000 0.292715
\(127\) − 1280.00i − 0.894344i −0.894448 0.447172i \(-0.852431\pi\)
0.894448 0.447172i \(-0.147569\pi\)
\(128\) 128.000i 0.0883883i
\(129\) −1299.00 −0.886594
\(130\) 0 0
\(131\) 480.000 0.320136 0.160068 0.987106i \(-0.448829\pi\)
0.160068 + 0.987106i \(0.448829\pi\)
\(132\) − 360.000i − 0.237379i
\(133\) 3427.00i 2.23428i
\(134\) −1606.00 −1.03535
\(135\) 0 0
\(136\) 624.000 0.393438
\(137\) 282.000i 0.175860i 0.996127 + 0.0879302i \(0.0280253\pi\)
−0.996127 + 0.0879302i \(0.971975\pi\)
\(138\) − 900.000i − 0.555167i
\(139\) −1604.00 −0.978773 −0.489387 0.872067i \(-0.662779\pi\)
−0.489387 + 0.872067i \(0.662779\pi\)
\(140\) 0 0
\(141\) −90.0000 −0.0537544
\(142\) − 1320.00i − 0.780084i
\(143\) − 870.000i − 0.508763i
\(144\) −144.000 −0.0833333
\(145\) 0 0
\(146\) −1292.00 −0.732375
\(147\) 558.000i 0.313082i
\(148\) 584.000i 0.324355i
\(149\) 774.000 0.425561 0.212780 0.977100i \(-0.431748\pi\)
0.212780 + 0.977100i \(0.431748\pi\)
\(150\) 0 0
\(151\) 293.000 0.157907 0.0789536 0.996878i \(-0.474842\pi\)
0.0789536 + 0.996878i \(0.474842\pi\)
\(152\) − 1192.00i − 0.636079i
\(153\) 702.000i 0.370937i
\(154\) 1380.00 0.722101
\(155\) 0 0
\(156\) −348.000 −0.178604
\(157\) 1729.00i 0.878912i 0.898264 + 0.439456i \(0.144829\pi\)
−0.898264 + 0.439456i \(0.855171\pi\)
\(158\) 1984.00i 0.998978i
\(159\) −1656.00 −0.825971
\(160\) 0 0
\(161\) 3450.00 1.68881
\(162\) − 162.000i − 0.0785674i
\(163\) − 1123.00i − 0.539633i −0.962912 0.269816i \(-0.913037\pi\)
0.962912 0.269816i \(-0.0869630\pi\)
\(164\) 624.000 0.297111
\(165\) 0 0
\(166\) −1692.00 −0.791112
\(167\) − 1200.00i − 0.556041i −0.960575 0.278020i \(-0.910322\pi\)
0.960575 0.278020i \(-0.0896783\pi\)
\(168\) − 552.000i − 0.253498i
\(169\) 1356.00 0.617205
\(170\) 0 0
\(171\) 1341.00 0.599701
\(172\) 1732.00i 0.767813i
\(173\) − 1734.00i − 0.762044i −0.924566 0.381022i \(-0.875572\pi\)
0.924566 0.381022i \(-0.124428\pi\)
\(174\) −1404.00 −0.611707
\(175\) 0 0
\(176\) −480.000 −0.205576
\(177\) − 810.000i − 0.343974i
\(178\) − 2976.00i − 1.25315i
\(179\) −2586.00 −1.07981 −0.539907 0.841725i \(-0.681541\pi\)
−0.539907 + 0.841725i \(0.681541\pi\)
\(180\) 0 0
\(181\) −3931.00 −1.61430 −0.807152 0.590344i \(-0.798992\pi\)
−0.807152 + 0.590344i \(0.798992\pi\)
\(182\) − 1334.00i − 0.543311i
\(183\) − 825.000i − 0.333255i
\(184\) −1200.00 −0.480789
\(185\) 0 0
\(186\) 1302.00 0.513265
\(187\) 2340.00i 0.915068i
\(188\) 120.000i 0.0465527i
\(189\) 621.000 0.239001
\(190\) 0 0
\(191\) 1566.00 0.593255 0.296628 0.954993i \(-0.404138\pi\)
0.296628 + 0.954993i \(0.404138\pi\)
\(192\) 192.000i 0.0721688i
\(193\) 2291.00i 0.854455i 0.904144 + 0.427227i \(0.140510\pi\)
−0.904144 + 0.427227i \(0.859490\pi\)
\(194\) 638.000 0.236112
\(195\) 0 0
\(196\) 744.000 0.271137
\(197\) − 2142.00i − 0.774676i −0.921938 0.387338i \(-0.873395\pi\)
0.921938 0.387338i \(-0.126605\pi\)
\(198\) − 540.000i − 0.193819i
\(199\) 4903.00 1.74656 0.873278 0.487223i \(-0.161990\pi\)
0.873278 + 0.487223i \(0.161990\pi\)
\(200\) 0 0
\(201\) −2409.00 −0.845362
\(202\) 1584.00i 0.551732i
\(203\) − 5382.00i − 1.86080i
\(204\) 936.000 0.321241
\(205\) 0 0
\(206\) 1624.00 0.549269
\(207\) − 1350.00i − 0.453292i
\(208\) 464.000i 0.154676i
\(209\) 4470.00 1.47941
\(210\) 0 0
\(211\) 605.000 0.197393 0.0986965 0.995118i \(-0.468533\pi\)
0.0986965 + 0.995118i \(0.468533\pi\)
\(212\) 2208.00i 0.715312i
\(213\) − 1980.00i − 0.636936i
\(214\) 2832.00 0.904633
\(215\) 0 0
\(216\) −216.000 −0.0680414
\(217\) 4991.00i 1.56134i
\(218\) − 110.000i − 0.0341750i
\(219\) −1938.00 −0.597981
\(220\) 0 0
\(221\) 2262.00 0.688500
\(222\) 876.000i 0.264835i
\(223\) − 145.000i − 0.0435422i −0.999763 0.0217711i \(-0.993069\pi\)
0.999763 0.0217711i \(-0.00693051\pi\)
\(224\) −736.000 −0.219536
\(225\) 0 0
\(226\) 2808.00 0.826484
\(227\) − 2964.00i − 0.866641i −0.901240 0.433321i \(-0.857342\pi\)
0.901240 0.433321i \(-0.142658\pi\)
\(228\) − 1788.00i − 0.519356i
\(229\) 5635.00 1.62608 0.813038 0.582211i \(-0.197812\pi\)
0.813038 + 0.582211i \(0.197812\pi\)
\(230\) 0 0
