Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [150,3,Mod(13,150)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(150, base_ring=CyclotomicField(20))
chi = DirichletCharacter(H, H._module([0, 19]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("150.13");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 150.k (of order \(20\), degree \(8\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.08720396540\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{20})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{20}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
13.1 | 1.39680 | − | 0.221232i | −0.786335 | + | 1.54327i | 1.90211 | − | 0.618034i | 1.86127 | + | 4.64065i | −0.756934 | + | 2.32960i | −6.90199 | + | 6.90199i | 2.52015 | − | 1.28408i | −1.76336 | − | 2.42705i | 3.62649 | + | 6.07030i |
13.2 | 1.39680 | − | 0.221232i | −0.786335 | + | 1.54327i | 1.90211 | − | 0.618034i | 1.98098 | − | 4.59083i | −0.756934 | + | 2.32960i | 3.83711 | − | 3.83711i | 2.52015 | − | 1.28408i | −1.76336 | − | 2.42705i | 1.75141 | − | 6.85074i |
13.3 | 1.39680 | − | 0.221232i | 0.786335 | − | 1.54327i | 1.90211 | − | 0.618034i | −3.06706 | − | 3.94881i | 0.756934 | − | 2.32960i | 2.82371 | − | 2.82371i | 2.52015 | − | 1.28408i | −1.76336 | − | 2.42705i | −5.15768 | − | 4.83718i |
13.4 | 1.39680 | − | 0.221232i | 0.786335 | − | 1.54327i | 1.90211 | − | 0.618034i | 4.42349 | + | 2.33083i | 0.756934 | − | 2.32960i | 0.284481 | − | 0.284481i | 2.52015 | − | 1.28408i | −1.76336 | − | 2.42705i | 6.69439 | + | 2.27709i |
37.1 | 0.221232 | + | 1.39680i | −1.54327 | − | 0.786335i | −1.90211 | + | 0.618034i | −1.48914 | − | 4.77310i | 0.756934 | − | 2.32960i | 9.35986 | + | 9.35986i | −1.28408 | − | 2.52015i | 1.76336 | + | 2.42705i | 6.33763 | − | 3.13599i |
37.2 | 0.221232 | + | 1.39680i | −1.54327 | − | 0.786335i | −1.90211 | + | 0.618034i | 3.55879 | − | 3.51212i | 0.756934 | − | 2.32960i | −5.48204 | − | 5.48204i | −1.28408 | − | 2.52015i | 1.76336 | + | 2.42705i | 5.69306 | + | 4.19393i |
37.3 | 0.221232 | + | 1.39680i | 1.54327 | + | 0.786335i | −1.90211 | + | 0.618034i | −3.00822 | + | 3.99382i | −0.756934 | + | 2.32960i | 4.19292 | + | 4.19292i | −1.28408 | − | 2.52015i | 1.76336 | + | 2.42705i | −6.24409 | − | 3.31834i |
37.4 | 0.221232 | + | 1.39680i | 1.54327 | + | 0.786335i | −1.90211 | + | 0.618034i | 4.68416 | − | 1.74889i | −0.756934 | + | 2.32960i | 2.83023 | + | 2.83023i | −1.28408 | − | 2.52015i | 1.76336 | + | 2.42705i | 3.47914 | + | 6.15594i |
67.1 | 0.642040 | − | 1.26007i | −0.270952 | + | 1.71073i | −1.17557 | − | 1.61803i | −3.75559 | − | 3.30084i | 1.98168 | + | 1.43977i | −5.04938 | − | 5.04938i | −2.79360 | + | 0.442463i | −2.85317 | − | 0.927051i | −6.57054 | + | 2.61306i |
67.2 | 0.642040 | − | 1.26007i | −0.270952 | + | 1.71073i | −1.17557 | − | 1.61803i | −2.43941 | + | 4.36455i | 1.98168 | + | 1.43977i | 4.46938 | + | 4.46938i | −2.79360 | + | 0.442463i | −2.85317 | − | 0.927051i | 3.93346 | + | 5.87604i |
