Properties

Label 150.4.a.a.1.1
Level $150$
Weight $4$
Character 150.1
Self dual yes
Analytic conductor $8.850$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,4,Mod(1,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 150.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.85028650086\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 150.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -3.00000 q^{3} +4.00000 q^{4} +6.00000 q^{6} -1.00000 q^{7} -8.00000 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q-2.00000 q^{2} -3.00000 q^{3} +4.00000 q^{4} +6.00000 q^{6} -1.00000 q^{7} -8.00000 q^{8} +9.00000 q^{9} +42.0000 q^{11} -12.0000 q^{12} -67.0000 q^{13} +2.00000 q^{14} +16.0000 q^{16} +54.0000 q^{17} -18.0000 q^{18} -115.000 q^{19} +3.00000 q^{21} -84.0000 q^{22} -162.000 q^{23} +24.0000 q^{24} +134.000 q^{26} -27.0000 q^{27} -4.00000 q^{28} -210.000 q^{29} -193.000 q^{31} -32.0000 q^{32} -126.000 q^{33} -108.000 q^{34} +36.0000 q^{36} -286.000 q^{37} +230.000 q^{38} +201.000 q^{39} +12.0000 q^{41} -6.00000 q^{42} +263.000 q^{43} +168.000 q^{44} +324.000 q^{46} +414.000 q^{47} -48.0000 q^{48} -342.000 q^{49} -162.000 q^{51} -268.000 q^{52} -192.000 q^{53} +54.0000 q^{54} +8.00000 q^{56} +345.000 q^{57} +420.000 q^{58} +690.000 q^{59} -733.000 q^{61} +386.000 q^{62} -9.00000 q^{63} +64.0000 q^{64} +252.000 q^{66} +299.000 q^{67} +216.000 q^{68} +486.000 q^{69} -228.000 q^{71} -72.0000 q^{72} +938.000 q^{73} +572.000 q^{74} -460.000 q^{76} -42.0000 q^{77} -402.000 q^{78} -160.000 q^{79} +81.0000 q^{81} -24.0000 q^{82} -462.000 q^{83} +12.0000 q^{84} -526.000 q^{86} +630.000 q^{87} -336.000 q^{88} -240.000 q^{89} +67.0000 q^{91} -648.000 q^{92} +579.000 q^{93} -828.000 q^{94} +96.0000 q^{96} -511.000 q^{97} +684.000 q^{98} +378.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −3.00000 −0.577350
\(4\) 4.00000 0.500000
\(5\) 0 0
\(6\) 6.00000 0.408248
\(7\) −1.00000 −0.0539949 −0.0269975 0.999636i \(-0.508595\pi\)
−0.0269975 + 0.999636i \(0.508595\pi\)
\(8\) −8.00000 −0.353553
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) 42.0000 1.15123 0.575613 0.817723i \(-0.304764\pi\)
0.575613 + 0.817723i \(0.304764\pi\)
\(12\) −12.0000 −0.288675
\(13\) −67.0000 −1.42942 −0.714710 0.699421i \(-0.753441\pi\)
−0.714710 + 0.699421i \(0.753441\pi\)
\(14\) 2.00000 0.0381802
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 54.0000 0.770407 0.385204 0.922832i \(-0.374131\pi\)
0.385204 + 0.922832i \(0.374131\pi\)
\(18\) −18.0000 −0.235702
\(19\) −115.000 −1.38857 −0.694284 0.719701i \(-0.744279\pi\)
−0.694284 + 0.719701i \(0.744279\pi\)
\(20\) 0 0
\(21\) 3.00000 0.0311740
\(22\) −84.0000 −0.814039
\(23\) −162.000 −1.46867 −0.734333 0.678789i \(-0.762505\pi\)
−0.734333 + 0.678789i \(0.762505\pi\)
\(24\) 24.0000 0.204124
\(25\) 0 0
\(26\) 134.000 1.01075
\(27\) −27.0000 −0.192450
\(28\) −4.00000 −0.0269975
\(29\) −210.000 −1.34469 −0.672345 0.740238i \(-0.734713\pi\)
−0.672345 + 0.740238i \(0.734713\pi\)
\(30\) 0 0
\(31\) −193.000 −1.11819 −0.559094 0.829104i \(-0.688851\pi\)
−0.559094 + 0.829104i \(0.688851\pi\)
\(32\) −32.0000 −0.176777
\(33\) −126.000 −0.664660
\(34\) −108.000 −0.544760
\(35\) 0 0
\(36\) 36.0000 0.166667
\(37\) −286.000 −1.27076 −0.635380 0.772200i \(-0.719156\pi\)
−0.635380 + 0.772200i \(0.719156\pi\)
\(38\) 230.000 0.981866
\(39\) 201.000 0.825276
\(40\) 0 0
\(41\) 12.0000 0.0457094 0.0228547 0.999739i \(-0.492724\pi\)
0.0228547 + 0.999739i \(0.492724\pi\)
\(42\) −6.00000 −0.0220433
\(43\) 263.000 0.932724 0.466362 0.884594i \(-0.345564\pi\)
0.466362 + 0.884594i \(0.345564\pi\)
\(44\) 168.000 0.575613
\(45\) 0 0
\(46\) 324.000 1.03850
\(47\) 414.000 1.28485 0.642427 0.766347i \(-0.277928\pi\)
0.642427 + 0.766347i \(0.277928\pi\)
\(48\) −48.0000 −0.144338
\(49\) −342.000 −0.997085
\(50\) 0 0
\(51\) −162.000 −0.444795
\(52\) −268.000 −0.714710
\(53\) −192.000 −0.497608 −0.248804 0.968554i \(-0.580038\pi\)
−0.248804 + 0.968554i \(0.580038\pi\)
\(54\) 54.0000 0.136083
\(55\) 0 0
\(56\) 8.00000 0.0190901
\(57\) 345.000 0.801691
\(58\) 420.000 0.950840
\(59\) 690.000 1.52255 0.761274 0.648430i \(-0.224574\pi\)
0.761274 + 0.648430i \(0.224574\pi\)
\(60\) 0 0
\(61\) −733.000 −1.53854 −0.769271 0.638923i \(-0.779380\pi\)
−0.769271 + 0.638923i \(0.779380\pi\)
\(62\) 386.000 0.790678
\(63\) −9.00000 −0.0179983
\(64\) 64.0000 0.125000
\(65\) 0 0
\(66\) 252.000 0.469986
\(67\) 299.000 0.545204 0.272602 0.962127i \(-0.412116\pi\)
0.272602 + 0.962127i \(0.412116\pi\)
\(68\) 216.000 0.385204
\(69\) 486.000 0.847935
\(70\) 0 0
\(71\) −228.000 −0.381107 −0.190554 0.981677i \(-0.561028\pi\)
−0.190554 + 0.981677i \(0.561028\pi\)
\(72\) −72.0000 −0.117851
\(73\) 938.000 1.50390 0.751949 0.659221i \(-0.229114\pi\)
0.751949 + 0.659221i \(0.229114\pi\)