\(231\) 2070.00 0.589593
\(232\) 1872.00i 0.529754i
\(233\) 4164.00i 1.17078i 0.810750 + 0.585392i \(0.199059\pi\)
−0.810750 + 0.585392i \(0.800941\pi\)
\(234\) −522.000 −0.145830
\(235\) 0 0
\(236\) −1080.00 −0.297890
\(237\) 2976.00i 0.815662i
\(238\) 3588.00i 0.977208i
\(239\) 1944.00 0.526138 0.263069 0.964777i \(-0.415265\pi\)
0.263069 + 0.964777i \(0.415265\pi\)
\(240\) 0 0
\(241\) 857.000 0.229063 0.114532 0.993420i \(-0.463463\pi\)
0.114532 + 0.993420i \(0.463463\pi\)
\(242\) 862.000i 0.228973i
\(243\) − 243.000i − 0.0641500i
\(244\) −1100.00 −0.288608
\(245\) 0 0
\(246\) 936.000 0.242590
\(247\) − 4321.00i − 1.11311i
\(248\) − 1736.00i − 0.444500i
\(249\) −2538.00 −0.645941
\(250\) 0 0
\(251\) −3924.00 −0.986776 −0.493388 0.869809i \(-0.664242\pi\)
−0.493388 + 0.869809i \(0.664242\pi\)
\(252\) − 828.000i − 0.206981i
\(253\) − 4500.00i − 1.11823i
\(254\) −2560.00 −0.632396
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 2844.00i 0.690287i 0.938550 + 0.345144i \(0.112170\pi\)
−0.938550 + 0.345144i \(0.887830\pi\)
\(258\) 2598.00i 0.626916i
\(259\) −3358.00 −0.805621
\(260\) 0 0
\(261\) −2106.00 −0.499456
\(262\) − 960.000i − 0.226370i
\(263\) − 6060.00i − 1.42082i −0.703788 0.710410i \(-0.748510\pi\)
0.703788 0.710410i \(-0.251490\pi\)
\(264\) −720.000 −0.167852
\(265\) 0 0
\(266\) 6854.00 1.57987
\(267\) − 4464.00i − 1.02319i
\(268\) 3212.00i 0.732105i
\(269\) −3906.00 −0.885327 −0.442664 0.896688i \(-0.645966\pi\)
−0.442664 + 0.896688i \(0.645966\pi\)
\(270\) 0 0
\(271\) 2144.00 0.480586 0.240293 0.970700i \(-0.422757\pi\)
0.240293 + 0.970700i \(0.422757\pi\)
\(272\) − 1248.00i − 0.278203i
\(273\) − 2001.00i − 0.443612i
\(274\) 564.000 0.124352
\(275\) 0 0
\(276\) −1800.00 −0.392563
\(277\) − 2321.00i − 0.503449i −0.967799 0.251725i \(-0.919002\pi\)
0.967799 0.251725i \(-0.0809977\pi\)
\(278\) 3208.00i 0.692097i
\(279\) 1953.00 0.419079
\(280\) 0 0
\(281\) −6822.00 −1.44828 −0.724140 0.689654i \(-0.757763\pi\)
−0.724140 + 0.689654i \(0.757763\pi\)
\(282\) 180.000i 0.0380101i
\(283\) 4049.00i 0.850488i 0.905079 + 0.425244i \(0.139812\pi\)
−0.905079 + 0.425244i \(0.860188\pi\)
\(284\) −2640.00 −0.551603
\(285\) 0 0
\(286\) −1740.00 −0.359749
\(287\) 3588.00i 0.737955i
\(288\) 288.000i 0.0589256i
\(289\) −1171.00 −0.238347
\(290\) 0 0
\(291\) 957.000 0.192785
\(292\) 2584.00i 0.517867i
\(293\) 2238.00i 0.446230i 0.974792 + 0.223115i \(0.0716225\pi\)
−0.974792 + 0.223115i \(0.928377\pi\)
\(294\) 1116.00 0.221382
\(295\) 0 0
\(296\) 1168.00 0.229353
\(297\) − 810.000i − 0.158252i
\(298\) − 1548.00i − 0.300917i
\(299\) −4350.00 −0.841361
\(300\) 0 0
\(301\) −9959.00 −1.90707
\(302\) − 586.000i − 0.111657i
\(303\) 2376.00i 0.450487i
\(304\) −2384.00 −0.449776
\(305\) 0 0
\(306\) 1404.00 0.262292
\(307\) − 1385.00i − 0.257479i −0.991678 0.128740i \(-0.958907\pi\)
0.991678 0.128740i \(-0.0410931\pi\)
\(308\) − 2760.00i − 0.510603i
\(309\) 2436.00 0.448476
\(310\) 0 0
\(311\) −5670.00 −1.03381 −0.516907 0.856042i \(-0.672917\pi\)
−0.516907 + 0.856042i \(0.672917\pi\)
\(312\) 696.000i 0.126292i
\(313\) − 421.000i − 0.0760266i −0.999277 0.0380133i \(-0.987897\pi\)
0.999277 0.0380133i \(-0.0121029\pi\)
\(314\) 3458.00 0.621485
\(315\) 0 0
\(316\) 3968.00 0.706384
\(317\) − 9984.00i − 1.76895i −0.466587 0.884475i \(-0.654517\pi\)
0.466587 0.884475i \(-0.345483\pi\)
\(318\) 3312.00i 0.584049i
\(319\) −7020.00 −1.23211
\(320\) 0 0
\(321\) 4248.00 0.738630
\(322\) − 6900.00i − 1.19417i
\(323\) 11622.0i 2.00206i
\(324\) −324.000 −0.0555556
\(325\) 0 0
\(326\) −2246.00 −0.381578
\(327\) − 165.000i − 0.0279037i
\(328\) − 1248.00i − 0.210089i
\(329\) −690.000 −0.115626
\(330\) 0 0
\(331\) −4228.00 −0.702090 −0.351045 0.936359i \(-0.614174\pi\)
−0.351045 + 0.936359i \(0.614174\pi\)
\(332\) 3384.00i 0.559401i
\(333\) 1314.00i 0.216237i
\(334\) −2400.00 −0.393180
\(335\) 0 0
\(336\) −1104.00 −0.179250
\(337\) − 5393.00i − 0.871737i −0.900010 0.435869i \(-0.856441\pi\)
0.900010 0.435869i \(-0.143559\pi\)
\(338\) − 2712.00i − 0.436430i
\(339\) 4212.00 0.674821
\(340\) 0 0
\(341\) 6510.00 1.03383
