Properties

Label 150.4.a.e.1.1
Level $150$
Weight $4$
Character 150.1
Self dual yes
Analytic conductor $8.850$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,4,Mod(1,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.85028650086\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 150.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -3.00000 q^{3} +4.00000 q^{4} -6.00000 q^{6} -32.0000 q^{7} +8.00000 q^{8} +9.00000 q^{9} -60.0000 q^{11} -12.0000 q^{12} +34.0000 q^{13} -64.0000 q^{14} +16.0000 q^{16} -42.0000 q^{17} +18.0000 q^{18} -76.0000 q^{19} +96.0000 q^{21} -120.000 q^{22} -24.0000 q^{24} +68.0000 q^{26} -27.0000 q^{27} -128.000 q^{28} +6.00000 q^{29} -232.000 q^{31} +32.0000 q^{32} +180.000 q^{33} -84.0000 q^{34} +36.0000 q^{36} -134.000 q^{37} -152.000 q^{38} -102.000 q^{39} +234.000 q^{41} +192.000 q^{42} +412.000 q^{43} -240.000 q^{44} +360.000 q^{47} -48.0000 q^{48} +681.000 q^{49} +126.000 q^{51} +136.000 q^{52} -222.000 q^{53} -54.0000 q^{54} -256.000 q^{56} +228.000 q^{57} +12.0000 q^{58} +660.000 q^{59} -490.000 q^{61} -464.000 q^{62} -288.000 q^{63} +64.0000 q^{64} +360.000 q^{66} -812.000 q^{67} -168.000 q^{68} +120.000 q^{71} +72.0000 q^{72} -746.000 q^{73} -268.000 q^{74} -304.000 q^{76} +1920.00 q^{77} -204.000 q^{78} +152.000 q^{79} +81.0000 q^{81} +468.000 q^{82} +804.000 q^{83} +384.000 q^{84} +824.000 q^{86} -18.0000 q^{87} -480.000 q^{88} -678.000 q^{89} -1088.00 q^{91} +696.000 q^{93} +720.000 q^{94} -96.0000 q^{96} -194.000 q^{97} +1362.00 q^{98} -540.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −3.00000 −0.577350
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) −6.00000 −0.408248
\(7\) −32.0000 −1.72784 −0.863919 0.503631i \(-0.831997\pi\)
−0.863919 + 0.503631i \(0.831997\pi\)
\(8\) 8.00000 0.353553
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −60.0000 −1.64461 −0.822304 0.569049i \(-0.807311\pi\)
−0.822304 + 0.569049i \(0.807311\pi\)
\(12\) −12.0000 −0.288675
\(13\) 34.0000 0.725377 0.362689 0.931910i \(-0.381859\pi\)
0.362689 + 0.931910i \(0.381859\pi\)
\(14\) −64.0000 −1.22177
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) −42.0000 −0.599206 −0.299603 0.954064i \(-0.596854\pi\)
−0.299603 + 0.954064i \(0.596854\pi\)
\(18\) 18.0000 0.235702
\(19\) −76.0000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) 96.0000 0.997567
\(22\) −120.000 −1.16291
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) −24.0000 −0.204124
\(25\) 0 0
\(26\) 68.0000 0.512919
\(27\) −27.0000 −0.192450
\(28\) −128.000 −0.863919
\(29\) 6.00000 0.0384197 0.0192099 0.999815i \(-0.493885\pi\)
0.0192099 + 0.999815i \(0.493885\pi\)
\(30\) 0 0
\(31\) −232.000 −1.34414 −0.672071 0.740486i \(-0.734595\pi\)
−0.672071 + 0.740486i \(0.734595\pi\)
\(32\) 32.0000 0.176777
\(33\) 180.000 0.949514
\(34\) −84.0000 −0.423702
\(35\) 0 0
\(36\) 36.0000 0.166667
\(37\) −134.000 −0.595391 −0.297695 0.954661i \(-0.596218\pi\)
−0.297695 + 0.954661i \(0.596218\pi\)
\(38\) −152.000 −0.648886
\(39\) −102.000 −0.418797
\(40\) 0 0
\(41\) 234.000 0.891333 0.445667 0.895199i \(-0.352967\pi\)
0.445667 + 0.895199i \(0.352967\pi\)
\(42\) 192.000 0.705387
\(43\) 412.000 1.46115 0.730575 0.682833i \(-0.239252\pi\)
0.730575 + 0.682833i \(0.239252\pi\)
\(44\) −240.000 −0.822304
\(45\) 0 0
\(46\) 0 0
\(47\) 360.000 1.11726 0.558632 0.829416i \(-0.311326\pi\)
0.558632 + 0.829416i \(0.311326\pi\)
\(48\) −48.0000 −0.144338
\(49\) 681.000 1.98542
\(50\) 0 0
\(51\) 126.000 0.345952
\(52\) 136.000 0.362689
\(53\) −222.000 −0.575359 −0.287680 0.957727i \(-0.592884\pi\)
−0.287680 + 0.957727i \(0.592884\pi\)
\(54\) −54.0000 −0.136083
\(55\) 0 0
\(56\) −256.000 −0.610883
\(57\) 228.000 0.529813
\(58\) 12.0000 0.0271668
\(59\) 660.000 1.45635 0.728175 0.685391i \(-0.240369\pi\)
0.728175 + 0.685391i \(0.240369\pi\)
\(60\) 0 0
\(61\) −490.000 −1.02849 −0.514246 0.857642i \(-0.671928\pi\)
−0.514246 + 0.857642i \(0.671928\pi\)
\(62\) −464.000 −0.950453
\(63\) −288.000 −0.575946
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 360.000 0.671408
\(67\) −812.000 −1.48062 −0.740310 0.672265i \(-0.765321\pi\)
−0.740310 + 0.672265i \(0.765321\pi\)
\(68\) −168.000 −0.299603
\(69\) 0 0
\(70\) 0 0
\(71\) 120.000 0.200583 0.100291 0.994958i \(-0.468022\pi\)
0.100291 + 0.994958i \(0.468022\pi\)
\(72\) 72.0000 0.117851
\(73\) −746.000 −1.19606 −0.598032 0.801472i \(-0.704051\pi\)
−0.598032 + 0.801472i \(0.704051\pi\)
\(74\) −268.000 −0.421005
\(75\) 0 0
\(76\) −304.000 −0.458831
\(77\) 1920.00 2.84161
\(78\) −204.000 −0.296134
\(79\) 152.000 0.216473 0.108236 0.994125i \(-0.465480\pi\)
0.108236 + 0.994125i \(0.465480\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 468.000 0.630268
\(83\) 804.000 1.06326 0.531629 0.846977i \(-0.321580\pi\)