\(74\) 572.000 0.898563
\(75\) 0 0
\(76\) −460.000 −0.694284
\(77\) −42.0000 −0.0621603
\(78\) −402.000 −0.583558
\(79\) −160.000 −0.227866 −0.113933 0.993488i \(-0.536345\pi\)
−0.113933 + 0.993488i \(0.536345\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) −24.0000 −0.0323214
\(83\) −462.000 −0.610977 −0.305488 0.952196i \(-0.598820\pi\)
−0.305488 + 0.952196i \(0.598820\pi\)
\(84\) 12.0000 0.0155870
\(85\) 0 0
\(86\) −526.000 −0.659535
\(87\) 630.000 0.776357
\(88\) −336.000 −0.407020
\(89\) −240.000 −0.285842 −0.142921 0.989734i \(-0.545650\pi\)
−0.142921 + 0.989734i \(0.545650\pi\)
\(90\) 0 0
\(91\) 67.0000 0.0771814
\(92\) −648.000 −0.734333
\(93\) 579.000 0.645586
\(94\) −828.000 −0.908529
\(95\) 0 0
\(96\) 96.0000 0.102062
\(97\) −511.000 −0.534889 −0.267444 0.963573i \(-0.586179\pi\)
−0.267444 + 0.963573i \(0.586179\pi\)
\(98\) 684.000 0.705045
\(99\) 378.000 0.383742
\(100\) 0 0
\(101\) 912.000 0.898489 0.449245 0.893409i \(-0.351693\pi\)
0.449245 + 0.893409i \(0.351693\pi\)
\(102\) 324.000 0.314517
\(103\) 668.000 0.639029 0.319515 0.947581i \(-0.396480\pi\)
0.319515 + 0.947581i \(0.396480\pi\)
\(104\) 536.000 0.505376
\(105\) 0 0
\(106\) 384.000 0.351862
\(107\) −1296.00 −1.17093 −0.585463 0.810699i \(-0.699087\pi\)
−0.585463 + 0.810699i \(0.699087\pi\)
\(108\) −108.000 −0.0962250
\(109\) −1735.00 −1.52461 −0.762307 0.647216i \(-0.775933\pi\)
−0.762307 + 0.647216i \(0.775933\pi\)
\(110\) 0 0
\(111\) 858.000 0.733673
\(112\) −16.0000 −0.0134987
\(113\) −1092.00 −0.909086 −0.454543 0.890725i \(-0.650197\pi\)
−0.454543 + 0.890725i \(0.650197\pi\)
\(114\) −690.000 −0.566881
\(115\) 0 0
\(116\) −840.000 −0.672345
\(117\) −603.000 −0.476473
\(118\) −1380.00 −1.07660
\(119\) −54.0000 −0.0415981
\(120\) 0 0
\(121\) 433.000 0.325319
\(122\) 1466.00 1.08791
\(123\) −36.0000 −0.0263903
\(124\) −772.000 −0.559094
\(125\) 0 0
\(126\) 18.0000 0.0127267
\(127\) −16.0000 −0.0111793 −0.00558965 0.999984i \(-0.501779\pi\)
−0.00558965 + 0.999984i \(0.501779\pi\)
\(128\) −128.000 −0.0883883
\(129\) −789.000 −0.538508
\(130\) 0 0
\(131\) 1992.00 1.32856 0.664282 0.747482i \(-0.268737\pi\)
0.664282 + 0.747482i \(0.268737\pi\)
\(132\) −504.000 −0.332330
\(133\) 115.000 0.0749757
\(134\) −598.000 −0.385517
\(135\) 0 0
\(136\) −432.000 −0.272380
\(137\) −2346.00 −1.46301 −0.731505 0.681836i \(-0.761182\pi\)
−0.731505 + 0.681836i \(0.761182\pi\)
\(138\) −972.000 −0.599581
\(139\) 2900.00 1.76960 0.884801 0.465968i \(-0.154294\pi\)
0.884801 + 0.465968i \(0.154294\pi\)
\(140\) 0 0
\(141\) −1242.00 −0.741810
\(142\) 456.000 0.269484
\(143\) −2814.00 −1.64558
\(144\) 144.000 0.0833333
\(145\) 0 0
\(146\) −1876.00 −1.06342
\(147\) 1026.00 0.575667
\(148\) −1144.00 −0.635380
\(149\) −2070.00 −1.13813 −0.569064 0.822293i \(-0.692694\pi\)
−0.569064 + 0.822293i \(0.692694\pi\)
\(150\) 0 0
\(151\) 2237.00 1.20559 0.602796 0.797895i \(-0.294053\pi\)
0.602796 + 0.797895i \(0.294053\pi\)
\(152\) 920.000 0.490933
\(153\) 486.000 0.256802
\(154\) 84.0000 0.0439540
\(155\) 0 0
\(156\) 804.000 0.412638
\(157\) −241.000 −0.122509 −0.0612544 0.998122i \(-0.519510\pi\)
−0.0612544 + 0.998122i \(0.519510\pi\)
\(158\) 320.000 0.161126
\(159\) 576.000 0.287294
\(160\) 0 0
\(161\) 162.000 0.0793006
\(162\) −162.000 −0.0785674
\(163\) −3547.00 −1.70443 −0.852216 0.523190i \(-0.824742\pi\)
−0.852216 + 0.523190i \(0.824742\pi\)
\(164\) 48.0000 0.0228547
\(165\) 0 0
\(166\) 924.000 0.432026
\(167\) 984.000 0.455953 0.227977 0.973667i \(-0.426789\pi\)
0.227977 + 0.973667i \(0.426789\pi\)
\(168\) −24.0000 −0.0110217
\(169\) 2292.00 1.04324
\(170\) 0 0
\(171\) −1035.00 −0.462856
\(172\) 1052.00 0.466362
\(173\) 3618.00 1.59001 0.795004 0.606604i \(-0.207469\pi\)
0.795004 + 0.606604i \(0.207469\pi\)
\(174\) −1260.00 −0.548968
\(175\) 0 0
\(176\) 672.000 0.287806
\(177\) −2070.00 −0.879044
\(178\) 480.000 0.202121
\(179\) −150.000 −0.0626342 −0.0313171 0.999509i \(-0.509970\pi\)
−0.0313171 + 0.999509i \(0.509970\pi\)
\(180\) 0 0
\(181\) 197.000 0.0809000 0.0404500 0.999182i \(-0.487121\pi\)
0.0404500 + 0.999182i \(0.487121\pi\)
\(182\) −134.000 −0.0545755
\(183\) 2199.00 0.888277
\(184\) 1296.00 0.519252
\(185\) 0 0
\(186\) −1158.00 −0.456498
\(187\) 2268.00 0.886912
\(188\) 1656.00 0.642427
\(189\) 27.0000 0.0103913
\(190\) 0 0
\(191\) 1302.00 0.493243 0.246622 0.969112i \(-0.420680\pi\)
0.246622 + 0.969112i \(0.420680\pi\)
\(192\) −192.000 −0.0721688
\(193\) 4163.00 1.55264 0.776319 0.630340i \(-0.217084\pi\)
0.776319 + 0.630340i \(0.217084\pi\)
\(194\) 1022.00 0.378223
\(195\) 0 0
\(196\) −1368.00 −0.498542
\(197\) 3054.00 1.10451 0.552255 0.833675i \(-0.313767\pi\)
0.552255 + 0.833675i \(0.313767\pi\)
\(198\) −756.000 −0.271346
\(199\) 3425.00 1.22006 0.610030 0.792379i \(-0.291158\pi\)
0.610030 + 0.792379i \(0.291158\pi\)