\(342\) − 2682.00i − 0.424052i
\(343\) − 3611.00i − 0.568442i
\(344\) 3464.00 0.542925
\(345\) 0 0
\(346\) −3468.00 −0.538846
\(347\) 7914.00i 1.22434i 0.790726 + 0.612170i \(0.209703\pi\)
−0.790726 + 0.612170i \(0.790297\pi\)
\(348\) 2808.00i 0.432542i
\(349\) −1010.00 −0.154911 −0.0774557 0.996996i \(-0.524680\pi\)
−0.0774557 + 0.996996i \(0.524680\pi\)
\(350\) 0 0
\(351\) −783.000 −0.119070
\(352\) 960.000i 0.145364i
\(353\) 4722.00i 0.711974i 0.934491 + 0.355987i \(0.115855\pi\)
−0.934491 + 0.355987i \(0.884145\pi\)
\(354\) −1620.00 −0.243226
\(355\) 0 0
\(356\) −5952.00 −0.886111
\(357\) 5382.00i 0.797887i
\(358\) 5172.00i 0.763544i
\(359\) −6204.00 −0.912074 −0.456037 0.889961i \(-0.650732\pi\)
−0.456037 + 0.889961i \(0.650732\pi\)
\(360\) 0 0
\(361\) 15342.0 2.23677
\(362\) 7862.00i 1.14148i
\(363\) 1293.00i 0.186956i
\(364\) −2668.00 −0.384179
\(365\) 0 0
\(366\) −1650.00 −0.235647
\(367\) − 1361.00i − 0.193579i −0.995305 0.0967897i \(-0.969143\pi\)
0.995305 0.0967897i \(-0.0308574\pi\)
\(368\) 2400.00i 0.339969i
\(369\) 1404.00 0.198074
\(370\) 0 0
\(371\) −12696.0 −1.77667
\(372\) − 2604.00i − 0.362933i
\(373\) − 913.000i − 0.126738i −0.997990 0.0633691i \(-0.979815\pi\)
0.997990 0.0633691i \(-0.0201845\pi\)
\(374\) 4680.00 0.647051
\(375\) 0 0
\(376\) 240.000 0.0329177
\(377\) 6786.00i 0.927047i
\(378\) − 1242.00i − 0.168999i
\(379\) 8881.00 1.20366 0.601829 0.798625i \(-0.294439\pi\)
0.601829 + 0.798625i \(0.294439\pi\)
\(380\) 0 0
\(381\) −3840.00 −0.516350
\(382\) − 3132.00i − 0.419495i
\(383\) 5460.00i 0.728441i 0.931313 + 0.364221i \(0.118665\pi\)
−0.931313 + 0.364221i \(0.881335\pi\)
\(384\) 384.000 0.0510310
\(385\) 0 0
\(386\) 4582.00 0.604191
\(387\) 3897.00i 0.511875i
\(388\) − 1276.00i − 0.166956i
\(389\) 13884.0 1.80963 0.904816 0.425803i \(-0.140008\pi\)
0.904816 + 0.425803i \(0.140008\pi\)
\(390\) 0 0
\(391\) 11700.0 1.51328
\(392\) − 1488.00i − 0.191723i
\(393\) − 1440.00i − 0.184831i
\(394\) −4284.00 −0.547779
\(395\) 0 0
\(396\) −1080.00 −0.137051
\(397\) 3781.00i 0.477992i 0.971021 + 0.238996i \(0.0768183\pi\)
−0.971021 + 0.238996i \(0.923182\pi\)
\(398\) − 9806.00i − 1.23500i
\(399\) 10281.0 1.28996
\(400\) 0 0
\(401\) 9024.00 1.12378 0.561892 0.827211i \(-0.310074\pi\)
0.561892 + 0.827211i \(0.310074\pi\)
\(402\) 4818.00i 0.597761i
\(403\) − 6293.00i − 0.777858i
\(404\) 3168.00 0.390133
\(405\) 0 0
\(406\) −10764.0 −1.31578
\(407\) 4380.00i 0.533436i
\(408\) − 1872.00i − 0.227151i
\(409\) −14789.0 −1.78794 −0.893972 0.448123i \(-0.852093\pi\)
−0.893972 + 0.448123i \(0.852093\pi\)
\(410\) 0 0
\(411\) 846.000 0.101533
\(412\) − 3248.00i − 0.388392i
\(413\) − 6210.00i − 0.739889i
\(414\) −2700.00 −0.320526
\(415\) 0 0
\(416\) 928.000 0.109372
\(417\) 4812.00i 0.565095i
\(418\) − 8940.00i − 1.04610i
\(419\) −9840.00 −1.14729 −0.573646 0.819103i \(-0.694472\pi\)
−0.573646 + 0.819103i \(0.694472\pi\)
\(420\) 0 0
\(421\) 5510.00 0.637865 0.318932 0.947778i \(-0.396676\pi\)
0.318932 + 0.947778i \(0.396676\pi\)
\(422\) − 1210.00i − 0.139578i
\(423\) 270.000i 0.0310351i
\(424\) 4416.00 0.505802
\(425\) 0 0
\(426\) −3960.00 −0.450382
\(427\) − 6325.00i − 0.716834i
\(428\) − 5664.00i − 0.639672i
\(429\) −2610.00 −0.293734
\(430\) 0 0
\(431\) 11070.0 1.23718 0.618588 0.785715i \(-0.287705\pi\)
0.618588 + 0.785715i \(0.287705\pi\)
\(432\) 432.000i 0.0481125i
\(433\) − 12133.0i − 1.34659i −0.739373 0.673297i \(-0.764878\pi\)
0.739373 0.673297i \(-0.235122\pi\)
\(434\) 9982.00 1.10404
\(435\) 0 0
\(436\) −220.000 −0.0241653
\(437\) − 22350.0i − 2.44656i
\(438\) 3876.00i 0.422837i
\(439\) 1873.00 0.203630 0.101815 0.994803i \(-0.467535\pi\)
0.101815 + 0.994803i \(0.467535\pi\)
\(440\) 0 0
\(441\) 1674.00 0.180758
\(442\) − 4524.00i − 0.486843i
\(443\) − 576.000i − 0.0617756i −0.999523 0.0308878i \(-0.990167\pi\)
0.999523 0.0308878i \(-0.00983345\pi\)
\(444\) 1752.00 0.187266
\(445\) 0 0
\(446\) −290.000 −0.0307890
\(447\) − 2322.00i − 0.245698i
\(448\) 1472.00i 0.155235i
\(449\) 4884.00 0.513341 0.256671 0.966499i \(-0.417374\pi\)