0.531629 + 0.846977i \(0.321580\pi\)
\(84\) 384.000 0.498784
\(85\) 0 0
\(86\) 824.000 1.03319
\(87\) −18.0000 −0.0221816
\(88\) −480.000 −0.581456
\(89\) −678.000 −0.807504 −0.403752 0.914868i \(-0.632294\pi\)
−0.403752 + 0.914868i \(0.632294\pi\)
\(90\) 0 0
\(91\) −1088.00 −1.25333
\(92\) 0 0
\(93\) 696.000 0.776041
\(94\) 720.000 0.790025
\(95\) 0 0
\(96\) −96.0000 −0.102062
\(97\) −194.000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 1362.00 1.40391
\(99\) −540.000 −0.548202
\(100\) 0 0
\(101\) 798.000 0.786178 0.393089 0.919500i \(-0.371406\pi\)
0.393089 + 0.919500i \(0.371406\pi\)
\(102\) 252.000 0.244625
\(103\) −1088.00 −1.04081 −0.520407 0.853918i \(-0.674220\pi\)
−0.520407 + 0.853918i \(0.674220\pi\)
\(104\) 272.000 0.256460
\(105\) 0 0
\(106\) −444.000 −0.406840
\(107\) −1716.00 −1.55039 −0.775196 0.631721i \(-0.782349\pi\)
−0.775196 + 0.631721i \(0.782349\pi\)
\(108\) −108.000 −0.0962250
\(109\) −970.000 −0.852378 −0.426189 0.904634i \(-0.640144\pi\)
−0.426189 + 0.904634i \(0.640144\pi\)
\(110\) 0 0
\(111\) 402.000 0.343749
\(112\) −512.000 −0.431959
\(113\) −426.000 −0.354643 −0.177322 0.984153i \(-0.556743\pi\)
−0.177322 + 0.984153i \(0.556743\pi\)
\(114\) 456.000 0.374634
\(115\) 0 0
\(116\) 24.0000 0.0192099
\(117\) 306.000 0.241792
\(118\) 1320.00 1.02980
\(119\) 1344.00 1.03533
\(120\) 0 0
\(121\) 2269.00 1.70473
\(122\) −980.000 −0.727254
\(123\) −702.000 −0.514611
\(124\) −928.000 −0.672071
\(125\) 0 0
\(126\) −576.000 −0.407255
\(127\) −200.000 −0.139741 −0.0698706 0.997556i \(-0.522259\pi\)
−0.0698706 + 0.997556i \(0.522259\pi\)
\(128\) 128.000 0.0883883
\(129\) −1236.00 −0.843595
\(130\) 0 0
\(131\) 60.0000 0.0400170 0.0200085 0.999800i \(-0.493631\pi\)
0.0200085 + 0.999800i \(0.493631\pi\)
\(132\) 720.000 0.474757
\(133\) 2432.00 1.58557
\(134\) −1624.00 −1.04696
\(135\) 0 0
\(136\) −336.000 −0.211851
\(137\) −642.000 −0.400363 −0.200182 0.979759i \(-0.564153\pi\)
−0.200182 + 0.979759i \(0.564153\pi\)
\(138\) 0 0
\(139\) −2836.00 −1.73055 −0.865275 0.501298i \(-0.832856\pi\)
−0.865275 + 0.501298i \(0.832856\pi\)
\(140\) 0 0
\(141\) −1080.00 −0.645053
\(142\) 240.000 0.141833
\(143\) −2040.00 −1.19296
\(144\) 144.000 0.0833333
\(145\) 0 0
\(146\) −1492.00 −0.845745
\(147\) −2043.00 −1.14628
\(148\) −536.000 −0.297695
\(149\) −1554.00 −0.854420 −0.427210 0.904152i \(-0.640504\pi\)
−0.427210 + 0.904152i \(0.640504\pi\)
\(150\) 0 0
\(151\) −2272.00 −1.22446 −0.612228 0.790682i \(-0.709726\pi\)
−0.612228 + 0.790682i \(0.709726\pi\)
\(152\) −608.000 −0.324443
\(153\) −378.000 −0.199735
\(154\) 3840.00 2.00932
\(155\) 0 0
\(156\) −408.000 −0.209398
\(157\) −1694.00 −0.861120 −0.430560 0.902562i \(-0.641684\pi\)
−0.430560 + 0.902562i \(0.641684\pi\)
\(158\) 304.000 0.153069
\(159\) 666.000 0.332184
\(160\) 0 0
\(161\) 0 0
\(162\) 162.000 0.0785674
\(163\) 52.0000 0.0249874 0.0124937 0.999922i \(-0.496023\pi\)
0.0124937 + 0.999922i \(0.496023\pi\)
\(164\) 936.000 0.445667
\(165\) 0 0
\(166\) 1608.00 0.751837
\(167\) 1200.00 0.556041 0.278020 0.960575i \(-0.410322\pi\)
0.278020 + 0.960575i \(0.410322\pi\)
\(168\) 768.000 0.352693
\(169\) −1041.00 −0.473828
\(170\) 0 0
\(171\) −684.000 −0.305888
\(172\) 1648.00 0.730575
\(173\) −54.0000 −0.0237315 −0.0118657 0.999930i \(-0.503777\pi\)
−0.0118657 + 0.999930i \(0.503777\pi\)
\(174\) −36.0000 −0.0156848
\(175\) 0 0
\(176\) −960.000 −0.411152
\(177\) −1980.00 −0.840824
\(178\) −1356.00 −0.570992
\(179\) 876.000 0.365784 0.182892 0.983133i \(-0.441454\pi\)
0.182892 + 0.983133i \(0.441454\pi\)
\(180\) 0 0
\(181\) 3854.00 1.58268 0.791341 0.611375i \(-0.209383\pi\)
0.791341 + 0.611375i \(0.209383\pi\)
\(182\) −2176.00 −0.886241
\(183\) 1470.00 0.593801
\(184\) 0 0
\(185\) 0 0
\(186\) 1392.00 0.548744
\(187\) 2520.00 0.985458
\(188\) 1440.00 0.558632
\(189\) 864.000 0.332522
\(190\) 0 0
\(191\) −2784.00 −1.05468 −0.527338 0.849656i \(-0.676810\pi\)
−0.527338 + 0.849656i \(0.676810\pi\)
\(192\) −192.000 −0.0721688
\(193\) −914.000 −0.340887 −0.170443 0.985367i \(-0.554520\pi\)
−0.170443 + 0.985367i \(0.554520\pi\)
\(194\) −388.000 −0.143592
\(195\) 0 0
\(196\) 2724.00 0.992711
\(197\) 5202.00 1.88136 0.940678 0.339300i \(-0.110190\pi\)
0.940678 + 0.339300i \(0.110190\pi\)
\(198\) −1080.00 −0.387638
\(199\) 3152.00 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(200\) 0 0
\(201\) 2436.00 0.854837
\(202\) 1596.00 0.555912
\(203\) −192.000 −0.0663830
\(204\) 504.000 0.172976
\(205\) 0 0
\(206\) −2176.00 −0.735967
\(207\) 0 0
\(208\) 544.000 0.181344
\(209\) 4560.00 1.50920
\(210\) 0 0
\(211\) 740.000 0.241439 0.120720 0.992687i \(-0.461480\pi\)
0.120720 + 0.992687i \(0.461480\pi\)
\(212\) −888.000 −0.287680