67.3 | 0.642040 | − | 1.26007i | 0.270952 | − | 1.71073i | −1.17557 | − | 1.61803i | −3.90603 | + | 3.12137i | −1.98168 | − | 1.43977i | −6.00700 | − | 6.00700i | −2.79360 | + | 0.442463i | −2.85317 | − | 0.927051i | 1.42533 | + | 6.92592i |
67.4 | 0.642040 | − | 1.26007i | 0.270952 | − | 1.71073i | −1.17557 | − | 1.61803i | 2.55121 | − | 4.30016i | −1.98168 | − | 1.43977i | −1.41591 | − | 1.41591i | −2.79360 | + | 0.442463i | −2.85317 | − | 0.927051i | −3.78054 | − | 5.97558i |
73.1 | 0.221232 | − | 1.39680i | −1.54327 | + | 0.786335i | −1.90211 | − | 0.618034i | −1.48914 | + | 4.77310i | 0.756934 | + | 2.32960i | 9.35986 | − | 9.35986i | −1.28408 | + | 2.52015i | 1.76336 | − | 2.42705i | 6.33763 | + | 3.13599i |
73.2 | 0.221232 | − | 1.39680i | −1.54327 | + | 0.786335i | −1.90211 | − | 0.618034i | 3.55879 | + | 3.51212i | 0.756934 | + | 2.32960i | −5.48204 | + | 5.48204i | −1.28408 | + | 2.52015i | 1.76336 | − | 2.42705i | 5.69306 | − | 4.19393i |
73.3 | 0.221232 | − | 1.39680i | 1.54327 | − | 0.786335i | −1.90211 | − | 0.618034i | −3.00822 | − | 3.99382i | −0.756934 | − | 2.32960i | 4.19292 | − | 4.19292i | −1.28408 | + | 2.52015i | 1.76336 | − | 2.42705i | −6.24409 | + | 3.31834i |
73.4 | 0.221232 | − | 1.39680i | 1.54327 | − | 0.786335i | −1.90211 | − | 0.618034i | 4.68416 | + | 1.74889i | −0.756934 | − | 2.32960i | 2.83023 | − | 2.83023i | −1.28408 | + | 2.52015i | 1.76336 | − | 2.42705i | 3.47914 | − | 6.15594i |
97.1 | −1.26007 | + | 0.642040i | −1.71073 | + | 0.270952i | 1.17557 | − | 1.61803i | −4.55798 | − | 2.05543i | 1.98168 | − | 1.43977i | 3.78399 | + | 3.78399i | −0.442463 | + | 2.79360i | 2.85317 | − | 0.927051i | 7.06306 | − | 0.336405i |
97.2 | −1.26007 | + | 0.642040i | −1.71073 | + | 0.270952i | 1.17557 | − | 1.61803i | −0.888938 | + | 4.92034i | 1.98168 | − | 1.43977i | −2.71277 | − | 2.71277i | −0.442463 | + | 2.79360i | 2.85317 | − | 0.927051i | −2.03893 | − | 6.77073i |
97.3 | −1.26007 | + | 0.642040i | 1.71073 | − | 0.270952i | 1.17557 | − | 1.61803i | 0.270329 | + | 4.99269i | −1.98168 | + | 1.43977i | 0.734007 | + | 0.734007i | −0.442463 | + | 2.79360i | 2.85317 | − | 0.927051i | −3.54614 | − | 6.11759i |
97.4 | −1.26007 | + | 0.642040i | 1.71073 | − | 0.270952i | 1.17557 | − | 1.61803i | 3.78214 | − | 3.27039i | −1.98168 | + | 1.43977i | −0.746595 | − | 0.746595i | −0.442463 | + | 2.79360i | 2.85317 | − | 0.927051i | −2.66605 | + | 6.54921i |
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
25.f | odd | 20 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 150.3.k.a | ✓ | 32 |
25.f | odd | 20 | 1 | inner | 150.3.k.a | ✓ | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
150.3.k.a | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
150.3.k.a | ✓ | 32 | 25.f | odd | 20 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{32} - 8 T_{7}^{31} + 32 T_{7}^{30} + 284 T_{7}^{29} + 25448 T_{7}^{28} - 142288 T_{7}^{27} + 364296 T_{7}^{26} - 1854300 T_{7}^{25} + 166638564 T_{7}^{24} - 1025374732 T_{7}^{23} + \cdots + 12\!\cdots\!61 \)
acting on \(S_{3}^{\mathrm{new}}(150, [\chi])\).