0.256671 + 0.966499i \(0.417374\pi\)
\(450\) 0 0
\(451\) 4680.00 0.488631
\(452\) − 5616.00i − 0.584412i
\(453\) − 879.000i − 0.0911678i
\(454\) −5928.00 −0.612808
\(455\) 0 0
\(456\) −3576.00 −0.367240
\(457\) 15802.0i 1.61748i 0.588169 + 0.808738i \(0.299849\pi\)
−0.588169 + 0.808738i \(0.700151\pi\)
\(458\) − 11270.0i − 1.14981i
\(459\) 2106.00 0.214160
\(460\) 0 0
\(461\) −15360.0 −1.55181 −0.775907 0.630847i \(-0.782708\pi\)
−0.775907 + 0.630847i \(0.782708\pi\)
\(462\) − 4140.00i − 0.416905i
\(463\) 1712.00i 0.171843i 0.996302 + 0.0859216i \(0.0273835\pi\)
−0.996302 + 0.0859216i \(0.972617\pi\)
\(464\) 3744.00 0.374592
\(465\) 0 0
\(466\) 8328.00 0.827869
\(467\) 16278.0i 1.61297i 0.591256 + 0.806484i \(0.298632\pi\)
−0.591256 + 0.806484i \(0.701368\pi\)
\(468\) 1044.00i 0.103117i
\(469\) −18469.0 −1.81838
\(470\) 0 0
\(471\) 5187.00 0.507440
\(472\) 2160.00i 0.210640i
\(473\) 12990.0i 1.26275i
\(474\) 5952.00 0.576760
\(475\) 0 0
\(476\) 7176.00 0.690990
\(477\) 4968.00i 0.476874i
\(478\) − 3888.00i − 0.372036i
\(479\) 14766.0 1.40851 0.704254 0.709948i \(-0.251281\pi\)
0.704254 + 0.709948i \(0.251281\pi\)
\(480\) 0 0
\(481\) 4234.00 0.401359
\(482\) − 1714.00i − 0.161972i
\(483\) − 10350.0i − 0.975034i
\(484\) 1724.00 0.161908
\(485\) 0 0
\(486\) −486.000 −0.0453609
\(487\) 3319.00i 0.308826i 0.988006 + 0.154413i \(0.0493486\pi\)
−0.988006 + 0.154413i \(0.950651\pi\)
\(488\) 2200.00i 0.204076i
\(489\) −3369.00 −0.311557
\(490\) 0 0
\(491\) 11064.0 1.01693 0.508464 0.861083i \(-0.330214\pi\)
0.508464 + 0.861083i \(0.330214\pi\)
\(492\) − 1872.00i − 0.171537i
\(493\) − 18252.0i − 1.66740i
\(494\) −8642.00 −0.787089
\(495\) 0 0
\(496\) −3472.00 −0.314309
\(497\) − 15180.0i − 1.37005i
\(498\) 5076.00i 0.456749i
\(499\) 14131.0 1.26772 0.633858 0.773449i \(-0.281470\pi\)
0.633858 + 0.773449i \(0.281470\pi\)
\(500\) 0 0
\(501\) −3600.00 −0.321030
\(502\) 7848.00i 0.697756i
\(503\) 11988.0i 1.06266i 0.847165 + 0.531331i \(0.178308\pi\)
−0.847165 + 0.531331i \(0.821692\pi\)
\(504\) −1656.00 −0.146357
\(505\) 0 0
\(506\) −9000.00 −0.790709
\(507\) − 4068.00i − 0.356344i
\(508\) 5120.00i 0.447172i
\(509\) −10806.0 −0.940997 −0.470499 0.882401i \(-0.655926\pi\)
−0.470499 + 0.882401i \(0.655926\pi\)
\(510\) 0 0
\(511\) −14858.0 −1.28626
\(512\) − 512.000i − 0.0441942i
\(513\) − 4023.00i − 0.346237i
\(514\) 5688.00 0.488107
\(515\) 0 0
\(516\) 5196.00 0.443297
\(517\) 900.000i 0.0765608i
\(518\) 6716.00i 0.569660i
\(519\) −5202.00 −0.439966
\(520\) 0 0
\(521\) 22578.0 1.89858 0.949290 0.314402i \(-0.101804\pi\)
0.949290 + 0.314402i \(0.101804\pi\)
\(522\) 4212.00i 0.353169i
\(523\) 12065.0i 1.00873i 0.863491 + 0.504365i \(0.168273\pi\)
−0.863491 + 0.504365i \(0.831727\pi\)
\(524\) −1920.00 −0.160068
\(525\) 0 0
\(526\) −12120.0 −1.00467
\(527\) 16926.0i 1.39907i
\(528\) 1440.00i 0.118689i
\(529\) −10333.0 −0.849264
\(530\) 0 0
\(531\) −2430.00 −0.198593
\(532\) − 13708.0i − 1.11714i
\(533\) − 4524.00i − 0.367648i
\(534\) −8928.00 −0.723506
\(535\) 0 0
\(536\) 6424.00 0.517676
\(537\) 7758.00i 0.623431i
\(538\) 7812.00i 0.626021i
\(539\) 5580.00 0.445914
\(540\) 0 0
\(541\) −12055.0 −0.958013 −0.479006 0.877811i \(-0.659003\pi\)
−0.479006 + 0.877811i \(0.659003\pi\)
\(542\) − 4288.00i − 0.339825i
\(543\) 11793.0i 0.932019i
\(544\) −2496.00 −0.196719
\(545\) 0 0
\(546\) −4002.00 −0.313681
\(547\) − 6176.00i − 0.482754i −0.970431 0.241377i \(-0.922401\pi\)
0.970431 0.241377i \(-0.0775991\pi\)
\(548\) − 1128.00i − 0.0879302i
\(549\) −2475.00 −0.192405
\(550\) 0 0
\(551\) −34866.0 −2.69572
\(552\) 3600.00i 0.277584i
\(553\) 22816.0i 1.75449i
\(554\) −4642.00 −0.355992
\(555\) 0 0
\(556\) 6416.00 0.489387
\(557\) − 8274.00i − 0.629409i −0.949190 0.314704i \(-0.898095\pi\)
0.949190 0.314704i \(-0.101905\pi\)
\(558\) − 3906.00i − 0.296334i
\(559\) 12557.0 0.950098
\(560\) 0 0
\(561\) 7020.00 0.528315
\(562\) 13644.0i 1.02409i
\(563\) 966.000i 0.0723127i 0.999346 + 0.0361563i \(0.0115114\pi\)
−0.999346 + 0.0361563i \(0.988489\pi\)
\(564\) 360.000 0.0268772
\(565\) 0 0
\(566\) 8098.00 0.601386
