Properties

Label 150.3.k.a
Level $150$
Weight $3$
Character orbit 150.k
Analytic conductor $4.087$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,3,Mod(13,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 19]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.13");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 150.k (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.08720396540\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32 q + 8 q^{2} + 8 q^{7} - 16 q^{8}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 32 q + 8 q^{2} + 8 q^{7} - 16 q^{8} + 20 q^{10} + 32 q^{11} - 16 q^{13} - 60 q^{14} + 32 q^{16} + 148 q^{17} - 96 q^{18} + 180 q^{19} + 40 q^{20} - 36 q^{21} + 48 q^{22} + 48 q^{23} - 160 q^{25} - 8 q^{26} - 56 q^{28} - 200 q^{29} - 120 q^{30} + 120 q^{31} + 128 q^{32} - 156 q^{33} - 100 q^{34} - 180 q^{35} - 48 q^{36} + 444 q^{37} + 32 q^{38} - 120 q^{39} - 304 q^{41} - 24 q^{42} + 216 q^{43} + 40 q^{44} + 60 q^{45} - 16 q^{46} + 32 q^{47} + 40 q^{50} + 24 q^{51} - 32 q^{52} - 340 q^{53} + 80 q^{55} + 72 q^{56} - 24 q^{57} - 192 q^{58} - 560 q^{59} + 312 q^{61} + 40 q^{62} + 24 q^{63} - 520 q^{65} - 108 q^{66} + 688 q^{67} - 16 q^{68} + 180 q^{69} + 80 q^{70} + 212 q^{71} + 48 q^{72} - 376 q^{73} + 120 q^{75} - 64 q^{76} - 176 q^{77} - 48 q^{78} + 440 q^{79} + 80 q^{80} + 72 q^{81} - 256 q^{82} - 96 q^{83} - 240 q^{85} + 408 q^{86} + 264 q^{87} + 184 q^{88} - 560 q^{89} - 516 q^{91} + 216 q^{92} + 48 q^{93} + 80 q^{94} + 520 q^{95} - 716 q^{97} - 108 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
13.1 1.39680 0.221232i −0.786335 + 1.54327i 1.90211 0.618034i 1.86127 + 4.64065i −0.756934 + 2.32960i −6.90199 + 6.90199i 2.52015 1.28408i −1.76336 2.42705i 3.62649 + 6.07030i
13.2 1.39680 0.221232i −0.786335 + 1.54327i 1.90211 0.618034i 1.98098 4.59083i −0.756934 + 2.32960i 3.83711 3.83711i 2.52015 1.28408i −1.76336 2.42705i 1.75141 6.85074i
13.3 1.39680 0.221232i 0.786335 1.54327i 1.90211 0.618034i −3.06706 3.94881i 0.756934 2.32960i 2.82371 2.82371i 2.52015 1.28408i −1.76336 2.42705i −5.15768 4.83718i
13.4 1.39680 0.221232i 0.786335 1.54327i 1.90211 0.618034i 4.42349 + 2.33083i 0.756934 2.32960i 0.284481 0.284481i 2.52015 1.28408i −1.76336 2.42705i 6.69439 + 2.27709i
37.1 0.221232 + 1.39680i −1.54327 0.786335i −1.90211 + 0.618034i −1.48914 4.77310i 0.756934 2.32960i 9.35986 + 9.35986i −1.28408 2.52015i 1.76336 + 2.42705i 6.33763 3.13599i
37.2 0.221232 + 1.39680i −1.54327 0.786335i −1.90211 + 0.618034i 3.55879 3.51212i 0.756934 2.32960i −5.48204 5.48204i −1.28408 2.52015i 1.76336 + 2.42705i 5.69306 + 4.19393i
37.3 0.221232 + 1.39680i 1.54327 + 0.786335i −1.90211 + 0.618034i −3.00822 + 3.99382i −0.756934 + 2.32960i 4.19292 + 4.19292i −1.28408 2.52015i 1.76336 + 2.42705i −6.24409 3.31834i