\(200\) 0 0
\(201\) −897.000 −0.314774
\(202\) −1824.00 −0.635328
\(203\) 210.000 0.0726065
\(204\) −648.000 −0.222397
\(205\) 0 0
\(206\) −1336.00 −0.451862
\(207\) −1458.00 −0.489556
\(208\) −1072.00 −0.357355
\(209\) −4830.00 −1.59856
\(210\) 0 0
\(211\) −2443.00 −0.797076 −0.398538 0.917152i \(-0.630482\pi\)
−0.398538 + 0.917152i \(0.630482\pi\)
\(212\) −768.000 −0.248804
\(213\) 684.000 0.220032
\(214\) 2592.00 0.827969
\(215\) 0 0
\(216\) 216.000 0.0680414
\(217\) 193.000 0.0603765
\(218\) 3470.00 1.07806
\(219\) −2814.00 −0.868276
\(220\) 0 0
\(221\) −3618.00 −1.10124
\(222\) −1716.00 −0.518785
\(223\) 23.0000 0.00690670 0.00345335 0.999994i \(-0.498901\pi\)
0.00345335 + 0.999994i \(0.498901\pi\)
\(224\) 32.0000 0.00954504
\(225\) 0 0
\(226\) 2184.00 0.642821
\(227\) −1956.00 −0.571913 −0.285957 0.958243i \(-0.592311\pi\)
−0.285957 + 0.958243i \(0.592311\pi\)
\(228\) 1380.00 0.400845
\(229\) 1805.00 0.520864 0.260432 0.965492i \(-0.416135\pi\)
0.260432 + 0.965492i \(0.416135\pi\)
\(230\) 0 0
\(231\) 126.000 0.0358883
\(232\) 1680.00 0.475420
\(233\) 3468.00 0.975091 0.487546 0.873098i \(-0.337892\pi\)
0.487546 + 0.873098i \(0.337892\pi\)
\(234\) 1206.00 0.336917
\(235\) 0 0
\(236\) 2760.00 0.761274
\(237\) 480.000 0.131558
\(238\) 108.000 0.0294143
\(239\) 2640.00 0.714508 0.357254 0.934007i \(-0.383713\pi\)
0.357254 + 0.934007i \(0.383713\pi\)
\(240\) 0 0
\(241\) −5383.00 −1.43879 −0.719397 0.694599i \(-0.755582\pi\)
−0.719397 + 0.694599i \(0.755582\pi\)
\(242\) −866.000 −0.230035
\(243\) −243.000 −0.0641500
\(244\) −2932.00 −0.769271
\(245\) 0 0
\(246\) 72.0000 0.0186608
\(247\) 7705.00 1.98485
\(248\) 1544.00 0.395339
\(249\) 1386.00 0.352748
\(250\) 0 0
\(251\) −5028.00 −1.26440 −0.632200 0.774805i \(-0.717848\pi\)
−0.632200 + 0.774805i \(0.717848\pi\)
\(252\) −36.0000 −0.00899915
\(253\) −6804.00 −1.69077
\(254\) 32.0000 0.00790496
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) 564.000 0.136892 0.0684462 0.997655i \(-0.478196\pi\)
0.0684462 + 0.997655i \(0.478196\pi\)
\(258\) 1578.00 0.380783
\(259\) 286.000 0.0686146
\(260\) 0 0
\(261\) −1890.00 −0.448230
\(262\) −3984.00 −0.939436
\(263\) −1812.00 −0.424839 −0.212420 0.977179i \(-0.568134\pi\)
−0.212420 + 0.977179i \(0.568134\pi\)
\(264\) 1008.00 0.234993
\(265\) 0 0
\(266\) −230.000 −0.0530158
\(267\) 720.000 0.165031
\(268\) 1196.00 0.272602
\(269\) −5190.00 −1.17636 −0.588178 0.808731i \(-0.700155\pi\)
−0.588178 + 0.808731i \(0.700155\pi\)
\(270\) 0 0
\(271\) 4592.00 1.02931 0.514657 0.857396i \(-0.327919\pi\)
0.514657 + 0.857396i \(0.327919\pi\)
\(272\) 864.000 0.192602
\(273\) −201.000 −0.0445607
\(274\) 4692.00 1.03450
\(275\) 0 0
\(276\) 1944.00 0.423968
\(277\) −2191.00 −0.475251 −0.237625 0.971357i \(-0.576369\pi\)
−0.237625 + 0.971357i \(0.576369\pi\)
\(278\) −5800.00 −1.25130
\(279\) −1737.00 −0.372729
\(280\) 0 0
\(281\) 7842.00 1.66482 0.832410 0.554160i \(-0.186960\pi\)
0.832410 + 0.554160i \(0.186960\pi\)
\(282\) 2484.00 0.524539
\(283\) −247.000 −0.0518821 −0.0259410 0.999663i \(-0.508258\pi\)
−0.0259410 + 0.999663i \(0.508258\pi\)
\(284\) −912.000 −0.190554
\(285\) 0 0
\(286\) 5628.00 1.16360
\(287\) −12.0000 −0.00246808
\(288\) −288.000 −0.0589256
\(289\) −1997.00 −0.406473
\(290\) 0 0
\(291\) 1533.00 0.308818
\(292\) 3752.00 0.751949
\(293\) −5442.00 −1.08507 −0.542534 0.840034i \(-0.682535\pi\)
−0.542534 + 0.840034i \(0.682535\pi\)
\(294\) −2052.00 −0.407058
\(295\) 0 0
\(296\) 2288.00 0.449281
\(297\) −1134.00 −0.221553
\(298\) 4140.00 0.804778
\(299\) 10854.0 2.09934
\(300\) 0 0
\(301\) −263.000 −0.0503624
\(302\) −4474.00 −0.852483
\(303\) −2736.00 −0.518743
\(304\) −1840.00 −0.347142
\(305\) 0 0
\(306\) −972.000 −0.181587
\(307\) −3871.00 −0.719641 −0.359820 0.933022i \(-0.617162\pi\)
−0.359820 + 0.933022i \(0.617162\pi\)
\(308\) −168.000 −0.0310802
\(309\) −2004.00 −0.368944
\(310\) 0 0
\(311\) −5718.00 −1.04257 −0.521283 0.853384i \(-0.674546\pi\)
−0.521283 + 0.853384i \(0.674546\pi\)
\(312\) −1608.00 −0.291779
\(313\) −3637.00 −0.656790 −0.328395 0.944540i \(-0.606508\pi\)
−0.328395 + 0.944540i \(0.606508\pi\)
\(314\) 482.000 0.0866269
\(315\) 0 0
\(316\) −640.000 −0.113933
\(317\) −1296.00 −0.229623 −0.114812 0.993387i \(-0.536626\pi\)
−0.114812 + 0.993387i \(0.536626\pi\)
\(318\) −1152.00 −0.203148
\(319\) −8820.00 −1.54804
\(320\) 0 0
\(321\) 3888.00 0.676034
\(322\) −324.000 −0.0560740
\(323\) −6210.00 −1.06976
\(324\) 324.000 0.0555556
\(325\) 0 0
\(326\) 7094.00 1.20522
\(327\) 5205.00 0.880236
\(328\) −96.0000 −0.0161607
\(329\) −414.000 −0.0693756
\(330\) 0 0
\(331\) 5132.00 0.852206 0.426103 0.904675i \(-0.359886\pi\)
0.426103 + 0.904675i \(0.359886\pi\)
\(332\) −1848.00 −0.305488
\(333\) −2574.00 −0.423587
\(334\) −1968.00 −0.322408
\(335\) 0 0