\(567\) − 1863.00i − 0.137987i
\(568\) 5280.00i 0.390042i
\(569\) −19002.0 −1.40001 −0.700005 0.714138i \(-0.746819\pi\)
−0.700005 + 0.714138i \(0.746819\pi\)
\(570\) 0 0
\(571\) 8645.00 0.633594 0.316797 0.948493i \(-0.397393\pi\)
0.316797 + 0.948493i \(0.397393\pi\)
\(572\) 3480.00i 0.254381i
\(573\) − 4698.00i − 0.342516i
\(574\) 7176.00 0.521813
\(575\) 0 0
\(576\) 576.000 0.0416667
\(577\) − 10931.0i − 0.788672i −0.918966 0.394336i \(-0.870975\pi\)
0.918966 0.394336i \(-0.129025\pi\)
\(578\) 2342.00i 0.168537i
\(579\) 6873.00 0.493320
\(580\) 0 0
\(581\) −19458.0 −1.38942
\(582\) − 1914.00i − 0.136319i
\(583\) 16560.0i 1.17641i
\(584\) 5168.00 0.366187
\(585\) 0 0
\(586\) 4476.00 0.315532
\(587\) − 8904.00i − 0.626077i −0.949740 0.313039i \(-0.898653\pi\)
0.949740 0.313039i \(-0.101347\pi\)
\(588\) − 2232.00i − 0.156541i
\(589\) 32333.0 2.26190
\(590\) 0 0
\(591\) −6426.00 −0.447259
\(592\) − 2336.00i − 0.162177i
\(593\) 8820.00i 0.610782i 0.952227 + 0.305391i \(0.0987872\pi\)
−0.952227 + 0.305391i \(0.901213\pi\)
\(594\) −1620.00 −0.111901
\(595\) 0 0
\(596\) −3096.00 −0.212780
\(597\) − 14709.0i − 1.00837i
\(598\) 8700.00i 0.594932i
\(599\) −9804.00 −0.668749 −0.334374 0.942440i \(-0.608525\pi\)
−0.334374 + 0.942440i \(0.608525\pi\)
\(600\) 0 0
\(601\) −23437.0 −1.59071 −0.795354 0.606146i \(-0.792715\pi\)
−0.795354 + 0.606146i \(0.792715\pi\)
\(602\) 19918.0i 1.34850i
\(603\) 7227.00i 0.488070i
\(604\) −1172.00 −0.0789536
\(605\) 0 0
\(606\) 4752.00 0.318543
\(607\) − 2648.00i − 0.177066i −0.996073 0.0885330i \(-0.971782\pi\)
0.996073 0.0885330i \(-0.0282179\pi\)
\(608\) 4768.00i 0.318039i
\(609\) −16146.0 −1.07433
\(610\) 0 0
\(611\) 870.000 0.0576046
\(612\) − 2808.00i − 0.185468i
\(613\) 794.000i 0.0523154i 0.999658 + 0.0261577i \(0.00832721\pi\)
−0.999658 + 0.0261577i \(0.991673\pi\)
\(614\) −2770.00 −0.182065
\(615\) 0 0
\(616\) −5520.00 −0.361051
\(617\) − 18720.0i − 1.22146i −0.791840 0.610728i \(-0.790877\pi\)
0.791840 0.610728i \(-0.209123\pi\)
\(618\) − 4872.00i − 0.317121i
\(619\) 8959.00 0.581733 0.290866 0.956764i \(-0.406056\pi\)
0.290866 + 0.956764i \(0.406056\pi\)
\(620\) 0 0
\(621\) −4050.00 −0.261708
\(622\) 11340.0i 0.731017i
\(623\) − 34224.0i − 2.20089i
\(624\) 1392.00 0.0893022
\(625\) 0 0
\(626\) −842.000 −0.0537589
\(627\) − 13410.0i − 0.854137i
\(628\) − 6916.00i − 0.439456i
\(629\) −11388.0 −0.721891
\(630\) 0 0
\(631\) −12373.0 −0.780604 −0.390302 0.920687i \(-0.627629\pi\)
−0.390302 + 0.920687i \(0.627629\pi\)
\(632\) − 7936.00i − 0.499489i
\(633\) − 1815.00i − 0.113965i
\(634\) −19968.0 −1.25084
\(635\) 0 0
\(636\) 6624.00 0.412985
\(637\) − 5394.00i − 0.335507i
\(638\) 14040.0i 0.871237i
\(639\) −5940.00 −0.367735
\(640\) 0 0
\(641\) 24900.0 1.53431 0.767154 0.641463i \(-0.221672\pi\)
0.767154 + 0.641463i \(0.221672\pi\)
\(642\) − 8496.00i − 0.522290i
\(643\) − 14668.0i − 0.899610i −0.893127 0.449805i \(-0.851493\pi\)
0.893127 0.449805i \(-0.148507\pi\)
\(644\) −13800.0 −0.844404
\(645\) 0 0
\(646\) 23244.0 1.41567
\(647\) 10788.0i 0.655518i 0.944761 + 0.327759i \(0.106293\pi\)
−0.944761 + 0.327759i \(0.893707\pi\)
\(648\) 648.000i 0.0392837i
\(649\) −8100.00 −0.489912
\(650\) 0 0
\(651\) 14973.0 0.901441
\(652\) 4492.00i 0.269816i
\(653\) − 14214.0i − 0.851817i −0.904766 0.425909i \(-0.859954\pi\)
0.904766 0.425909i \(-0.140046\pi\)
\(654\) −330.000 −0.0197309
\(655\) 0 0
\(656\) −2496.00 −0.148556
\(657\) 5814.00i 0.345245i
\(658\) 1380.00i 0.0817599i
\(659\) 588.000 0.0347576 0.0173788 0.999849i \(-0.494468\pi\)
0.0173788 + 0.999849i \(0.494468\pi\)
\(660\) 0 0
\(661\) −3166.00 −0.186298 −0.0931491 0.995652i \(-0.529693\pi\)
−0.0931491 + 0.995652i \(0.529693\pi\)
\(662\) 8456.00i 0.496453i
\(663\) − 6786.00i − 0.397506i
\(664\) 6768.00 0.395556
\(665\) 0 0
\(666\) 2628.00 0.152902
\(667\) 35100.0i 2.03760i
\(668\) 4800.00i 0.278020i
\(669\) −435.000 −0.0251391
\(670\) 0 0
\(671\) −8250.00 −0.474646
\(672\) 2208.00i 0.126749i
\(673\) 9182.00i 0.525914i 0.964808 + 0.262957i \(0.0846977\pi\)
−0.964808 + 0.262957i \(0.915302\pi\)
\(674\) −10786.0 −0.616411