\(213\) −360.000 −0.115807
\(214\) −3432.00 −1.09629
\(215\) 0 0
\(216\) −216.000 −0.0680414
\(217\) 7424.00 2.32246
\(218\) −1940.00 −0.602722
\(219\) 2238.00 0.690548
\(220\) 0 0
\(221\) −1428.00 −0.434650
\(222\) 804.000 0.243067
\(223\) 520.000 0.156151 0.0780757 0.996947i \(-0.475122\pi\)
0.0780757 + 0.996947i \(0.475122\pi\)
\(224\) −1024.00 −0.305441
\(225\) 0 0
\(226\) −852.000 −0.250771
\(227\) −396.000 −0.115786 −0.0578930 0.998323i \(-0.518438\pi\)
−0.0578930 + 0.998323i \(0.518438\pi\)
\(228\) 912.000 0.264906
\(229\) −1330.00 −0.383794 −0.191897 0.981415i \(-0.561464\pi\)
−0.191897 + 0.981415i \(0.561464\pi\)
\(230\) 0 0
\(231\) −5760.00 −1.64061
\(232\) 48.0000 0.0135834
\(233\) −4866.00 −1.36816 −0.684082 0.729405i \(-0.739797\pi\)
−0.684082 + 0.729405i \(0.739797\pi\)
\(234\) 612.000 0.170973
\(235\) 0 0
\(236\) 2640.00 0.728175
\(237\) −456.000 −0.124981
\(238\) 2688.00 0.732089
\(239\) −1824.00 −0.493660 −0.246830 0.969059i \(-0.579389\pi\)
−0.246830 + 0.969059i \(0.579389\pi\)
\(240\) 0 0
\(241\) 6482.00 1.73254 0.866270 0.499575i \(-0.166511\pi\)
0.866270 + 0.499575i \(0.166511\pi\)
\(242\) 4538.00 1.20543
\(243\) −243.000 −0.0641500
\(244\) −1960.00 −0.514246
\(245\) 0 0
\(246\) −1404.00 −0.363885
\(247\) −2584.00 −0.665652
\(248\) −1856.00 −0.475226
\(249\) −2412.00 −0.613873
\(250\) 0 0
\(251\) 1476.00 0.371172 0.185586 0.982628i \(-0.440582\pi\)
0.185586 + 0.982628i \(0.440582\pi\)
\(252\) −1152.00 −0.287973
\(253\) 0 0
\(254\) −400.000 −0.0988119
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) −4314.00 −1.04708 −0.523541 0.852001i \(-0.675389\pi\)
−0.523541 + 0.852001i \(0.675389\pi\)
\(258\) −2472.00 −0.596512
\(259\) 4288.00 1.02874
\(260\) 0 0
\(261\) 54.0000 0.0128066
\(262\) 120.000 0.0282963
\(263\) 5280.00 1.23794 0.618971 0.785414i \(-0.287550\pi\)
0.618971 + 0.785414i \(0.287550\pi\)
\(264\) 1440.00 0.335704
\(265\) 0 0
\(266\) 4864.00 1.12117
\(267\) 2034.00 0.466213
\(268\) −3248.00 −0.740310
\(269\) 5526.00 1.25251 0.626257 0.779617i \(-0.284586\pi\)
0.626257 + 0.779617i \(0.284586\pi\)
\(270\) 0 0
\(271\) 2024.00 0.453687 0.226844 0.973931i \(-0.427159\pi\)
0.226844 + 0.973931i \(0.427159\pi\)
\(272\) −672.000 −0.149801
\(273\) 3264.00 0.723613
\(274\) −1284.00 −0.283100
\(275\) 0 0
\(276\) 0 0
\(277\) −2054.00 −0.445534 −0.222767 0.974872i \(-0.571509\pi\)
−0.222767 + 0.974872i \(0.571509\pi\)
\(278\) −5672.00 −1.22368
\(279\) −2088.00 −0.448048
\(280\) 0 0
\(281\) −7302.00 −1.55018 −0.775090 0.631850i \(-0.782296\pi\)
−0.775090 + 0.631850i \(0.782296\pi\)
\(282\) −2160.00 −0.456121
\(283\) 3724.00 0.782222 0.391111 0.920344i \(-0.372091\pi\)
0.391111 + 0.920344i \(0.372091\pi\)
\(284\) 480.000 0.100291
\(285\) 0 0
\(286\) −4080.00 −0.843551
\(287\) −7488.00 −1.54008
\(288\) 288.000 0.0589256
\(289\) −3149.00 −0.640953
\(290\) 0 0
\(291\) 582.000 0.117242
\(292\) −2984.00 −0.598032
\(293\) 7218.00 1.43918 0.719591 0.694399i \(-0.244330\pi\)
0.719591 + 0.694399i \(0.244330\pi\)
\(294\) −4086.00 −0.810545
\(295\) 0 0
\(296\) −1072.00 −0.210502
\(297\) 1620.00 0.316505
\(298\) −3108.00 −0.604166
\(299\) 0 0
\(300\) 0 0
\(301\) −13184.0 −2.52463
\(302\) −4544.00 −0.865821
\(303\) −2394.00 −0.453900
\(304\) −1216.00 −0.229416
\(305\) 0 0
\(306\) −756.000 −0.141234
\(307\) −2540.00 −0.472200 −0.236100 0.971729i \(-0.575869\pi\)
−0.236100 + 0.971729i \(0.575869\pi\)
\(308\) 7680.00 1.42081
\(309\) 3264.00 0.600914
\(310\) 0 0
\(311\) 1560.00 0.284436 0.142218 0.989835i \(-0.454577\pi\)
0.142218 + 0.989835i \(0.454577\pi\)
\(312\) −816.000 −0.148067
\(313\) 934.000 0.168667 0.0843335 0.996438i \(-0.473124\pi\)
0.0843335 + 0.996438i \(0.473124\pi\)
\(314\) −3388.00 −0.608904
\(315\) 0 0
\(316\) 608.000 0.108236
\(317\) 1674.00 0.296597 0.148298 0.988943i \(-0.452620\pi\)
0.148298 + 0.988943i \(0.452620\pi\)
\(318\) 1332.00 0.234889
\(319\) −360.000 −0.0631854
\(320\) 0 0
\(321\) 5148.00 0.895119
\(322\) 0 0
\(323\) 3192.00 0.549869
\(324\) 324.000 0.0555556
\(325\) 0 0
\(326\) 104.000 0.0176688
\(327\) 2910.00 0.492120
\(328\) 1872.00 0.315134
\(329\) −11520.0 −1.93045
\(330\) 0 0
\(331\) −3988.00 −0.662237 −0.331118 0.943589i \(-0.607426\pi\)
−0.331118 + 0.943589i \(0.607426\pi\)
\(332\) 3216.00 0.531629
\(333\) −1206.00 −0.198464
\(334\) 2400.00 0.393180
\(335\) 0 0
\(336\) 1536.00 0.249392
\(337\) −2.00000 −0.000323285 0 −0.000161642 1.00000i \(-0.500051\pi\)
−0.000161642 1.00000i \(0.500051\pi\)
\(338\) −2082.00 −0.335047
\(339\) 1278.00 0.204753
\(340\) 0 0
\(341\) 13920.0 2.21059
\(342\) −1368.00 −0.216295
\(343\) −10816.0 −1.70265
\(344\) 3296.00 0.516594
\(345\) 0 0
\(346\) −108.000 −0.0167807
\(347\) −1764.00 −0.272901 −0.136450 0.990647i \(-0.543569\pi\)