\(336\) 48.0000 0.00779350
\(337\) −6751.00 −1.09125 −0.545624 0.838030i \(-0.683707\pi\)
−0.545624 + 0.838030i \(0.683707\pi\)
\(338\) −4584.00 −0.737683
\(339\) 3276.00 0.524861
\(340\) 0 0
\(341\) −8106.00 −1.28729
\(342\) 2070.00 0.327289
\(343\) 685.000 0.107832
\(344\) −2104.00 −0.329768
\(345\) 0 0
\(346\) −7236.00 −1.12431
\(347\) −5226.00 −0.808491 −0.404246 0.914651i \(-0.632466\pi\)
−0.404246 + 0.914651i \(0.632466\pi\)
\(348\) 2520.00 0.388179
\(349\) −6190.00 −0.949407 −0.474704 0.880146i \(-0.657445\pi\)
−0.474704 + 0.880146i \(0.657445\pi\)
\(350\) 0 0
\(351\) 1809.00 0.275092
\(352\) −1344.00 −0.203510
\(353\) 6618.00 0.997849 0.498924 0.866646i \(-0.333729\pi\)
0.498924 + 0.866646i \(0.333729\pi\)
\(354\) 4140.00 0.621578
\(355\) 0 0
\(356\) −960.000 −0.142921
\(357\) 162.000 0.0240167
\(358\) 300.000 0.0442891
\(359\) −3420.00 −0.502787 −0.251394 0.967885i \(-0.580889\pi\)
−0.251394 + 0.967885i \(0.580889\pi\)
\(360\) 0 0
\(361\) 6366.00 0.928124
\(362\) −394.000 −0.0572049
\(363\) −1299.00 −0.187823
\(364\) 268.000 0.0385907
\(365\) 0 0
\(366\) −4398.00 −0.628107
\(367\) −871.000 −0.123885 −0.0619425 0.998080i \(-0.519730\pi\)
−0.0619425 + 0.998080i \(0.519730\pi\)
\(368\) −2592.00 −0.367167
\(369\) 108.000 0.0152365
\(370\) 0 0
\(371\) 192.000 0.0268683
\(372\) 2316.00 0.322793
\(373\) 6383.00 0.886057 0.443028 0.896508i \(-0.353904\pi\)
0.443028 + 0.896508i \(0.353904\pi\)
\(374\) −4536.00 −0.627142
\(375\) 0 0
\(376\) −3312.00 −0.454264
\(377\) 14070.0 1.92213
\(378\) −54.0000 −0.00734778
\(379\) −9865.00 −1.33702 −0.668511 0.743703i \(-0.733068\pi\)
−0.668511 + 0.743703i \(0.733068\pi\)
\(380\) 0 0
\(381\) 48.0000 0.00645437
\(382\) −2604.00 −0.348775
\(383\) 9828.00 1.31119 0.655597 0.755111i \(-0.272417\pi\)
0.655597 + 0.755111i \(0.272417\pi\)
\(384\) 384.000 0.0510310
\(385\) 0 0
\(386\) −8326.00 −1.09788
\(387\) 2367.00 0.310908
\(388\) −2044.00 −0.267444
\(389\) 12540.0 1.63446 0.817228 0.576315i \(-0.195510\pi\)
0.817228 + 0.576315i \(0.195510\pi\)
\(390\) 0 0
\(391\) −8748.00 −1.13147
\(392\) 2736.00 0.352523
\(393\) −5976.00 −0.767047
\(394\) −6108.00 −0.781007
\(395\) 0 0
\(396\) 1512.00 0.191871
\(397\) −1381.00 −0.174585 −0.0872927 0.996183i \(-0.527822\pi\)
−0.0872927 + 0.996183i \(0.527822\pi\)
\(398\) −6850.00 −0.862712
\(399\) −345.000 −0.0432872
\(400\) 0 0
\(401\) 14232.0 1.77235 0.886175 0.463351i \(-0.153353\pi\)
0.886175 + 0.463351i \(0.153353\pi\)
\(402\) 1794.00 0.222579
\(403\) 12931.0 1.59836
\(404\) 3648.00 0.449245
\(405\) 0 0
\(406\) −420.000 −0.0513405
\(407\) −12012.0 −1.46293
\(408\) 1296.00 0.157259
\(409\) 2645.00 0.319772 0.159886 0.987135i \(-0.448887\pi\)
0.159886 + 0.987135i \(0.448887\pi\)
\(410\) 0 0
\(411\) 7038.00 0.844669
\(412\) 2672.00 0.319515
\(413\) −690.000 −0.0822099
\(414\) 2916.00 0.346168
\(415\) 0 0
\(416\) 2144.00 0.252688
\(417\) −8700.00 −1.02168
\(418\) 9660.00 1.13035
\(419\) 3000.00 0.349784 0.174892 0.984588i \(-0.444042\pi\)
0.174892 + 0.984588i \(0.444042\pi\)
\(420\) 0 0
\(421\) −11338.0 −1.31254 −0.656271 0.754525i \(-0.727867\pi\)
−0.656271 + 0.754525i \(0.727867\pi\)
\(422\) 4886.00 0.563618
\(423\) 3726.00 0.428284
\(424\) 1536.00 0.175931
\(425\) 0 0
\(426\) −1368.00 −0.155586
\(427\) 733.000 0.0830734
\(428\) −5184.00 −0.585463
\(429\) 8442.00 0.950078
\(430\) 0 0
\(431\) −3258.00 −0.364112 −0.182056 0.983288i \(-0.558275\pi\)
−0.182056 + 0.983288i \(0.558275\pi\)
\(432\) −432.000 −0.0481125
\(433\) 1163.00 0.129077 0.0645384 0.997915i \(-0.479443\pi\)
0.0645384 + 0.997915i \(0.479443\pi\)
\(434\) −386.000 −0.0426926
\(435\) 0 0
\(436\) −6940.00 −0.762307
\(437\) 18630.0 2.03934
\(438\) 5628.00 0.613964
\(439\) 6695.00 0.727870 0.363935 0.931424i \(-0.381433\pi\)
0.363935 + 0.931424i \(0.381433\pi\)
\(440\) 0 0
\(441\) −3078.00 −0.332362
\(442\) 7236.00 0.778691
\(443\) 16368.0 1.75546 0.877728 0.479159i \(-0.159058\pi\)
0.877728 + 0.479159i \(0.159058\pi\)
\(444\) 3432.00 0.366837
\(445\) 0 0
\(446\) −46.0000 −0.00488377
\(447\) 6210.00 0.657098
\(448\) −64.0000 −0.00674937
\(449\) 16380.0 1.72165 0.860824 0.508903i \(-0.169949\pi\)
0.860824 + 0.508903i \(0.169949\pi\)
\(450\) 0 0
\(451\) 504.000 0.0526218
\(452\) −4368.00 −0.454543
\(453\) −6711.00 −0.696049
\(454\) 3912.00 0.404404
\(455\) 0 0
\(456\) −2760.00 −0.283440
\(457\) −13786.0 −1.41112 −0.705560 0.708650i \(-0.749304\pi\)
−0.705560 + 0.708650i \(0.749304\pi\)
\(458\) −3610.00 −0.368306
\(459\) −1458.00 −0.148265
\(460\) 0 0
\(461\) 11832.0 1.19538 0.597691 0.801726i \(-0.296085\pi\)
0.597691 + 0.801726i \(0.296085\pi\)
\(462\) −252.000 −0.0253768
\(463\) 3008.00 0.301930 0.150965 0.988539i \(-0.451762\pi\)
0.150965 + 0.988539i \(0.451762\pi\)
\(464\) −3360.00 −0.336173
\(465\) 0 0
\(466\) −6936.00 −0.689494
