Defining parameters
| Level: | \( N \) | \(=\) | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
| Weight: | \( k \) | \(=\) | \( 4 \) |
| Character orbit: | \([\chi]\) | \(=\) | 150.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 9 \) | ||
| Sturm bound: | \(120\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(150))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 102 | 9 | 93 |
| Cusp forms | 78 | 9 | 69 |
| Eisenstein series | 24 | 0 | 24 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(15\) | \(1\) | \(14\) | \(12\) | \(1\) | \(11\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(11\) | \(1\) | \(10\) | \(8\) | \(1\) | \(7\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(12\) | \(1\) | \(11\) | \(9\) | \(1\) | \(8\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(13\) | \(1\) | \(12\) | \(10\) | \(1\) | \(9\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(12\) | \(1\) | \(11\) | \(9\) | \(1\) | \(8\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(13\) | \(2\) | \(11\) | \(10\) | \(2\) | \(8\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(12\) | \(2\) | \(10\) | \(9\) | \(2\) | \(7\) | \(3\) | \(0\) | \(3\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(14\) | \(0\) | \(14\) | \(11\) | \(0\) | \(11\) | \(3\) | \(0\) | \(3\) | |||
| Plus space | \(+\) | \(53\) | \(6\) | \(47\) | \(41\) | \(6\) | \(35\) | \(12\) | \(0\) | \(12\) | |||||
| Minus space | \(-\) | \(49\) | \(3\) | \(46\) | \(37\) | \(3\) | \(34\) | \(12\) | \(0\) | \(12\) | |||||
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(150))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(150))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(150)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 2}\)