−0.136450 + 0.990647i \(0.543569\pi\)
\(348\) −72.0000 −0.0110908
\(349\) 4310.00 0.661057 0.330529 0.943796i \(-0.392773\pi\)
0.330529 + 0.943796i \(0.392773\pi\)
\(350\) 0 0
\(351\) −918.000 −0.139599
\(352\) −1920.00 −0.290728
\(353\) −138.000 −0.0208074 −0.0104037 0.999946i \(-0.503312\pi\)
−0.0104037 + 0.999946i \(0.503312\pi\)
\(354\) −3960.00 −0.594553
\(355\) 0 0
\(356\) −2712.00 −0.403752
\(357\) −4032.00 −0.597748
\(358\) 1752.00 0.258648
\(359\) −11976.0 −1.76064 −0.880319 0.474382i \(-0.842672\pi\)
−0.880319 + 0.474382i \(0.842672\pi\)
\(360\) 0 0
\(361\) −1083.00 −0.157895
\(362\) 7708.00 1.11913
\(363\) −6807.00 −0.984228
\(364\) −4352.00 −0.626667
\(365\) 0 0
\(366\) 2940.00 0.419880
\(367\) −9704.00 −1.38023 −0.690115 0.723699i \(-0.742440\pi\)
−0.690115 + 0.723699i \(0.742440\pi\)
\(368\) 0 0
\(369\) 2106.00 0.297111
\(370\) 0 0
\(371\) 7104.00 0.994128
\(372\) 2784.00 0.388021
\(373\) 8122.00 1.12746 0.563728 0.825960i \(-0.309367\pi\)
0.563728 + 0.825960i \(0.309367\pi\)
\(374\) 5040.00 0.696824
\(375\) 0 0
\(376\) 2880.00 0.395012
\(377\) 204.000 0.0278688
\(378\) 1728.00 0.235129
\(379\) 3404.00 0.461350 0.230675 0.973031i \(-0.425907\pi\)
0.230675 + 0.973031i \(0.425907\pi\)
\(380\) 0 0
\(381\) 600.000 0.0806796
\(382\) −5568.00 −0.745769
\(383\) 2520.00 0.336204 0.168102 0.985770i \(-0.446236\pi\)
0.168102 + 0.985770i \(0.446236\pi\)
\(384\) −384.000 −0.0510310
\(385\) 0 0
\(386\) −1828.00 −0.241043
\(387\) 3708.00 0.487050
\(388\) −776.000 −0.101535
\(389\) 1566.00 0.204111 0.102056 0.994779i \(-0.467458\pi\)
0.102056 + 0.994779i \(0.467458\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 5448.00 0.701953
\(393\) −180.000 −0.0231038
\(394\) 10404.0 1.33032
\(395\) 0 0
\(396\) −2160.00 −0.274101
\(397\) 4354.00 0.550431 0.275215 0.961383i \(-0.411251\pi\)
0.275215 + 0.961383i \(0.411251\pi\)
\(398\) 6304.00 0.793947
\(399\) −7296.00 −0.915431
\(400\) 0 0
\(401\) −8046.00 −1.00199 −0.500995 0.865450i \(-0.667033\pi\)
−0.500995 + 0.865450i \(0.667033\pi\)
\(402\) 4872.00 0.604461
\(403\) −7888.00 −0.975011
\(404\) 3192.00 0.393089
\(405\) 0 0
\(406\) −384.000 −0.0469399
\(407\) 8040.00 0.979184
\(408\) 1008.00 0.122312
\(409\) −2806.00 −0.339237 −0.169618 0.985510i \(-0.554253\pi\)
−0.169618 + 0.985510i \(0.554253\pi\)
\(410\) 0 0
\(411\) 1926.00 0.231150
\(412\) −4352.00 −0.520407
\(413\) −21120.0 −2.51634
\(414\) 0 0
\(415\) 0 0
\(416\) 1088.00 0.128230
\(417\) 8508.00 0.999133
\(418\) 9120.00 1.06716
\(419\) 11580.0 1.35017 0.675084 0.737741i \(-0.264108\pi\)
0.675084 + 0.737741i \(0.264108\pi\)
\(420\) 0 0
\(421\) −370.000 −0.0428330 −0.0214165 0.999771i \(-0.506818\pi\)
−0.0214165 + 0.999771i \(0.506818\pi\)
\(422\) 1480.00 0.170723
\(423\) 3240.00 0.372421
\(424\) −1776.00 −0.203420
\(425\) 0 0
\(426\) −720.000 −0.0818876
\(427\) 15680.0 1.77707
\(428\) −6864.00 −0.775196
\(429\) 6120.00 0.688756
\(430\) 0 0
\(431\) 5040.00 0.563267 0.281634 0.959522i \(-0.409124\pi\)
0.281634 + 0.959522i \(0.409124\pi\)
\(432\) −432.000 −0.0481125
\(433\) 3742.00 0.415310 0.207655 0.978202i \(-0.433417\pi\)
0.207655 + 0.978202i \(0.433417\pi\)
\(434\) 14848.0 1.64223
\(435\) 0 0
\(436\) −3880.00 −0.426189
\(437\) 0 0
\(438\) 4476.00 0.488291
\(439\) −6208.00 −0.674924 −0.337462 0.941339i \(-0.609568\pi\)
−0.337462 + 0.941339i \(0.609568\pi\)
\(440\) 0 0
\(441\) 6129.00 0.661808
\(442\) −2856.00 −0.307344
\(443\) 15564.0 1.66923 0.834614 0.550835i \(-0.185691\pi\)
0.834614 + 0.550835i \(0.185691\pi\)
\(444\) 1608.00 0.171875
\(445\) 0 0
\(446\) 1040.00 0.110416
\(447\) 4662.00 0.493300
\(448\) −2048.00 −0.215980
\(449\) −15774.0 −1.65795 −0.828977 0.559283i \(-0.811076\pi\)
−0.828977 + 0.559283i \(0.811076\pi\)
\(450\) 0 0
\(451\) −14040.0 −1.46589
\(452\) −1704.00 −0.177322
\(453\) 6816.00 0.706940
\(454\) −792.000 −0.0818731
\(455\) 0 0
\(456\) 1824.00 0.187317
\(457\) −9722.00 −0.995133 −0.497567 0.867426i \(-0.665773\pi\)
−0.497567 + 0.867426i \(0.665773\pi\)
\(458\) −2660.00 −0.271383
\(459\) 1134.00 0.115317
\(460\) 0 0
\(461\) −10890.0 −1.10021 −0.550106 0.835095i \(-0.685413\pi\)
−0.550106 + 0.835095i \(0.685413\pi\)
\(462\) −11520.0 −1.16008
\(463\) −15128.0 −1.51848 −0.759242 0.650809i \(-0.774430\pi\)
−0.759242 + 0.650809i \(0.774430\pi\)
\(464\) 96.0000 0.00960493
\(465\) 0 0
\(466\) −9732.00 −0.967438
\(467\) −10668.0 −1.05708 −0.528540 0.848909i \(-0.677260\pi\)
−0.528540 + 0.848909i \(0.677260\pi\)
\(468\) 1224.00 0.120896
\(469\) 25984.0 2.55827
\(470\) 0 0
\(471\) 5082.00 0.497168
\(472\) 5280.00 0.514898
\(473\) −24720.0 −2.40302
\(474\) −912.000 −0.0883746
\(475\) 0 0
\(476\) 5376.00 0.517665
\(477\) −1998.00 −0.191786
\(478\) −3648.00 −0.349070
\(479\) 15264.0 1.45601 0.728006 0.685571i \(-0.240447\pi\)