\(467\) 4434.00 0.439360 0.219680 0.975572i \(-0.429499\pi\)
0.219680 + 0.975572i \(0.429499\pi\)
\(468\) −2412.00 −0.238237
\(469\) −299.000 −0.0294382
\(470\) 0 0
\(471\) 723.000 0.0707305
\(472\) −5520.00 −0.538302
\(473\) 11046.0 1.07378
\(474\) −960.000 −0.0930259
\(475\) 0 0
\(476\) −216.000 −0.0207990
\(477\) −1728.00 −0.165869
\(478\) −5280.00 −0.505233
\(479\) 7410.00 0.706830 0.353415 0.935467i \(-0.385020\pi\)
0.353415 + 0.935467i \(0.385020\pi\)
\(480\) 0 0
\(481\) 19162.0 1.81645
\(482\) 10766.0 1.01738
\(483\) −486.000 −0.0457842
\(484\) 1732.00 0.162660
\(485\) 0 0
\(486\) 486.000 0.0453609
\(487\) −8671.00 −0.806818 −0.403409 0.915020i \(-0.632175\pi\)
−0.403409 + 0.915020i \(0.632175\pi\)
\(488\) 5864.00 0.543957
\(489\) 10641.0 0.984055
\(490\) 0 0
\(491\) −19368.0 −1.78017 −0.890087 0.455790i \(-0.849357\pi\)
−0.890087 + 0.455790i \(0.849357\pi\)
\(492\) −144.000 −0.0131952
\(493\) −11340.0 −1.03596
\(494\) −15410.0 −1.40350
\(495\) 0 0
\(496\) −3088.00 −0.279547
\(497\) 228.000 0.0205779
\(498\) −2772.00 −0.249430
\(499\) −8875.00 −0.796192 −0.398096 0.917344i \(-0.630329\pi\)
−0.398096 + 0.917344i \(0.630329\pi\)
\(500\) 0 0
\(501\) −2952.00 −0.263245
\(502\) 10056.0 0.894066
\(503\) −10452.0 −0.926504 −0.463252 0.886227i \(-0.653318\pi\)
−0.463252 + 0.886227i \(0.653318\pi\)
\(504\) 72.0000 0.00636336
\(505\) 0 0
\(506\) 13608.0 1.19555
\(507\) −6876.00 −0.602315
\(508\) −64.0000 −0.00558965
\(509\) −19770.0 −1.72159 −0.860796 0.508951i \(-0.830033\pi\)
−0.860796 + 0.508951i \(0.830033\pi\)
\(510\) 0 0
\(511\) −938.000 −0.0812029
\(512\) −512.000 −0.0441942
\(513\) 3105.00 0.267230
\(514\) −1128.00 −0.0967976
\(515\) 0 0
\(516\) −3156.00 −0.269254
\(517\) 17388.0 1.47916
\(518\) −572.000 −0.0485178
\(519\) −10854.0 −0.917992
\(520\) 0 0
\(521\) −11238.0 −0.945001 −0.472501 0.881330i \(-0.656649\pi\)
−0.472501 + 0.881330i \(0.656649\pi\)
\(522\) 3780.00 0.316947
\(523\) −7447.00 −0.622628 −0.311314 0.950307i \(-0.600769\pi\)
−0.311314 + 0.950307i \(0.600769\pi\)
\(524\) 7968.00 0.664282
\(525\) 0 0
\(526\) 3624.00 0.300407
\(527\) −10422.0 −0.861460
\(528\) −2016.00 −0.166165
\(529\) 14077.0 1.15698
\(530\) 0 0
\(531\) 6210.00 0.507516
\(532\) 460.000 0.0374878
\(533\) −804.000 −0.0653379
\(534\) −1440.00 −0.116695
\(535\) 0 0
\(536\) −2392.00 −0.192759
\(537\) 450.000 0.0361619
\(538\) 10380.0 0.831810
\(539\) −14364.0 −1.14787
\(540\) 0 0
\(541\) −17623.0 −1.40050 −0.700251 0.713896i \(-0.746929\pi\)
−0.700251 + 0.713896i \(0.746929\pi\)
\(542\) −9184.00 −0.727835
\(543\) −591.000 −0.0467076
\(544\) −1728.00 −0.136190
\(545\) 0 0
\(546\) 402.000 0.0315092
\(547\) −10096.0 −0.789166 −0.394583 0.918860i \(-0.629111\pi\)
−0.394583 + 0.918860i \(0.629111\pi\)
\(548\) −9384.00 −0.731505
\(549\) −6597.00 −0.512847
\(550\) 0 0
\(551\) 24150.0 1.86720
\(552\) −3888.00 −0.299790
\(553\) 160.000 0.0123036
\(554\) 4382.00 0.336053
\(555\) 0 0
\(556\) 11600.0 0.884801
\(557\) 14514.0 1.10409 0.552045 0.833814i \(-0.313848\pi\)
0.552045 + 0.833814i \(0.313848\pi\)
\(558\) 3474.00 0.263559
\(559\) −17621.0 −1.33325
\(560\) 0 0
\(561\) −6804.00 −0.512059
\(562\) −15684.0 −1.17721
\(563\) −10242.0 −0.766694 −0.383347 0.923604i \(-0.625229\pi\)
−0.383347 + 0.923604i \(0.625229\pi\)
\(564\) −4968.00 −0.370905
\(565\) 0 0
\(566\) 494.000 0.0366862
\(567\) −81.0000 −0.00599944
\(568\) 1824.00 0.134742
\(569\) −6750.00 −0.497319 −0.248660 0.968591i \(-0.579990\pi\)
−0.248660 + 0.968591i \(0.579990\pi\)
\(570\) 0 0
\(571\) 17117.0 1.25451 0.627254 0.778815i \(-0.284179\pi\)
0.627254 + 0.778815i \(0.284179\pi\)
\(572\) −11256.0 −0.822792
\(573\) −3906.00 −0.284774
\(574\) 24.0000 0.00174519
\(575\) 0 0
\(576\) 576.000 0.0416667
\(577\) −301.000 −0.0217171 −0.0108586 0.999941i \(-0.503456\pi\)
−0.0108586 + 0.999941i \(0.503456\pi\)
\(578\) 3994.00 0.287420
\(579\) −12489.0 −0.896416
\(580\) 0 0
\(581\) 462.000 0.0329897
\(582\) −3066.00 −0.218367
\(583\) −8064.00 −0.572859
\(584\) −7504.00 −0.531708
\(585\) 0 0
\(586\) 10884.0 0.767259
\(587\) −15456.0 −1.08678 −0.543388 0.839482i \(-0.682859\pi\)
−0.543388 + 0.839482i \(0.682859\pi\)
\(588\) 4104.00 0.287834
\(589\) 22195.0 1.55268
\(590\) 0 0
\(591\) −9162.00 −0.637689
\(592\) −4576.00 −0.317690
\(593\) −9492.00 −0.657318 −0.328659 0.944449i \(-0.606597\pi\)
−0.328659 + 0.944449i \(0.606597\pi\)
\(594\) 2268.00 0.156662
\(595\) 0 0
\(596\) −8280.00 −0.569064
\(597\) −10275.0 −0.704402
\(598\) −21708.0 −1.48446
\(599\) 1500.00 0.102318 0.0511589 0.998691i \(-0.483709\pi\)
0.0511589 + 0.998691i \(0.483709\pi\)
\(600\) 0 0
\(601\) 14627.0 0.992758 0.496379 0.868106i \(-0.334663\pi\)
0.496379 + 0.868106i \(0.334663\pi\)
\(602\) 526.000 0.0356116
\(603\) 2691.00 0.181735
\(604\) 8948.00 0.602796
\(605\) 0 0
\(606\) 5472.00 0.366807