\(675\) 0 0
\(676\) −5424.00 −0.308603
\(677\) − 11742.0i − 0.666590i −0.942823 0.333295i \(-0.891839\pi\)
0.942823 0.333295i \(-0.108161\pi\)
\(678\) − 8424.00i − 0.477171i
\(679\) 7337.00 0.414681
\(680\) 0 0
\(681\) −8892.00 −0.500356
\(682\) − 13020.0i − 0.731029i
\(683\) − 6024.00i − 0.337485i −0.985660 0.168742i \(-0.946029\pi\)
0.985660 0.168742i \(-0.0539706\pi\)
\(684\) −5364.00 −0.299850
\(685\) 0 0
\(686\) −7222.00 −0.401949
\(687\) − 16905.0i − 0.938815i
\(688\) − 6928.00i − 0.383906i
\(689\) 16008.0 0.885132
\(690\) 0 0
\(691\) 9344.00 0.514418 0.257209 0.966356i \(-0.417197\pi\)
0.257209 + 0.966356i \(0.417197\pi\)
\(692\) 6936.00i 0.381022i
\(693\) − 6210.00i − 0.340402i
\(694\) 15828.0 0.865739
\(695\) 0 0
\(696\) 5616.00 0.305853
\(697\) 12168.0i 0.661257i
\(698\) 2020.00i 0.109539i
\(699\) 12492.0 0.675953
\(700\) 0 0
\(701\) 21234.0 1.14408 0.572038 0.820227i \(-0.306153\pi\)
0.572038 + 0.820227i \(0.306153\pi\)
\(702\) 1566.00i 0.0841950i
\(703\) 21754.0i 1.16709i
\(704\) 1920.00 0.102788
\(705\) 0 0
\(706\) 9444.00 0.503441
\(707\) 18216.0i 0.969000i
\(708\) 3240.00i 0.171987i
\(709\) 1723.00 0.0912675 0.0456337 0.998958i \(-0.485469\pi\)
0.0456337 + 0.998958i \(0.485469\pi\)
\(710\) 0 0
\(711\) 8928.00 0.470923
\(712\) 11904.0i 0.626575i
\(713\) − 32550.0i − 1.70969i
\(714\) 10764.0 0.564191
\(715\) 0 0
\(716\) 10344.0 0.539907
\(717\) − 5832.00i − 0.303766i
\(718\) 12408.0i 0.644934i
\(719\) −18510.0 −0.960093 −0.480046 0.877243i \(-0.659380\pi\)
−0.480046 + 0.877243i \(0.659380\pi\)
\(720\) 0 0
\(721\) 18676.0 0.964675
\(722\) − 30684.0i − 1.58163i
\(723\) − 2571.00i − 0.132250i
\(724\) 15724.0 0.807152
\(725\) 0 0
\(726\) 2586.00 0.132198
\(727\) 1009.00i 0.0514742i 0.999669 + 0.0257371i \(0.00819328\pi\)
−0.999669 + 0.0257371i \(0.991807\pi\)
\(728\) 5336.00i 0.271656i
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) −33774.0 −1.70886
\(732\) 3300.00i 0.166628i
\(733\) − 21994.0i − 1.10828i −0.832425 0.554138i \(-0.813048\pi\)
0.832425 0.554138i \(-0.186952\pi\)
\(734\) −2722.00 −0.136881
\(735\) 0 0
\(736\) 4800.00 0.240394
\(737\) 24090.0i 1.20403i
\(738\) − 2808.00i − 0.140059i
\(739\) 13948.0 0.694297 0.347148 0.937810i \(-0.387150\pi\)
0.347148 + 0.937810i \(0.387150\pi\)
\(740\) 0 0
\(741\) −12963.0 −0.642655
\(742\) 25392.0i 1.25629i
\(743\) − 26508.0i − 1.30886i −0.756122 0.654431i \(-0.772908\pi\)
0.756122 0.654431i \(-0.227092\pi\)
\(744\) −5208.00 −0.256632
\(745\) 0 0
\(746\) −1826.00 −0.0896174
\(747\) 7614.00i 0.372934i
\(748\) − 9360.00i − 0.457534i
\(749\) 32568.0 1.58880
\(750\) 0 0
\(751\) −1600.00 −0.0777428 −0.0388714 0.999244i \(-0.512376\pi\)
−0.0388714 + 0.999244i \(0.512376\pi\)
\(752\) − 480.000i − 0.0232763i
\(753\) 11772.0i 0.569715i
\(754\) 13572.0 0.655521
\(755\) 0 0
\(756\) −2484.00 −0.119500
\(757\) − 30101.0i − 1.44523i −0.691250 0.722615i \(-0.742940\pi\)
0.691250 0.722615i \(-0.257060\pi\)
\(758\) − 17762.0i − 0.851115i
\(759\) −13500.0 −0.645611
\(760\) 0 0
\(761\) 35628.0 1.69713 0.848564 0.529093i \(-0.177468\pi\)
0.848564 + 0.529093i \(0.177468\pi\)
\(762\) 7680.00i 0.365114i
\(763\) − 1265.00i − 0.0600211i
\(764\) −6264.00 −0.296628
\(765\) 0 0
\(766\) 10920.0 0.515086
\(767\) 7830.00i 0.368611i
\(768\) − 768.000i − 0.0360844i
\(769\) 12517.0 0.586963 0.293482 0.955965i \(-0.405186\pi\)
0.293482 + 0.955965i \(0.405186\pi\)
\(770\) 0 0
\(771\) 8532.00 0.398538
\(772\) − 9164.00i − 0.427227i
\(773\) 14124.0i 0.657186i 0.944472 + 0.328593i \(0.106574\pi\)
−0.944472 + 0.328593i \(0.893426\pi\)
\(774\) 7794.00 0.361950
\(775\) 0 0
\(776\) −2552.00 −0.118056
\(777\) 10074.0i 0.465126i
\(778\) − 27768.0i − 1.27960i
\(779\) 23244.0 1.06907
\(780\) 0 0
\(781\) −19800.0 −0.907170
\(782\) − 23400.0i − 1.07005i
\(783\) 6318.00i 0.288361i
\(784\) −2976.00 −0.135569
\(785\) 0 0
\(786\) −2880.00 −0.130695
\(787\) − 40433.0i − 1.83136i −0.401907 0.915680i \(-0.631653\pi\)
0.401907 0.915680i \(-0.368347\pi\)
\(788\) 8568.00i 0.387338i
\(789\) −18180.0 −0.820311
\(790\) 0 0
\(791\) 32292.0 1.45154