0.728006 + 0.685571i \(0.240447\pi\)
\(480\) 0 0
\(481\) −4556.00 −0.431883
\(482\) 12964.0 1.22509
\(483\) 0 0
\(484\) 9076.00 0.852367
\(485\) 0 0
\(486\) −486.000 −0.0453609
\(487\) 5776.00 0.537445 0.268722 0.963218i \(-0.413399\pi\)
0.268722 + 0.963218i \(0.413399\pi\)
\(488\) −3920.00 −0.363627
\(489\) −156.000 −0.0144265
\(490\) 0 0
\(491\) 14244.0 1.30921 0.654606 0.755971i \(-0.272835\pi\)
0.654606 + 0.755971i \(0.272835\pi\)
\(492\) −2808.00 −0.257306
\(493\) −252.000 −0.0230213
\(494\) −5168.00 −0.470687
\(495\) 0 0
\(496\) −3712.00 −0.336036
\(497\) −3840.00 −0.346575
\(498\) −4824.00 −0.434074
\(499\) −17116.0 −1.53551 −0.767753 0.640746i \(-0.778625\pi\)
−0.767753 + 0.640746i \(0.778625\pi\)
\(500\) 0 0
\(501\) −3600.00 −0.321030
\(502\) 2952.00 0.262459
\(503\) 16848.0 1.49347 0.746735 0.665122i \(-0.231620\pi\)
0.746735 + 0.665122i \(0.231620\pi\)
\(504\) −2304.00 −0.203628
\(505\) 0 0
\(506\) 0 0
\(507\) 3123.00 0.273565
\(508\) −800.000 −0.0698706
\(509\) −3834.00 −0.333868 −0.166934 0.985968i \(-0.553387\pi\)
−0.166934 + 0.985968i \(0.553387\pi\)
\(510\) 0 0
\(511\) 23872.0 2.06660
\(512\) 512.000 0.0441942
\(513\) 2052.00 0.176604
\(514\) −8628.00 −0.740398
\(515\) 0 0
\(516\) −4944.00 −0.421797
\(517\) −21600.0 −1.83746
\(518\) 8576.00 0.727428
\(519\) 162.000 0.0137014
\(520\) 0 0
\(521\) −18822.0 −1.58274 −0.791369 0.611338i \(-0.790631\pi\)
−0.791369 + 0.611338i \(0.790631\pi\)
\(522\) 108.000 0.00905562
\(523\) 15340.0 1.28255 0.641273 0.767313i \(-0.278407\pi\)
0.641273 + 0.767313i \(0.278407\pi\)
\(524\) 240.000 0.0200085
\(525\) 0 0
\(526\) 10560.0 0.875357
\(527\) 9744.00 0.805418
\(528\) 2880.00 0.237379
\(529\) −12167.0 −1.00000
\(530\) 0 0
\(531\) 5940.00 0.485450
\(532\) 9728.00 0.792786
\(533\) 7956.00 0.646553
\(534\) 4068.00 0.329662
\(535\) 0 0
\(536\) −6496.00 −0.523478
\(537\) −2628.00 −0.211185
\(538\) 11052.0 0.885661
\(539\) −40860.0 −3.26524
\(540\) 0 0
\(541\) 18950.0 1.50596 0.752980 0.658044i \(-0.228616\pi\)
0.752980 + 0.658044i \(0.228616\pi\)
\(542\) 4048.00 0.320805
\(543\) −11562.0 −0.913762
\(544\) −1344.00 −0.105926
\(545\) 0 0
\(546\) 6528.00 0.511671
\(547\) 10036.0 0.784476 0.392238 0.919864i \(-0.371701\pi\)
0.392238 + 0.919864i \(0.371701\pi\)
\(548\) −2568.00 −0.200182
\(549\) −4410.00 −0.342831
\(550\) 0 0
\(551\) −456.000 −0.0352564
\(552\) 0 0
\(553\) −4864.00 −0.374030
\(554\) −4108.00 −0.315040
\(555\) 0 0
\(556\) −11344.0 −0.865275
\(557\) −10326.0 −0.785506 −0.392753 0.919644i \(-0.628477\pi\)
−0.392753 + 0.919644i \(0.628477\pi\)
\(558\) −4176.00 −0.316818
\(559\) 14008.0 1.05988
\(560\) 0 0
\(561\) −7560.00 −0.568954
\(562\) −14604.0 −1.09614
\(563\) −4524.00 −0.338657 −0.169328 0.985560i \(-0.554160\pi\)
−0.169328 + 0.985560i \(0.554160\pi\)
\(564\) −4320.00 −0.322526
\(565\) 0 0
\(566\) 7448.00 0.553114
\(567\) −2592.00 −0.191982
\(568\) 960.000 0.0709167
\(569\) 16362.0 1.20550 0.602751 0.797929i \(-0.294071\pi\)
0.602751 + 0.797929i \(0.294071\pi\)
\(570\) 0 0
\(571\) 6620.00 0.485181 0.242591 0.970129i \(-0.422003\pi\)
0.242591 + 0.970129i \(0.422003\pi\)
\(572\) −8160.00 −0.596480
\(573\) 8352.00 0.608918
\(574\) −14976.0 −1.08900
\(575\) 0 0
\(576\) 576.000 0.0416667
\(577\) −8834.00 −0.637373 −0.318687 0.947860i \(-0.603242\pi\)
−0.318687 + 0.947860i \(0.603242\pi\)
\(578\) −6298.00 −0.453222
\(579\) 2742.00 0.196811
\(580\) 0 0
\(581\) −25728.0 −1.83714
\(582\) 1164.00 0.0829027
\(583\) 13320.0 0.946240
\(584\) −5968.00 −0.422873
\(585\) 0 0
\(586\) 14436.0 1.01765
\(587\) −3636.00 −0.255662 −0.127831 0.991796i \(-0.540802\pi\)
−0.127831 + 0.991796i \(0.540802\pi\)
\(588\) −8172.00 −0.573142
\(589\) 17632.0 1.23347
\(590\) 0 0
\(591\) −15606.0 −1.08620
\(592\) −2144.00 −0.148848
\(593\) −6570.00 −0.454971 −0.227485 0.973782i \(-0.573050\pi\)
−0.227485 + 0.973782i \(0.573050\pi\)
\(594\) 3240.00 0.223803
\(595\) 0 0
\(596\) −6216.00 −0.427210
\(597\) −9456.00 −0.648255
\(598\) 0 0
\(599\) 16584.0 1.13123 0.565613 0.824671i \(-0.308640\pi\)
0.565613 + 0.824671i \(0.308640\pi\)
\(600\) 0 0
\(601\) −502.000 −0.0340716 −0.0170358 0.999855i \(-0.505423\pi\)
−0.0170358 + 0.999855i \(0.505423\pi\)
\(602\) −26368.0 −1.78518
\(603\) −7308.00 −0.493540
\(604\) −9088.00 −0.612228
\(605\) 0 0
\(606\) −4788.00 −0.320956
\(607\) 18568.0 1.24160 0.620801 0.783969i \(-0.286808\pi\)
0.620801 + 0.783969i \(0.286808\pi\)
\(608\) −2432.00 −0.162221
\(609\) 576.000 0.0383263
\(610\) 0 0
\(611\) 12240.0 0.810438
\(612\) −1512.00 −0.0998676
\(613\) 13114.0 0.864061 0.432031 0.901859i \(-0.357797\pi\)
0.432031 + 0.901859i \(0.357797\pi\)
\(614\) −5080.00 −0.333896
\(615\) 0 0
\(616\) 15360.0 1.00466
\(617\) −5250.00 −0.342556 −0.171278 0.985223i \(-0.554790\pi\)
