Newspace parameters
Level: | \( N \) | \(=\) | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 150.f (of order \(4\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.08720396540\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Relative dimension: | \(2\) over \(\Q(i)\) |
Coefficient field: | \(\Q(i, \sqrt{6})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 9 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} + 9 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{2} ) / 3 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{3} ) / 3 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( 3\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( 3\beta_{3} \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(127\) |
\(\chi(n)\) | \(1\) | \(-\beta_{2}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7.1 |
|
1.00000 | + | 1.00000i | −1.22474 | + | 1.22474i | 2.00000i | 0 | −2.44949 | 7.22474 | + | 7.22474i | −2.00000 | + | 2.00000i | − | 3.00000i | 0 | |||||||||||||||||||||
7.2 | 1.00000 | + | 1.00000i | 1.22474 | − | 1.22474i | 2.00000i | 0 | 2.44949 | 4.77526 | + | 4.77526i | −2.00000 | + | 2.00000i | − | 3.00000i | 0 | ||||||||||||||||||||||
43.1 | 1.00000 | − | 1.00000i | −1.22474 | − | 1.22474i | − | 2.00000i | 0 | −2.44949 | 7.22474 | − | 7.22474i | −2.00000 | − | 2.00000i | 3.00000i | 0 | ||||||||||||||||||||||
43.2 | 1.00000 | − | 1.00000i | 1.22474 | + | 1.22474i | − | 2.00000i | 0 | 2.44949 | 4.77526 | − | 4.77526i | −2.00000 | − | 2.00000i | 3.00000i | 0 | ||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 150.3.f.c | yes | 4 |
3.b | odd | 2 | 1 | 450.3.g.g | 4 | ||
4.b | odd | 2 | 1 | 1200.3.bg.a | 4 | ||
5.b | even | 2 | 1 | 150.3.f.a | ✓ | 4 | |
5.c | odd | 4 | 1 | 150.3.f.a | ✓ | 4 | |
5.c | odd | 4 | 1 | inner | 150.3.f.c | yes | 4 |
15.d | odd | 2 | 1 | 450.3.g.h | 4 | ||
15.e | even | 4 | 1 | 450.3.g.g | 4 | ||
15.e | even | 4 | 1 | 450.3.g.h | 4 | ||
20.d | odd | 2 | 1 | 1200.3.bg.p | 4 | ||
20.e | even | 4 | 1 | 1200.3.bg.a | 4 | ||
20.e | even | 4 | 1 | 1200.3.bg.p | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
150.3.f.a | ✓ | 4 | 5.b | even | 2 | 1 | |
150.3.f.a | ✓ | 4 | 5.c | odd | 4 | 1 | |
150.3.f.c | yes | 4 | 1.a | even | 1 | 1 | trivial |
150.3.f.c | yes | 4 | 5.c | odd | 4 | 1 | inner |
450.3.g.g | 4 | 3.b | odd | 2 | 1 | ||
450.3.g.g | 4 | 15.e | even | 4 | 1 | ||
450.3.g.h | 4 | 15.d | odd | 2 | 1 | ||
450.3.g.h | 4 | 15.e | even | 4 | 1 | ||
1200.3.bg.a | 4 | 4.b | odd | 2 | 1 | ||
1200.3.bg.a | 4 | 20.e | even | 4 | 1 | ||
1200.3.bg.p | 4 | 20.d | odd | 2 | 1 | ||
1200.3.bg.p | 4 | 20.e | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{4} - 24T_{7}^{3} + 288T_{7}^{2} - 1656T_{7} + 4761 \)
acting on \(S_{3}^{\mathrm{new}}(150, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} - 2 T + 2)^{2} \)
$3$
\( T^{4} + 9 \)
$5$
\( T^{4} \)
$7$
\( T^{4} - 24 T^{3} + 288 T^{2} + \cdots + 4761 \)
$11$
\( (T^{2} - 12 T - 180)^{2} \)
$13$
\( T^{4} + 48 T^{3} + 1152 T^{2} + \cdots + 68121 \)
$17$
\( T^{4} - 24 T^{3} + 288 T^{2} + \cdots + 1296 \)
$19$
\( T^{4} + 1154 T^{2} + 21025 \)
$23$
\( T^{4} - 24 T^{3} + 288 T^{2} + \cdots + 810000 \)
$29$
\( T^{4} + 504 T^{2} + 32400 \)
$31$
\( (T^{2} + 10 T - 1919)^{2} \)
$37$
\( T^{4} + 48 T^{3} + 1152 T^{2} + \cdots + 831744 \)
$41$
\( (T^{2} - 96 T + 2088)^{2} \)
$43$
\( T^{4} + 72 T^{3} + 2592 T^{2} + \cdots + 328329 \)
$47$
\( T^{4} + 144 T^{3} + 10368 T^{2} + \cdots + 2624400 \)
$53$
\( T^{4} - 120 T^{3} + 7200 T^{2} + \cdots + 5184 \)
$59$
\( (T^{2} + 900)^{2} \)
$61$
\( (T^{2} - 22 T - 3335)^{2} \)
$67$
\( T^{4} - 24 T^{3} + 288 T^{2} + \cdots + 29241 \)
$71$
\( (T^{2} + 48 T + 360)^{2} \)
$73$
\( T^{4} + 48 T^{3} + 1152 T^{2} + \cdots + 4260096 \)
$79$
\( T^{4} + 1736 T^{2} + 739600 \)
$83$
\( T^{4} + 48 T^{3} + 1152 T^{2} + \cdots + 25040016 \)
$89$
\( T^{4} + 2016 T^{2} + 518400 \)
$97$
\( T^{4} - 192 T^{3} + \cdots + 20548089 \)
show more
show less