37.4 0.221232 + 1.39680i 1.54327 + 0.786335i −1.90211 + 0.618034i 4.68416 1.74889i −0.756934 + 2.32960i 2.83023 + 2.83023i −1.28408 2.52015i 1.76336 + 2.42705i 3.47914 + 6.15594i
67.1 0.642040 1.26007i −0.270952 + 1.71073i −1.17557 1.61803i −3.75559 3.30084i 1.98168 + 1.43977i −5.04938 5.04938i −2.79360 + 0.442463i −2.85317 0.927051i −6.57054 + 2.61306i
67.2 0.642040 1.26007i −0.270952 + 1.71073i −1.17557 1.61803i −2.43941 + 4.36455i 1.98168 + 1.43977i 4.46938 + 4.46938i −2.79360 + 0.442463i −2.85317 0.927051i 3.93346 + 5.87604i
67.3 0.642040 1.26007i 0.270952 1.71073i −1.17557 1.61803i −3.90603 + 3.12137i −1.98168 1.43977i −6.00700 6.00700i −2.79360 + 0.442463i −2.85317 0.927051i 1.42533 + 6.92592i
67.4 0.642040 1.26007i 0.270952 1.71073i −1.17557 1.61803i 2.55121 4.30016i −1.98168 1.43977i −1.41591 1.41591i −2.79360 + 0.442463i −2.85317 0.927051i −3.78054 5.97558i
73.1 0.221232 1.39680i −1.54327 + 0.786335i −1.90211 0.618034i −1.48914 + 4.77310i 0.756934 + 2.32960i 9.35986 9.35986i −1.28408 + 2.52015i 1.76336 2.42705i 6.33763 + 3.13599i
73.2 0.221232 1.39680i −1.54327 + 0.786335i −1.90211 0.618034i 3.55879 + 3.51212i 0.756934 + 2.32960i −5.48204 + 5.48204i −1.28408 + 2.52015i 1.76336 2.42705i 5.69306 4.19393i
73.3 0.221232 1.39680i 1.54327 0.786335i −1.90211 0.618034i −3.00822 3.99382i −0.756934 2.32960i 4.19292 4.19292i −1.28408 + 2.52015i 1.76336 2.42705i −6.24409 + 3.31834i
73.4 0.221232 1.39680i 1.54327 0.786335i −1.90211 0.618034i 4.68416 + 1.74889i −0.756934 2.32960i 2.83023 2.83023i −1.28408 + 2.52015i 1.76336 2.42705i 3.47914 6.15594i
97.1 −1.26007 + 0.642040i −1.71073 + 0.270952i 1.17557 1.61803i −4.55798 2.05543i 1.98168 1.43977i 3.78399 + 3.78399i −0.442463 + 2.79360i 2.85317 0.927051i 7.06306 0.336405i
97.2 −1.26007 + 0.642040i −1.71073 + 0.270952i 1.17557 1.61803i −0.888938 + 4.92034i 1.98168 1.43977i −2.71277 2.71277i −0.442463 + 2.79360i 2.85317 0.927051i −2.03893 6.77073i
97.3 −1.26007 + 0.642040i 1.71073 0.270952i 1.17557 1.61803i 0.270329 + 4.99269i −1.98168 + 1.43977i 0.734007 + 0.734007i −0.442463 + 2.79360i 2.85317 0.927051i −3.54614 6.11759i
97.4 −1.26007 + 0.642040i 1.71073 0.270952i 1.17557 1.61803i 3.78214 3.27039i −1.98168 + 1.43977i −0.746595 0.746595i −0.442463 + 2.79360i 2.85317 0.927051i −2.66605 + 6.54921i
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 133.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
25.f odd 20 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.3.k.a 32
25.f odd 20 1 inner 150.3.k.a 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
150.3.k.a 32 1.a even 1 1 trivial
150.3.k.a 32 25.f odd 20 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{32} - 8 T_{7}^{31} + 32 T_{7}^{30} + 284 T_{7}^{29} + 25448 T_{7}^{28} - 142288 T_{7}^{27} + 364296 T_{7}^{26} - 1854300 T_{7}^{25} + 166638564 T_{7}^{24} - 1025374732 T_{7}^{23} + \cdots + 12\!\cdots\!61 \) acting on \(S_{3}^{\mathrm{new}}(150, [\chi])\). Copy content Toggle raw display