−0.171278 + 0.985223i \(0.554790\pi\)
\(618\) 6528.00 0.424910
\(619\) −10804.0 −0.701534 −0.350767 0.936463i \(-0.614079\pi\)
−0.350767 + 0.936463i \(0.614079\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 3120.00 0.201126
\(623\) 21696.0 1.39524
\(624\) −1632.00 −0.104699
\(625\) 0 0
\(626\) 1868.00 0.119266
\(627\) −13680.0 −0.871334
\(628\) −6776.00 −0.430560
\(629\) 5628.00 0.356762
\(630\) 0 0
\(631\) −27088.0 −1.70896 −0.854482 0.519481i \(-0.826125\pi\)
−0.854482 + 0.519481i \(0.826125\pi\)
\(632\) 1216.00 0.0765346
\(633\) −2220.00 −0.139395
\(634\) 3348.00 0.209726
\(635\) 0 0
\(636\) 2664.00 0.166092
\(637\) 23154.0 1.44018
\(638\) −720.000 −0.0446788
\(639\) 1080.00 0.0668609
\(640\) 0 0
\(641\) 18930.0 1.16644 0.583222 0.812313i \(-0.301792\pi\)
0.583222 + 0.812313i \(0.301792\pi\)
\(642\) 10296.0 0.632945
\(643\) −20108.0 −1.23325 −0.616627 0.787256i \(-0.711501\pi\)
−0.616627 + 0.787256i \(0.711501\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 6384.00 0.388816
\(647\) 7152.00 0.434581 0.217291 0.976107i \(-0.430278\pi\)
0.217291 + 0.976107i \(0.430278\pi\)
\(648\) 648.000 0.0392837
\(649\) −39600.0 −2.39512
\(650\) 0 0
\(651\) −22272.0 −1.34087
\(652\) 208.000 0.0124937
\(653\) 31626.0 1.89528 0.947642 0.319333i \(-0.103459\pi\)
0.947642 + 0.319333i \(0.103459\pi\)
\(654\) 5820.00 0.347982
\(655\) 0 0
\(656\) 3744.00 0.222833
\(657\) −6714.00 −0.398688
\(658\) −23040.0 −1.36503
\(659\) 28092.0 1.66056 0.830280 0.557347i \(-0.188181\pi\)
0.830280 + 0.557347i \(0.188181\pi\)
\(660\) 0 0
\(661\) −13186.0 −0.775909 −0.387955 0.921678i \(-0.626818\pi\)
−0.387955 + 0.921678i \(0.626818\pi\)
\(662\) −7976.00 −0.468272
\(663\) 4284.00 0.250945
\(664\) 6432.00 0.375919
\(665\) 0 0
\(666\) −2412.00 −0.140335
\(667\) 0 0
\(668\) 4800.00 0.278020
\(669\) −1560.00 −0.0901541
\(670\) 0 0
\(671\) 29400.0 1.69147
\(672\) 3072.00 0.176347
\(673\) −5138.00 −0.294287 −0.147144 0.989115i \(-0.547008\pi\)
−0.147144 + 0.989115i \(0.547008\pi\)
\(674\) −4.00000 −0.000228597 0
\(675\) 0 0
\(676\) −4164.00 −0.236914
\(677\) −6078.00 −0.345047 −0.172523 0.985005i \(-0.555192\pi\)
−0.172523 + 0.985005i \(0.555192\pi\)
\(678\) 2556.00 0.144783
\(679\) 6208.00 0.350871
\(680\) 0 0
\(681\) 1188.00 0.0668491
\(682\) 27840.0 1.56312
\(683\) −32244.0 −1.80642 −0.903208 0.429203i \(-0.858795\pi\)
−0.903208 + 0.429203i \(0.858795\pi\)
\(684\) −2736.00 −0.152944
\(685\) 0 0
\(686\) −21632.0 −1.20396
\(687\) 3990.00 0.221584
\(688\) 6592.00 0.365287
\(689\) −7548.00 −0.417353
\(690\) 0 0
\(691\) 4484.00 0.246859 0.123429 0.992353i \(-0.460611\pi\)
0.123429 + 0.992353i \(0.460611\pi\)
\(692\) −216.000 −0.0118657
\(693\) 17280.0 0.947205
\(694\) −3528.00 −0.192970
\(695\) 0 0
\(696\) −144.000 −0.00784239
\(697\) −9828.00 −0.534092
\(698\) 8620.00 0.467438
\(699\) 14598.0 0.789910
\(700\) 0 0
\(701\) −30426.0 −1.63934 −0.819668 0.572839i \(-0.805842\pi\)
−0.819668 + 0.572839i \(0.805842\pi\)
\(702\) −1836.00 −0.0987113
\(703\) 10184.0 0.546368
\(704\) −3840.00 −0.205576
\(705\) 0 0
\(706\) −276.000 −0.0147130
\(707\) −25536.0 −1.35839
\(708\) −7920.00 −0.420412
\(709\) 13262.0 0.702489 0.351245 0.936284i \(-0.385759\pi\)
0.351245 + 0.936284i \(0.385759\pi\)
\(710\) 0 0
\(711\) 1368.00 0.0721575
\(712\) −5424.00 −0.285496
\(713\) 0 0
\(714\) −8064.00 −0.422672
\(715\) 0 0
\(716\) 3504.00 0.182892
\(717\) 5472.00 0.285015
\(718\) −23952.0 −1.24496
\(719\) 13920.0 0.722014 0.361007 0.932563i \(-0.382433\pi\)
0.361007 + 0.932563i \(0.382433\pi\)
\(720\) 0 0
\(721\) 34816.0 1.79836
\(722\) −2166.00 −0.111648
\(723\) −19446.0 −1.00028
\(724\) 15416.0 0.791341
\(725\) 0 0
\(726\) −13614.0 −0.695954
\(727\) 9376.00 0.478317 0.239159 0.970981i \(-0.423128\pi\)
0.239159 + 0.970981i \(0.423128\pi\)
\(728\) −8704.00 −0.443120
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) −17304.0 −0.875529
\(732\) 5880.00 0.296900
\(733\) −6014.00 −0.303045 −0.151523 0.988454i \(-0.548418\pi\)
−0.151523 + 0.988454i \(0.548418\pi\)
\(734\) −19408.0 −0.975971
\(735\) 0 0
\(736\) 0 0
\(737\) 48720.0 2.43504
\(738\) 4212.00 0.210089
\(739\) −7468.00 −0.371739 −0.185869 0.982574i \(-0.559510\pi\)
−0.185869 + 0.982574i \(0.559510\pi\)
\(740\) 0 0
\(741\) 7752.00 0.384314
\(742\) 14208.0 0.702954
\(743\) −31248.0 −1.54290 −0.771452 0.636287i \(-0.780469\pi\)
−0.771452 + 0.636287i \(0.780469\pi\)
\(744\) 5568.00 0.274372
\(745\) 0 0
\(746\) 16244.0 0.797232
\(747\) 7236.00 0.354420
\(748\) 10080.0 0.492729
\(749\) 54912.0 2.67883
\(750\) 0 0
\(751\) 32840.0 1.59567 0.797835 0.602875i \(-0.205978\pi\)
0.797835 + 0.602875i \(0.205978\pi\)
\(752\) 5760.00 0.279316
\(753\) −4428.00 −0.214297
\(754\) 408.000 0.0197062
\(755\) 0 0