\(607\) 16184.0 1.08219 0.541094 0.840962i \(-0.318010\pi\)
0.541094 + 0.840962i \(0.318010\pi\)
\(608\) 3680.00 0.245467
\(609\) −630.000 −0.0419194
\(610\) 0 0
\(611\) −27738.0 −1.83659
\(612\) 1944.00 0.128401
\(613\) −18502.0 −1.21907 −0.609534 0.792760i \(-0.708643\pi\)
−0.609534 + 0.792760i \(0.708643\pi\)
\(614\) 7742.00 0.508863
\(615\) 0 0
\(616\) 336.000 0.0219770
\(617\) −13896.0 −0.906697 −0.453348 0.891333i \(-0.649771\pi\)
−0.453348 + 0.891333i \(0.649771\pi\)
\(618\) 4008.00 0.260883
\(619\) −9895.00 −0.642510 −0.321255 0.946993i \(-0.604105\pi\)
−0.321255 + 0.946993i \(0.604105\pi\)
\(620\) 0 0
\(621\) 4374.00 0.282645
\(622\) 11436.0 0.737206
\(623\) 240.000 0.0154340
\(624\) 3216.00 0.206319
\(625\) 0 0
\(626\) 7274.00 0.464421
\(627\) 14490.0 0.922926
\(628\) −964.000 −0.0612544
\(629\) −15444.0 −0.979003
\(630\) 0 0
\(631\) 467.000 0.0294627 0.0147314 0.999891i \(-0.495311\pi\)
0.0147314 + 0.999891i \(0.495311\pi\)
\(632\) 1280.00 0.0805628
\(633\) 7329.00 0.460192
\(634\) 2592.00 0.162368
\(635\) 0 0
\(636\) 2304.00 0.143647
\(637\) 22914.0 1.42525
\(638\) 17640.0 1.09463
\(639\) −2052.00 −0.127036
\(640\) 0 0
\(641\) 30612.0 1.88627 0.943137 0.332405i \(-0.107860\pi\)
0.943137 + 0.332405i \(0.107860\pi\)
\(642\) −7776.00 −0.478028
\(643\) −1852.00 −0.113586 −0.0567930 0.998386i \(-0.518087\pi\)
−0.0567930 + 0.998386i \(0.518087\pi\)
\(644\) 648.000 0.0396503
\(645\) 0 0
\(646\) 12420.0 0.756437
\(647\) −21156.0 −1.28551 −0.642757 0.766070i \(-0.722210\pi\)
−0.642757 + 0.766070i \(0.722210\pi\)
\(648\) −648.000 −0.0392837
\(649\) 28980.0 1.75280
\(650\) 0 0
\(651\) −579.000 −0.0348584
\(652\) −14188.0 −0.852216
\(653\) −9702.00 −0.581422 −0.290711 0.956811i \(-0.593892\pi\)
−0.290711 + 0.956811i \(0.593892\pi\)
\(654\) −10410.0 −0.622421
\(655\) 0 0
\(656\) 192.000 0.0114273
\(657\) 8442.00 0.501300
\(658\) 828.000 0.0490559
\(659\) 1980.00 0.117041 0.0585204 0.998286i \(-0.481362\pi\)
0.0585204 + 0.998286i \(0.481362\pi\)
\(660\) 0 0
\(661\) −20158.0 −1.18617 −0.593083 0.805142i \(-0.702089\pi\)
−0.593083 + 0.805142i \(0.702089\pi\)
\(662\) −10264.0 −0.602601
\(663\) 10854.0 0.635799
\(664\) 3696.00 0.216013
\(665\) 0 0
\(666\) 5148.00 0.299521
\(667\) 34020.0 1.97490
\(668\) 3936.00 0.227977
\(669\) −69.0000 −0.00398758
\(670\) 0 0
\(671\) −30786.0 −1.77121
\(672\) −96.0000 −0.00551083
\(673\) −16882.0 −0.966944 −0.483472 0.875360i \(-0.660624\pi\)
−0.483472 + 0.875360i \(0.660624\pi\)
\(674\) 13502.0 0.771628
\(675\) 0 0
\(676\) 9168.00 0.521620
\(677\) 20934.0 1.18842 0.594209 0.804311i \(-0.297465\pi\)
0.594209 + 0.804311i \(0.297465\pi\)
\(678\) −6552.00 −0.371133
\(679\) 511.000 0.0288813
\(680\) 0 0
\(681\) 5868.00 0.330194
\(682\) 16212.0 0.910249
\(683\) −8712.00 −0.488075 −0.244038 0.969766i \(-0.578472\pi\)
−0.244038 + 0.969766i \(0.578472\pi\)
\(684\) −4140.00 −0.231428
\(685\) 0 0
\(686\) −1370.00 −0.0762490
\(687\) −5415.00 −0.300721
\(688\) 4208.00 0.233181
\(689\) 12864.0 0.711291
\(690\) 0 0
\(691\) −14128.0 −0.777792 −0.388896 0.921282i \(-0.627144\pi\)
−0.388896 + 0.921282i \(0.627144\pi\)
\(692\) 14472.0 0.795004
\(693\) −378.000 −0.0207201
\(694\) 10452.0 0.571689
\(695\) 0 0
\(696\) −5040.00 −0.274484
\(697\) 648.000 0.0352148
\(698\) 12380.0 0.671332
\(699\) −10404.0 −0.562969
\(700\) 0 0
\(701\) −28278.0 −1.52360 −0.761801 0.647811i \(-0.775685\pi\)
−0.761801 + 0.647811i \(0.775685\pi\)
\(702\) −3618.00 −0.194519
\(703\) 32890.0 1.76454
\(704\) 2688.00 0.143903
\(705\) 0 0
\(706\) −13236.0 −0.705586
\(707\) −912.000 −0.0485138
\(708\) −8280.00 −0.439522
\(709\) 8885.00 0.470639 0.235320 0.971918i \(-0.424386\pi\)
0.235320 + 0.971918i \(0.424386\pi\)
\(710\) 0 0
\(711\) −1440.00 −0.0759553
\(712\) 1920.00 0.101060
\(713\) 31266.0 1.64225
\(714\) −324.000 −0.0169823
\(715\) 0 0
\(716\) −600.000 −0.0313171
\(717\) −7920.00 −0.412521
\(718\) 6840.00 0.355524
\(719\) −7530.00 −0.390572 −0.195286 0.980746i \(-0.562564\pi\)
−0.195286 + 0.980746i \(0.562564\pi\)
\(720\) 0 0
\(721\) −668.000 −0.0345043
\(722\) −12732.0 −0.656283
\(723\) 16149.0 0.830688
\(724\) 788.000 0.0404500
\(725\) 0 0
\(726\) 2598.00 0.132811
\(727\) −1801.00 −0.0918781 −0.0459391 0.998944i \(-0.514628\pi\)
−0.0459391 + 0.998944i \(0.514628\pi\)
\(728\) −536.000 −0.0272877
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 14202.0 0.718577
\(732\) 8796.00 0.444139
\(733\) −7882.00 −0.397174 −0.198587 0.980083i \(-0.563635\pi\)
−0.198587 + 0.980083i \(0.563635\pi\)
\(734\) 1742.00 0.0876000
\(735\) 0 0
\(736\) 5184.00 0.259626
\(737\) 12558.0 0.627652
\(738\) −216.000 −0.0107738
\(739\) 33860.0 1.68547 0.842734 0.538331i \(-0.180945\pi\)
0.842734 + 0.538331i \(0.180945\pi\)
\(740\) 0 0
\(741\) −23115.0 −1.14595
\(742\) −384.000 −0.0189988