\(792\) 2160.00i 0.0969094i
\(793\) 7975.00i 0.357126i
\(794\) 7562.00 0.337992
\(795\) 0 0
\(796\) −19612.0 −0.873278
\(797\) 27300.0i 1.21332i 0.794962 + 0.606660i \(0.207491\pi\)
−0.794962 + 0.606660i \(0.792509\pi\)
\(798\) − 20562.0i − 0.912139i
\(799\) −2340.00 −0.103609
\(800\) 0 0
\(801\) −13392.0 −0.590740
\(802\) − 18048.0i − 0.794635i
\(803\) 19380.0i 0.851688i
\(804\) 9636.00 0.422681
\(805\) 0 0
\(806\) −12586.0 −0.550028
\(807\) 11718.0i 0.511144i
\(808\) − 6336.00i − 0.275866i
\(809\) 2856.00 0.124118 0.0620591 0.998072i \(-0.480233\pi\)
0.0620591 + 0.998072i \(0.480233\pi\)
\(810\) 0 0
\(811\) −12619.0 −0.546379 −0.273189 0.961960i \(-0.588079\pi\)
−0.273189 + 0.961960i \(0.588079\pi\)
\(812\) 21528.0i 0.930400i
\(813\) − 6432.00i − 0.277466i
\(814\) 8760.00 0.377196
\(815\) 0 0
\(816\) −3744.00 −0.160620
\(817\) 64517.0i 2.76275i
\(818\) 29578.0i 1.26427i
\(819\) −6003.00 −0.256119
\(820\) 0 0
\(821\) −29082.0 −1.23626 −0.618130 0.786076i \(-0.712109\pi\)
−0.618130 + 0.786076i \(0.712109\pi\)
\(822\) − 1692.00i − 0.0717947i
\(823\) 10235.0i 0.433499i 0.976227 + 0.216749i \(0.0695455\pi\)
−0.976227 + 0.216749i \(0.930455\pi\)
\(824\) −6496.00 −0.274635
\(825\) 0 0
\(826\) −12420.0 −0.523180
\(827\) − 26976.0i − 1.13428i −0.823622 0.567139i \(-0.808050\pi\)
0.823622 0.567139i \(-0.191950\pi\)
\(828\) 5400.00i 0.226646i
\(829\) −37802.0 −1.58374 −0.791868 0.610692i \(-0.790891\pi\)
−0.791868 + 0.610692i \(0.790891\pi\)
\(830\) 0 0
\(831\) −6963.00 −0.290666
\(832\) − 1856.00i − 0.0773380i
\(833\) 14508.0i 0.603448i
\(834\) 9624.00 0.399583
\(835\) 0 0
\(836\) −17880.0 −0.739704
\(837\) − 5859.00i − 0.241955i
\(838\) 19680.0i 0.811258i
\(839\) 16974.0 0.698460 0.349230 0.937037i \(-0.386443\pi\)
0.349230 + 0.937037i \(0.386443\pi\)
\(840\) 0 0
\(841\) 30367.0 1.24511
\(842\) − 11020.0i − 0.451038i
\(843\) 20466.0i 0.836164i
\(844\) −2420.00 −0.0986965
\(845\) 0 0
\(846\) 540.000 0.0219451
\(847\) 9913.00i 0.402143i
\(848\) − 8832.00i − 0.357656i
\(849\) 12147.0 0.491029
\(850\) 0 0
\(851\) 21900.0 0.882165
\(852\) 7920.00i 0.318468i
\(853\) − 24937.0i − 1.00097i −0.865745 0.500485i \(-0.833155\pi\)
0.865745 0.500485i \(-0.166845\pi\)
\(854\) −12650.0 −0.506878
\(855\) 0 0
\(856\) −11328.0 −0.452317
\(857\) − 15756.0i − 0.628022i −0.949419 0.314011i \(-0.898327\pi\)
0.949419 0.314011i \(-0.101673\pi\)
\(858\) 5220.00i 0.207701i
\(859\) −38144.0 −1.51508 −0.757542 0.652787i \(-0.773600\pi\)
−0.757542 + 0.652787i \(0.773600\pi\)
\(860\) 0 0
\(861\) 10764.0 0.426058
\(862\) − 22140.0i − 0.874816i
\(863\) 5448.00i 0.214892i 0.994211 + 0.107446i \(0.0342673\pi\)
−0.994211 + 0.107446i \(0.965733\pi\)
\(864\) 864.000 0.0340207
\(865\) 0 0
\(866\) −24266.0 −0.952185
\(867\) 3513.00i 0.137610i
\(868\) − 19964.0i − 0.780671i
\(869\) 29760.0 1.16172
\(870\) 0 0
\(871\) 23287.0 0.905913
\(872\) 440.000i 0.0170875i
\(873\) − 2871.00i − 0.111304i
\(874\) −44700.0 −1.72998
\(875\) 0 0
\(876\) 7752.00 0.298991
\(877\) − 21191.0i − 0.815928i −0.912998 0.407964i \(-0.866239\pi\)
0.912998 0.407964i \(-0.133761\pi\)
\(878\) − 3746.00i − 0.143988i
\(879\) 6714.00 0.257631
\(880\) 0 0
\(881\) 18216.0 0.696609 0.348305 0.937381i \(-0.386758\pi\)
0.348305 + 0.937381i \(0.386758\pi\)
\(882\) − 3348.00i − 0.127815i
\(883\) 12767.0i 0.486573i 0.969955 + 0.243286i \(0.0782255\pi\)
−0.969955 + 0.243286i \(0.921775\pi\)
\(884\) −9048.00 −0.344250
\(885\) 0 0
\(886\) −1152.00 −0.0436819
\(887\) − 11010.0i − 0.416775i −0.978046 0.208388i \(-0.933178\pi\)
0.978046 0.208388i \(-0.0668215\pi\)
\(888\) − 3504.00i − 0.132417i
\(889\) −29440.0 −1.11067
\(890\) 0 0
\(891\) −2430.00 −0.0913671
\(892\) 580.000i 0.0217711i
\(893\) 4470.00i 0.167506i
\(894\) −4644.00 −0.173734
\(895\) 0 0
\(896\) 2944.00 0.109768
\(897\) 13050.0i 0.485760i
\(898\) − 9768.00i − 0.362987i
\(899\) −50778.0 −1.88381
\(900\) 0 0
\(901\) −43056.0 −1.59201
\(902\) − 9360.00i − 0.345514i
\(903\) 29877.0i 1.10105i
\(904\) −11232.0 −0.413242
\(905\) 0 0
\(906\) −1758.00 −0.0644654
\(907\) − 22772.0i − 0.833662i −0.908984 0.416831i \(-0.863141\pi\)