\(756\) 3456.00 0.166261
\(757\) 19066.0 0.915410 0.457705 0.889104i \(-0.348672\pi\)
0.457705 + 0.889104i \(0.348672\pi\)
\(758\) 6808.00 0.326224
\(759\) 0 0
\(760\) 0 0
\(761\) 6858.00 0.326678 0.163339 0.986570i \(-0.447773\pi\)
0.163339 + 0.986570i \(0.447773\pi\)
\(762\) 1200.00 0.0570491
\(763\) 31040.0 1.47277
\(764\) −11136.0 −0.527338
\(765\) 0 0
\(766\) 5040.00 0.237732
\(767\) 22440.0 1.05640
\(768\) −768.000 −0.0360844
\(769\) 22178.0 1.04000 0.519999 0.854167i \(-0.325932\pi\)
0.519999 + 0.854167i \(0.325932\pi\)
\(770\) 0 0
\(771\) 12942.0 0.604533
\(772\) −3656.00 −0.170443
\(773\) −14286.0 −0.664724 −0.332362 0.943152i \(-0.607846\pi\)
−0.332362 + 0.943152i \(0.607846\pi\)
\(774\) 7416.00 0.344396
\(775\) 0 0
\(776\) −1552.00 −0.0717958
\(777\) −12864.0 −0.593943
\(778\) 3132.00 0.144329
\(779\) −17784.0 −0.817943
\(780\) 0 0
\(781\) −7200.00 −0.329880
\(782\) 0 0
\(783\) −162.000 −0.00739388
\(784\) 10896.0 0.496356
\(785\) 0 0
\(786\) −360.000 −0.0163369
\(787\) 18868.0 0.854602 0.427301 0.904109i \(-0.359465\pi\)
0.427301 + 0.904109i \(0.359465\pi\)
\(788\) 20808.0 0.940678
\(789\) −15840.0 −0.714726
\(790\) 0 0
\(791\) 13632.0 0.612766
\(792\) −4320.00 −0.193819
\(793\) −16660.0 −0.746045
\(794\) 8708.00 0.389213
\(795\) 0 0
\(796\) 12608.0 0.561405
\(797\) 21690.0 0.963989 0.481994 0.876174i \(-0.339913\pi\)
0.481994 + 0.876174i \(0.339913\pi\)
\(798\) −14592.0 −0.647307
\(799\) −15120.0 −0.669471
\(800\) 0 0
\(801\) −6102.00 −0.269168
\(802\) −16092.0 −0.708514
\(803\) 44760.0 1.96706
\(804\) 9744.00 0.427418
\(805\) 0 0
\(806\) −15776.0 −0.689437
\(807\) −16578.0 −0.723139
\(808\) 6384.00 0.277956
\(809\) −24726.0 −1.07456 −0.537281 0.843404i \(-0.680548\pi\)
−0.537281 + 0.843404i \(0.680548\pi\)
\(810\) 0 0
\(811\) −2644.00 −0.114480 −0.0572401 0.998360i \(-0.518230\pi\)
−0.0572401 + 0.998360i \(0.518230\pi\)
\(812\) −768.000 −0.0331915
\(813\) −6072.00 −0.261936
\(814\) 16080.0 0.692388
\(815\) 0 0
\(816\) 2016.00 0.0864879
\(817\) −31312.0 −1.34084
\(818\) −5612.00 −0.239877
\(819\) −9792.00 −0.417778
\(820\) 0 0
\(821\) −37842.0 −1.60864 −0.804321 0.594195i \(-0.797471\pi\)
−0.804321 + 0.594195i \(0.797471\pi\)
\(822\) 3852.00 0.163448
\(823\) 880.000 0.0372720 0.0186360 0.999826i \(-0.494068\pi\)
0.0186360 + 0.999826i \(0.494068\pi\)
\(824\) −8704.00 −0.367983
\(825\) 0 0
\(826\) −42240.0 −1.77932
\(827\) 12876.0 0.541406 0.270703 0.962663i \(-0.412744\pi\)
0.270703 + 0.962663i \(0.412744\pi\)
\(828\) 0 0
\(829\) −25498.0 −1.06825 −0.534127 0.845404i \(-0.679359\pi\)
−0.534127 + 0.845404i \(0.679359\pi\)
\(830\) 0 0
\(831\) 6162.00 0.257229
\(832\) 2176.00 0.0906721
\(833\) −28602.0 −1.18968
\(834\) 17016.0 0.706494
\(835\) 0 0
\(836\) 18240.0 0.754598
\(837\) 6264.00 0.258680
\(838\) 23160.0 0.954712
\(839\) −40584.0 −1.66998 −0.834991 0.550263i \(-0.814527\pi\)
−0.834991 + 0.550263i \(0.814527\pi\)
\(840\) 0 0
\(841\) −24353.0 −0.998524
\(842\) −740.000 −0.0302875
\(843\) 21906.0 0.894997
\(844\) 2960.00 0.120720
\(845\) 0 0
\(846\) 6480.00 0.263342
\(847\) −72608.0 −2.94550
\(848\) −3552.00 −0.143840
\(849\) −11172.0 −0.451616
\(850\) 0 0
\(851\) 0 0
\(852\) −1440.00 −0.0579033
\(853\) 25738.0 1.03312 0.516561 0.856251i \(-0.327212\pi\)
0.516561 + 0.856251i \(0.327212\pi\)
\(854\) 31360.0 1.25658
\(855\) 0 0
\(856\) −13728.0 −0.548146
\(857\) −13314.0 −0.530686 −0.265343 0.964154i \(-0.585485\pi\)
−0.265343 + 0.964154i \(0.585485\pi\)
\(858\) 12240.0 0.487024
\(859\) 24524.0 0.974096 0.487048 0.873375i \(-0.338074\pi\)
0.487048 + 0.873375i \(0.338074\pi\)
\(860\) 0 0
\(861\) 22464.0 0.889165
\(862\) 10080.0 0.398290
\(863\) −5592.00 −0.220572 −0.110286 0.993900i \(-0.535177\pi\)
−0.110286 + 0.993900i \(0.535177\pi\)
\(864\) −864.000 −0.0340207
\(865\) 0 0
\(866\) 7484.00 0.293668
\(867\) 9447.00 0.370054
\(868\) 29696.0 1.16123
\(869\) −9120.00 −0.356012
\(870\) 0 0
\(871\) −27608.0 −1.07401
\(872\) −7760.00 −0.301361
\(873\) −1746.00 −0.0676897
\(874\) 0 0
\(875\) 0 0
\(876\) 8952.00 0.345274
\(877\) 14386.0 0.553912 0.276956 0.960883i \(-0.410674\pi\)
0.276956 + 0.960883i \(0.410674\pi\)
\(878\) −12416.0 −0.477243
\(879\) −21654.0 −0.830912
\(880\) 0 0
\(881\) 47106.0 1.80141 0.900705 0.434432i \(-0.143051\pi\)
0.900705 + 0.434432i \(0.143051\pi\)
\(882\) 12258.0 0.467969
\(883\) −51548.0 −1.96458 −0.982292 0.187354i \(-0.940009\pi\)
−0.982292 + 0.187354i \(0.940009\pi\)
\(884\) −5712.00 −0.217325
\(885\) 0 0
\(886\) 31128.0 1.18032
\(887\) −34080.0 −1.29007 −0.645036 0.764152i \(-0.723158\pi\)
−0.645036 + 0.764152i \(0.723158\pi\)
\(888\) 3216.00 0.121534
\(889\) 6400.00 0.241450
\(890\) 0 0
\(891\) −4860.00 −0.182734
\(892\) 2080.00 0.0780757
\(893\) −27360.0 −1.02527