\(743\) −20652.0 −1.01972 −0.509858 0.860259i \(-0.670302\pi\)
−0.509858 + 0.860259i \(0.670302\pi\)
\(744\) −4632.00 −0.228249
\(745\) 0 0
\(746\) −12766.0 −0.626537
\(747\) −4158.00 −0.203659
\(748\) 9072.00 0.443456
\(749\) 1296.00 0.0632240
\(750\) 0 0
\(751\) 7472.00 0.363059 0.181529 0.983386i \(-0.441895\pi\)
0.181529 + 0.983386i \(0.441895\pi\)
\(752\) 6624.00 0.321213
\(753\) 15084.0 0.730002
\(754\) −28140.0 −1.35915
\(755\) 0 0
\(756\) 108.000 0.00519566
\(757\) −32251.0 −1.54846 −0.774229 0.632906i \(-0.781862\pi\)
−0.774229 + 0.632906i \(0.781862\pi\)
\(758\) 19730.0 0.945417
\(759\) 20412.0 0.976164
\(760\) 0 0
\(761\) 16812.0 0.800834 0.400417 0.916333i \(-0.368865\pi\)
0.400417 + 0.916333i \(0.368865\pi\)
\(762\) −96.0000 −0.00456393
\(763\) 1735.00 0.0823214
\(764\) 5208.00 0.246622
\(765\) 0 0
\(766\) −19656.0 −0.927154
\(767\) −46230.0 −2.17636
\(768\) −768.000 −0.0360844
\(769\) −34645.0 −1.62462 −0.812309 0.583228i \(-0.801789\pi\)
−0.812309 + 0.583228i \(0.801789\pi\)
\(770\) 0 0
\(771\) −1692.00 −0.0790349
\(772\) 16652.0 0.776319
\(773\) −8412.00 −0.391408 −0.195704 0.980663i \(-0.562699\pi\)
−0.195704 + 0.980663i \(0.562699\pi\)
\(774\) −4734.00 −0.219845
\(775\) 0 0
\(776\) 4088.00 0.189112
\(777\) −858.000 −0.0396146
\(778\) −25080.0 −1.15573
\(779\) −1380.00 −0.0634706
\(780\) 0 0
\(781\) −9576.00 −0.438740
\(782\) 17496.0 0.800071
\(783\) 5670.00 0.258786
\(784\) −5472.00 −0.249271
\(785\) 0 0
\(786\) 11952.0 0.542384
\(787\) 18329.0 0.830188 0.415094 0.909778i \(-0.363749\pi\)
0.415094 + 0.909778i \(0.363749\pi\)
\(788\) 12216.0 0.552255
\(789\) 5436.00 0.245281
\(790\) 0 0
\(791\) 1092.00 0.0490860
\(792\) −3024.00 −0.135673
\(793\) 49111.0 2.19922
\(794\) 2762.00 0.123451
\(795\) 0 0
\(796\) 13700.0 0.610030
\(797\) 16044.0 0.713059 0.356529 0.934284i \(-0.383960\pi\)
0.356529 + 0.934284i \(0.383960\pi\)
\(798\) 690.000 0.0306087
\(799\) 22356.0 0.989860
\(800\) 0 0
\(801\) −2160.00 −0.0952807
\(802\) −28464.0 −1.25324
\(803\) 39396.0 1.73133
\(804\) −3588.00 −0.157387
\(805\) 0 0
\(806\) −25862.0 −1.13021
\(807\) 15570.0 0.679170
\(808\) −7296.00 −0.317664
\(809\) −24000.0 −1.04301 −0.521505 0.853248i \(-0.674629\pi\)
−0.521505 + 0.853248i \(0.674629\pi\)
\(810\) 0 0
\(811\) 5117.00 0.221556 0.110778 0.993845i \(-0.464666\pi\)
0.110778 + 0.993845i \(0.464666\pi\)
\(812\) 840.000 0.0363032
\(813\) −13776.0 −0.594275
\(814\) 24024.0 1.03445
\(815\) 0 0
\(816\) −2592.00 −0.111199
\(817\) −30245.0 −1.29515
\(818\) −5290.00 −0.226113
\(819\) 603.000 0.0257271
\(820\) 0 0
\(821\) 13542.0 0.575663 0.287831 0.957681i \(-0.407066\pi\)
0.287831 + 0.957681i \(0.407066\pi\)
\(822\) −14076.0 −0.597271
\(823\) 1283.00 0.0543409 0.0271705 0.999631i \(-0.491350\pi\)
0.0271705 + 0.999631i \(0.491350\pi\)
\(824\) −5344.00 −0.225931
\(825\) 0 0
\(826\) 1380.00 0.0581312
\(827\) 16344.0 0.687227 0.343613 0.939111i \(-0.388349\pi\)
0.343613 + 0.939111i \(0.388349\pi\)
\(828\) −5832.00 −0.244778
\(829\) −790.000 −0.0330975 −0.0165488 0.999863i \(-0.505268\pi\)
−0.0165488 + 0.999863i \(0.505268\pi\)
\(830\) 0 0
\(831\) 6573.00 0.274386
\(832\) −4288.00 −0.178677
\(833\) −18468.0 −0.768161
\(834\) 17400.0 0.722437
\(835\) 0 0
\(836\) −19320.0 −0.799278
\(837\) 5211.00 0.215195
\(838\) −6000.00 −0.247335
\(839\) −9990.00 −0.411076 −0.205538 0.978649i \(-0.565894\pi\)
−0.205538 + 0.978649i \(0.565894\pi\)
\(840\) 0 0
\(841\) 19711.0 0.808192
\(842\) 22676.0 0.928108
\(843\) −23526.0 −0.961184
\(844\) −9772.00 −0.398538
\(845\) 0 0
\(846\) −7452.00 −0.302843
\(847\) −433.000 −0.0175656
\(848\) −3072.00 −0.124402
\(849\) 741.000 0.0299541
\(850\) 0 0
\(851\) 46332.0 1.86632
\(852\) 2736.00 0.110016
\(853\) 24743.0 0.993182 0.496591 0.867985i \(-0.334585\pi\)
0.496591 + 0.867985i \(0.334585\pi\)
\(854\) −1466.00 −0.0587418
\(855\) 0 0
\(856\) 10368.0 0.413985
\(857\) −23556.0 −0.938924 −0.469462 0.882953i \(-0.655552\pi\)
−0.469462 + 0.882953i \(0.655552\pi\)
\(858\) −16884.0 −0.671807
\(859\) −34000.0 −1.35048 −0.675242 0.737597i \(-0.735961\pi\)
−0.675242 + 0.737597i \(0.735961\pi\)
\(860\) 0 0
\(861\) 36.0000 0.00142494
\(862\) 6516.00 0.257466
\(863\) −37032.0 −1.46070 −0.730350 0.683073i \(-0.760643\pi\)
−0.730350 + 0.683073i \(0.760643\pi\)
\(864\) 864.000 0.0340207
\(865\) 0 0
\(866\) −2326.00 −0.0912710
\(867\) 5991.00 0.234677
\(868\) 772.000 0.0301882
\(869\) −6720.00 −0.262325
\(870\) 0 0
\(871\) −20033.0 −0.779325
\(872\) 13880.0 0.539032
\(873\) −4599.00 −0.178296
\(874\) −37260.0 −1.44203
\(875\) 0 0
\(876\) −11256.0 −0.434138
\(877\) 2519.00 0.0969904 0.0484952 0.998823i \(-0.484557\pi\)
0.0484952 + 0.998823i \(0.484557\pi\)
\(878\) −13390.0 −0.514682
\(879\) 16326.0 0.626465
\(880\) 0 0
\(881\) 43992.0 1.68232 0.841162 0.540783i \(-0.181872\pi\)