0.908984 0.416831i \(-0.136859\pi\)
\(908\) 11856.0i 0.433321i
\(909\) 7128.00 0.260089
\(910\) 0 0
\(911\) 29802.0 1.08385 0.541923 0.840428i \(-0.317696\pi\)
0.541923 + 0.840428i \(0.317696\pi\)
\(912\) 7152.00i 0.259678i
\(913\) 25380.0i 0.919995i
\(914\) 31604.0 1.14373
\(915\) 0 0
\(916\) −22540.0 −0.813038
\(917\) − 11040.0i − 0.397571i
\(918\) − 4212.00i − 0.151434i
\(919\) −48941.0 −1.75671 −0.878354 0.478011i \(-0.841358\pi\)
−0.878354 + 0.478011i \(0.841358\pi\)
\(920\) 0 0
\(921\) −4155.00 −0.148656
\(922\) 30720.0i 1.09730i
\(923\) 19140.0i 0.682558i
\(924\) −8280.00 −0.294797
\(925\) 0 0
\(926\) 3424.00 0.121511
\(927\) − 7308.00i − 0.258928i
\(928\) − 7488.00i − 0.264877i
\(929\) −31026.0 −1.09573 −0.547863 0.836568i \(-0.684559\pi\)
−0.547863 + 0.836568i \(0.684559\pi\)
\(930\) 0 0
\(931\) 27714.0 0.975607
\(932\) − 16656.0i − 0.585392i
\(933\) 17010.0i 0.596873i
\(934\) 32556.0 1.14054
\(935\) 0 0
\(936\) 2088.00 0.0729150
\(937\) − 11183.0i − 0.389896i −0.980814 0.194948i \(-0.937546\pi\)
0.980814 0.194948i \(-0.0624538\pi\)
\(938\) 36938.0i 1.28579i
\(939\) −1263.00 −0.0438940
\(940\) 0 0
\(941\) −2562.00 −0.0887554 −0.0443777 0.999015i \(-0.514130\pi\)
−0.0443777 + 0.999015i \(0.514130\pi\)
\(942\) − 10374.0i − 0.358814i
\(943\) − 23400.0i − 0.808069i
\(944\) 4320.00 0.148945
\(945\) 0 0
\(946\) 25980.0 0.892899
\(947\) − 7638.00i − 0.262093i −0.991376 0.131046i \(-0.958166\pi\)
0.991376 0.131046i \(-0.0418336\pi\)
\(948\) − 11904.0i − 0.407831i
\(949\) 18734.0 0.640813
\(950\) 0 0
\(951\) −29952.0 −1.02130
\(952\) − 14352.0i − 0.488604i
\(953\) 51432.0i 1.74821i 0.485735 + 0.874106i \(0.338552\pi\)
−0.485735 + 0.874106i \(0.661448\pi\)
\(954\) 9936.00 0.337201
\(955\) 0 0
\(956\) −7776.00 −0.263069
\(957\) 21060.0i 0.711362i
\(958\) − 29532.0i − 0.995966i
\(959\) 6486.00 0.218398
\(960\) 0 0
\(961\) 17298.0 0.580645
\(962\) − 8468.00i − 0.283804i
\(963\) − 12744.0i − 0.426448i
\(964\) −3428.00 −0.114532
\(965\) 0 0
\(966\) −20700.0 −0.689453
\(967\) − 39728.0i − 1.32116i −0.750754 0.660582i \(-0.770309\pi\)
0.750754 0.660582i \(-0.229691\pi\)
\(968\) − 3448.00i − 0.114486i
\(969\) 34866.0 1.15589
\(970\) 0 0
\(971\) −47946.0 −1.58461 −0.792307 0.610123i \(-0.791120\pi\)
−0.792307 + 0.610123i \(0.791120\pi\)
\(972\) 972.000i 0.0320750i
\(973\) 36892.0i 1.21552i
\(974\) 6638.00 0.218373
\(975\) 0 0
\(976\) 4400.00 0.144304
\(977\) 22326.0i 0.731087i 0.930794 + 0.365544i \(0.119117\pi\)
−0.930794 + 0.365544i \(0.880883\pi\)
\(978\) 6738.00i 0.220304i
\(979\) −44640.0 −1.45730
\(980\) 0 0
\(981\) −495.000 −0.0161102
\(982\) − 22128.0i − 0.719076i
\(983\) − 48468.0i − 1.57262i −0.617830 0.786312i \(-0.711988\pi\)
0.617830 0.786312i \(-0.288012\pi\)
\(984\) −3744.00 −0.121295
\(985\) 0 0
\(986\) −36504.0 −1.17903
\(987\) 2070.00i 0.0667567i
\(988\) 17284.0i 0.556556i
\(989\) 64950.0 2.08826
\(990\) 0 0
\(991\) −25141.0 −0.805883 −0.402942 0.915226i \(-0.632012\pi\)
−0.402942 + 0.915226i \(0.632012\pi\)
\(992\) 6944.00i 0.222250i
\(993\) 12684.0i 0.405352i
\(994\) −30360.0 −0.968773
\(995\) 0 0
\(996\) 10152.0 0.322970
\(997\) 35422.0i 1.12520i 0.826729 + 0.562601i \(0.190199\pi\)
−0.826729 + 0.562601i \(0.809801\pi\)
\(998\) − 28262.0i − 0.896411i
\(999\) 3942.00 0.124844
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.4.c.b.49.1 2
3.2 odd 2 450.4.c.h.199.2 2
4.3 odd 2 1200.4.f.q.49.2 2
5.2 odd 4 150.4.a.g.1.1 yes 1
5.3 odd 4 150.4.a.c.1.1 1
5.4 even 2 inner 150.4.c.b.49.2 2
15.2 even 4 450.4.a.i.1.1 1
15.8 even 4 450.4.a.l.1.1 1
15.14 odd 2 450.4.c.h.199.1 2
20.3 even 4 1200.4.a.r.1.1 1
20.7 even 4 1200.4.a.v.1.1 1
20.19 odd 2 1200.4.f.q.49.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.4.a.c.1.1 1 5.3 odd 4
150.4.a.g.1.1 yes 1 5.2 odd 4
150.4.c.b.49.1 2 1.1 even 1 trivial
150.4.c.b.49.2 2 5.4 even 2 inner
450.4.a.i.1.1 1 15.2 even 4
450.4.a.l.1.1 1 15.8 even 4
450.4.c.h.199.1 2 15.14 odd 2
450.4.c.h.199.2 2 3.2 odd 2
1200.4.a.r.1.1 1 20.3 even 4
1200.4.a.v.1.1 1 20.7 even 4
1200.4.f.q.49.1 2 20.19 odd 2
1200.4.f.q.49.2 2 4.3 odd 2