\(894\) 9324.00 0.348816
\(895\) 0 0
\(896\) −4096.00 −0.152721
\(897\) 0 0
\(898\) −31548.0 −1.17235
\(899\) −1392.00 −0.0516416
\(900\) 0 0
\(901\) 9324.00 0.344759
\(902\) −28080.0 −1.03654
\(903\) 39552.0 1.45759
\(904\) −3408.00 −0.125385
\(905\) 0 0
\(906\) 13632.0 0.499882
\(907\) −25748.0 −0.942611 −0.471306 0.881970i \(-0.656217\pi\)
−0.471306 + 0.881970i \(0.656217\pi\)
\(908\) −1584.00 −0.0578930
\(909\) 7182.00 0.262059
\(910\) 0 0
\(911\) −24768.0 −0.900769 −0.450384 0.892835i \(-0.648713\pi\)
−0.450384 + 0.892835i \(0.648713\pi\)
\(912\) 3648.00 0.132453
\(913\) −48240.0 −1.74864
\(914\) −19444.0 −0.703666
\(915\) 0 0
\(916\) −5320.00 −0.191897
\(917\) −1920.00 −0.0691428
\(918\) 2268.00 0.0815416
\(919\) −31264.0 −1.12220 −0.561101 0.827747i \(-0.689622\pi\)
−0.561101 + 0.827747i \(0.689622\pi\)
\(920\) 0 0
\(921\) 7620.00 0.272625
\(922\) −21780.0 −0.777968
\(923\) 4080.00 0.145498
\(924\) −23040.0 −0.820303
\(925\) 0 0
\(926\) −30256.0 −1.07373
\(927\) −9792.00 −0.346938
\(928\) 192.000 0.00679171
\(929\) −6174.00 −0.218043 −0.109022 0.994039i \(-0.534772\pi\)
−0.109022 + 0.994039i \(0.534772\pi\)
\(930\) 0 0
\(931\) −51756.0 −1.82195
\(932\) −19464.0 −0.684082
\(933\) −4680.00 −0.164219
\(934\) −21336.0 −0.747468
\(935\) 0 0
\(936\) 2448.00 0.0854865
\(937\) −28922.0 −1.00837 −0.504184 0.863596i \(-0.668207\pi\)
−0.504184 + 0.863596i \(0.668207\pi\)
\(938\) 51968.0 1.80897
\(939\) −2802.00 −0.0973800
\(940\) 0 0
\(941\) 29238.0 1.01289 0.506446 0.862272i \(-0.330959\pi\)
0.506446 + 0.862272i \(0.330959\pi\)
\(942\) 10164.0 0.351551
\(943\) 0 0
\(944\) 10560.0 0.364088
\(945\) 0 0
\(946\) −49440.0 −1.69919
\(947\) 2868.00 0.0984134 0.0492067 0.998789i \(-0.484331\pi\)
0.0492067 + 0.998789i \(0.484331\pi\)
\(948\) −1824.00 −0.0624903
\(949\) −25364.0 −0.867598
\(950\) 0 0
\(951\) −5022.00 −0.171240
\(952\) 10752.0 0.366044
\(953\) −24018.0 −0.816390 −0.408195 0.912895i \(-0.633842\pi\)
−0.408195 + 0.912895i \(0.633842\pi\)
\(954\) −3996.00 −0.135613
\(955\) 0 0
\(956\) −7296.00 −0.246830
\(957\) 1080.00 0.0364801
\(958\) 30528.0 1.02956
\(959\) 20544.0 0.691763
\(960\) 0 0
\(961\) 24033.0 0.806720
\(962\) −9112.00 −0.305387
\(963\) −15444.0 −0.516797
\(964\) 25928.0 0.866270
\(965\) 0 0
\(966\) 0 0
\(967\) −25712.0 −0.855059 −0.427530 0.904001i \(-0.640616\pi\)
−0.427530 + 0.904001i \(0.640616\pi\)
\(968\) 18152.0 0.602714
\(969\) −9576.00 −0.317467
\(970\) 0 0
\(971\) −12396.0 −0.409688 −0.204844 0.978795i \(-0.565669\pi\)
−0.204844 + 0.978795i \(0.565669\pi\)
\(972\) −972.000 −0.0320750
\(973\) 90752.0 2.99011
\(974\) 11552.0 0.380031
\(975\) 0 0
\(976\) −7840.00 −0.257123
\(977\) 46614.0 1.52642 0.763211 0.646150i \(-0.223622\pi\)
0.763211 + 0.646150i \(0.223622\pi\)
\(978\) −312.000 −0.0102011
\(979\) 40680.0 1.32803
\(980\) 0 0
\(981\) −8730.00 −0.284126
\(982\) 28488.0 0.925752
\(983\) 672.000 0.0218041 0.0109021 0.999941i \(-0.496530\pi\)
0.0109021 + 0.999941i \(0.496530\pi\)
\(984\) −5616.00 −0.181943
\(985\) 0 0
\(986\) −504.000 −0.0162785
\(987\) 34560.0 1.11455
\(988\) −10336.0 −0.332826
\(989\) 0 0
\(990\) 0 0
\(991\) −38776.0 −1.24295 −0.621473 0.783435i \(-0.713466\pi\)
−0.621473 + 0.783435i \(0.713466\pi\)
\(992\) −7424.00 −0.237613
\(993\) 11964.0 0.382342
\(994\) −7680.00 −0.245065
\(995\) 0 0
\(996\) −9648.00 −0.306936
\(997\) −30422.0 −0.966374 −0.483187 0.875517i \(-0.660521\pi\)
−0.483187 + 0.875517i \(0.660521\pi\)
\(998\) −34232.0 −1.08577
\(999\) 3618.00 0.114583
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.4.a.e.1.1 1
3.2 odd 2 450.4.a.b.1.1 1
4.3 odd 2 1200.4.a.bk.1.1 1
5.2 odd 4 150.4.c.a.49.2 2
5.3 odd 4 150.4.c.a.49.1 2
5.4 even 2 30.4.a.a.1.1 1
15.2 even 4 450.4.c.k.199.1 2
15.8 even 4 450.4.c.k.199.2 2
15.14 odd 2 90.4.a.d.1.1 1
20.3 even 4 1200.4.f.u.49.2 2
20.7 even 4 1200.4.f.u.49.1 2
20.19 odd 2 240.4.a.c.1.1 1
35.34 odd 2 1470.4.a.a.1.1 1
40.19 odd 2 960.4.a.s.1.1 1
40.29 even 2 960.4.a.j.1.1 1
45.4 even 6 810.4.e.m.541.1 2
45.14 odd 6 810.4.e.e.541.1 2
45.29 odd 6 810.4.e.e.271.1 2
45.34 even 6 810.4.e.m.271.1 2
60.59 even 2 720.4.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.4.a.a.1.1 1 5.4 even 2
90.4.a.d.1.1 1 15.14 odd 2
150.4.a.e.1.1 1 1.1 even 1 trivial
150.4.c.a.49.1 2 5.3 odd 4
150.4.c.a.49.2 2 5.2 odd 4
240.4.a.c.1.1 1 20.19 odd 2
450.4.a.b.1.1 1 3.2 odd 2
450.4.c.k.199.1 2 15.2 even 4
450.4.c.k.199.2 2 15.8 even 4
720.4.a.b.1.1 1 60.59 even 2
810.4.e.e.271.1 2 45.29 odd 6
810.4.e.e.541.1 2 45.14 odd 6
810.4.e.m.271.1 2 45.34 even 6
810.4.e.m.541.1 2 45.4 even 6
960.4.a.j.1.1 1 40.29 even 2
960.4.a.s.1.1 1 40.19 odd 2
1200.4.a.bk.1.1 1 4.3 odd 2
1200.4.f.u.49.1 2 20.7 even 4
1200.4.f.u.49.2 2 20.3 even 4
1470.4.a.a.1.1 1 35.34 odd 2