0.841162 + 0.540783i \(0.181872\pi\)
\(882\) 6156.00 0.235015
\(883\) −19177.0 −0.730869 −0.365435 0.930837i \(-0.619080\pi\)
−0.365435 + 0.930837i \(0.619080\pi\)
\(884\) −14472.0 −0.550618
\(885\) 0 0
\(886\) −32736.0 −1.24130
\(887\) 44994.0 1.70321 0.851607 0.524181i \(-0.175628\pi\)
0.851607 + 0.524181i \(0.175628\pi\)
\(888\) −6864.00 −0.259393
\(889\) 16.0000 0.000603625 0
\(890\) 0 0
\(891\) 3402.00 0.127914
\(892\) 92.0000 0.00345335
\(893\) −47610.0 −1.78411
\(894\) −12420.0 −0.464639
\(895\) 0 0
\(896\) 128.000 0.00477252
\(897\) −32562.0 −1.21206
\(898\) −32760.0 −1.21739
\(899\) 40530.0 1.50362
\(900\) 0 0
\(901\) −10368.0 −0.383361
\(902\) −1008.00 −0.0372092
\(903\) 789.000 0.0290767
\(904\) 8736.00 0.321410
\(905\) 0 0
\(906\) 13422.0 0.492181
\(907\) −52396.0 −1.91817 −0.959085 0.283117i \(-0.908631\pi\)
−0.959085 + 0.283117i \(0.908631\pi\)
\(908\) −7824.00 −0.285957
\(909\) 8208.00 0.299496
\(910\) 0 0
\(911\) 7242.00 0.263379 0.131689 0.991291i \(-0.457960\pi\)
0.131689 + 0.991291i \(0.457960\pi\)
\(912\) 5520.00 0.200423
\(913\) −19404.0 −0.703372
\(914\) 27572.0 0.997813
\(915\) 0 0
\(916\) 7220.00 0.260432
\(917\) −1992.00 −0.0717357
\(918\) 2916.00 0.104839
\(919\) 4085.00 0.146629 0.0733143 0.997309i \(-0.476642\pi\)
0.0733143 + 0.997309i \(0.476642\pi\)
\(920\) 0 0
\(921\) 11613.0 0.415485
\(922\) −23664.0 −0.845263
\(923\) 15276.0 0.544762
\(924\) 504.000 0.0179441
\(925\) 0 0
\(926\) −6016.00 −0.213497
\(927\) 6012.00 0.213010
\(928\) 6720.00 0.237710
\(929\) −3030.00 −0.107009 −0.0535043 0.998568i \(-0.517039\pi\)
−0.0535043 + 0.998568i \(0.517039\pi\)
\(930\) 0 0
\(931\) 39330.0 1.38452
\(932\) 13872.0 0.487546
\(933\) 17154.0 0.601926
\(934\) −8868.00 −0.310674
\(935\) 0 0
\(936\) 4824.00 0.168459
\(937\) 5759.00 0.200788 0.100394 0.994948i \(-0.467990\pi\)
0.100394 + 0.994948i \(0.467990\pi\)
\(938\) 598.000 0.0208160
\(939\) 10911.0 0.379198
\(940\) 0 0
\(941\) −258.000 −0.00893790 −0.00446895 0.999990i \(-0.501423\pi\)
−0.00446895 + 0.999990i \(0.501423\pi\)
\(942\) −1446.00 −0.0500140
\(943\) −1944.00 −0.0671319
\(944\) 11040.0 0.380637
\(945\) 0 0
\(946\) −22092.0 −0.759274
\(947\) 1374.00 0.0471478 0.0235739 0.999722i \(-0.492495\pi\)
0.0235739 + 0.999722i \(0.492495\pi\)
\(948\) 1920.00 0.0657792
\(949\) −62846.0 −2.14970
\(950\) 0 0
\(951\) 3888.00 0.132573
\(952\) 432.000 0.0147071
\(953\) 9288.00 0.315706 0.157853 0.987463i \(-0.449543\pi\)
0.157853 + 0.987463i \(0.449543\pi\)
\(954\) 3456.00 0.117287
\(955\) 0 0
\(956\) 10560.0 0.357254
\(957\) 26460.0 0.893762
\(958\) −14820.0 −0.499804
\(959\) 2346.00 0.0789951
\(960\) 0 0
\(961\) 7458.00 0.250344
\(962\) −38324.0 −1.28442
\(963\) −11664.0 −0.390309
\(964\) −21532.0 −0.719397
\(965\) 0 0
\(966\) 972.000 0.0323743
\(967\) −21616.0 −0.718846 −0.359423 0.933175i \(-0.617026\pi\)
−0.359423 + 0.933175i \(0.617026\pi\)
\(968\) −3464.00 −0.115018
\(969\) 18630.0 0.617628
\(970\) 0 0
\(971\) −19098.0 −0.631188 −0.315594 0.948894i \(-0.602204\pi\)
−0.315594 + 0.948894i \(0.602204\pi\)
\(972\) −972.000 −0.0320750
\(973\) −2900.00 −0.0955496
\(974\) 17342.0 0.570507
\(975\) 0 0
\(976\) −11728.0 −0.384635
\(977\) −18246.0 −0.597483 −0.298742 0.954334i \(-0.596567\pi\)
−0.298742 + 0.954334i \(0.596567\pi\)
\(978\) −21282.0 −0.695832
\(979\) −10080.0 −0.329069
\(980\) 0 0
\(981\) −15615.0 −0.508204
\(982\) 38736.0 1.25877
\(983\) −38772.0 −1.25802 −0.629011 0.777397i \(-0.716540\pi\)
−0.629011 + 0.777397i \(0.716540\pi\)
\(984\) 288.000 0.00933039
\(985\) 0 0
\(986\) 22680.0 0.732534
\(987\) 1242.00 0.0400540
\(988\) 30820.0 0.992424
\(989\) −42606.0 −1.36986
\(990\) 0 0
\(991\) −23053.0 −0.738953 −0.369477 0.929240i \(-0.620463\pi\)
−0.369477 + 0.929240i \(0.620463\pi\)
\(992\) 6176.00 0.197670
\(993\) −15396.0 −0.492021
\(994\) −456.000 −0.0145507
\(995\) 0 0
\(996\) 5544.00 0.176374
\(997\) −10366.0 −0.329282 −0.164641 0.986354i \(-0.552647\pi\)
−0.164641 + 0.986354i \(0.552647\pi\)
\(998\) 17750.0 0.562992
\(999\) 7722.00 0.244558
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 150.4.a.a.1.1 1
3.2 odd 2 450.4.a.o.1.1 1
4.3 odd 2 1200.4.a.bb.1.1 1
5.2 odd 4 150.4.c.e.49.1 2
5.3 odd 4 150.4.c.e.49.2 2
5.4 even 2 150.4.a.h.1.1 yes 1
15.2 even 4 450.4.c.a.199.2 2
15.8 even 4 450.4.c.a.199.1 2
15.14 odd 2 450.4.a.f.1.1 1
20.3 even 4 1200.4.f.c.49.2 2
20.7 even 4 1200.4.f.c.49.1 2
20.19 odd 2 1200.4.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
150.4.a.a.1.1 1 1.1 even 1 trivial
150.4.a.h.1.1 yes 1 5.4 even 2
150.4.c.e.49.1 2 5.2 odd 4
150.4.c.e.49.2 2 5.3 odd 4
450.4.a.f.1.1 1 15.14 odd 2
450.4.a.o.1.1 1 3.2 odd 2
450.4.c.a.199.1 2 15.8 even 4
450.4.c.a.199.2 2 15.2 even 4
1200.4.a.i.1.1 1 20.19 odd 2
1200.4.a.bb.1.1 1 4.3 odd 2
1200.4.f.c.49.1 2 20.7 even 4
1200.4.f.c.49.2 2 20.3 even 4