Properties

Label 150.3.d.d.101.3
Level $150$
Weight $3$
Character 150.101
Analytic conductor $4.087$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [150,3,Mod(101,150)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(150, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("150.101");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 150.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.08720396540\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 16x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 30)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 101.3
Root \(2.91548 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 150.101
Dual form 150.3.d.d.101.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} +(-2.91548 + 0.707107i) q^{3} -2.00000 q^{4} +(-1.00000 - 4.12311i) q^{6} -5.83095 q^{7} -2.82843i q^{8} +(8.00000 - 4.12311i) q^{9} +O(q^{10})\) \(q+1.41421i q^{2} +(-2.91548 + 0.707107i) q^{3} -2.00000 q^{4} +(-1.00000 - 4.12311i) q^{6} -5.83095 q^{7} -2.82843i q^{8} +(8.00000 - 4.12311i) q^{9} -16.4924i q^{11} +(5.83095 - 1.41421i) q^{12} -8.24621i q^{14} +4.00000 q^{16} -11.3137i q^{17} +(5.83095 + 11.3137i) q^{18} -12.0000 q^{19} +(17.0000 - 4.12311i) q^{21} +23.3238 q^{22} -24.0416i q^{23} +(2.00000 + 8.24621i) q^{24} +(-20.4083 + 17.6777i) q^{27} +11.6619 q^{28} -32.0000 q^{31} +5.65685i q^{32} +(11.6619 + 48.0833i) q^{33} +16.0000 q^{34} +(-16.0000 + 8.24621i) q^{36} -23.3238 q^{37} -16.9706i q^{38} +57.7235i q^{41} +(5.83095 + 24.0416i) q^{42} -40.8167 q^{43} +32.9848i q^{44} +34.0000 q^{46} -35.3553i q^{47} +(-11.6619 + 2.82843i) q^{48} -15.0000 q^{49} +(8.00000 + 32.9848i) q^{51} -67.8823i q^{53} +(-25.0000 - 28.8617i) q^{54} +16.4924i q^{56} +(34.9857 - 8.48528i) q^{57} +16.4924i q^{59} -16.0000 q^{61} -45.2548i q^{62} +(-46.6476 + 24.0416i) q^{63} -8.00000 q^{64} +(-68.0000 + 16.4924i) q^{66} +5.83095 q^{67} +22.6274i q^{68} +(17.0000 + 70.0928i) q^{69} +(-11.6619 - 22.6274i) q^{72} +116.619 q^{73} -32.9848i q^{74} +24.0000 q^{76} +96.1665i q^{77} +72.0000 q^{79} +(47.0000 - 65.9697i) q^{81} -81.6333 q^{82} +43.8406i q^{83} +(-34.0000 + 8.24621i) q^{84} -57.7235i q^{86} -46.6476 q^{88} -65.9697i q^{89} +48.0833i q^{92} +(93.2952 - 22.6274i) q^{93} +50.0000 q^{94} +(-4.00000 - 16.4924i) q^{96} +163.267 q^{97} -21.2132i q^{98} +(-68.0000 - 131.939i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} - 4 q^{6} + 32 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 8 q^{4} - 4 q^{6} + 32 q^{9} + 16 q^{16} - 48 q^{19} + 68 q^{21} + 8 q^{24} - 128 q^{31} + 64 q^{34} - 64 q^{36} + 136 q^{46} - 60 q^{49} + 32 q^{51} - 100 q^{54} - 64 q^{61} - 32 q^{64} - 272 q^{66} + 68 q^{69} + 96 q^{76} + 288 q^{79} + 188 q^{81} - 136 q^{84} + 200 q^{94} - 16 q^{96} - 272 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 0.707107i
\(3\) −2.91548 + 0.707107i −0.971825 + 0.235702i
\(4\) −2.00000 −0.500000
\(5\) 0 0
\(6\) −1.00000 4.12311i −0.166667 0.687184i
\(7\) −5.83095 −0.832993 −0.416497 0.909137i \(-0.636742\pi\)
−0.416497 + 0.909137i \(0.636742\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 8.00000 4.12311i 0.888889 0.458123i
\(10\) 0 0
\(11\) 16.4924i 1.49931i −0.661828 0.749656i \(-0.730219\pi\)
0.661828 0.749656i \(-0.269781\pi\)
\(12\) 5.83095 1.41421i 0.485913 0.117851i
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 8.24621i 0.589015i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) 11.3137i 0.665512i −0.943013 0.332756i \(-0.892021\pi\)
0.943013 0.332756i \(-0.107979\pi\)
\(18\) 5.83095 + 11.3137i 0.323942 + 0.628539i
\(19\) −12.0000 −0.631579 −0.315789 0.948829i \(-0.602269\pi\)
−0.315789 + 0.948829i \(0.602269\pi\)
\(20\) 0 0
\(21\) 17.0000 4.12311i 0.809524 0.196338i
\(22\) 23.3238 1.06017
\(23\) 24.0416i 1.04529i −0.852551 0.522644i \(-0.824946\pi\)
0.852551 0.522644i \(-0.175054\pi\)
\(24\) 2.00000 + 8.24621i 0.0833333 + 0.343592i
\(25\) 0 0
\(26\) 0 0
\(27\) −20.4083 + 17.6777i −0.755864 + 0.654729i
\(28\) 11.6619 0.416497
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) −32.0000 −1.03226 −0.516129 0.856511i \(-0.672628\pi\)
−0.516129 + 0.856511i \(0.672628\pi\)
\(32\) 5.65685i 0.176777i
\(33\) 11.6619 + 48.0833i 0.353391 + 1.45707i
\(34\) 16.0000 0.470588
\(35\) 0 0
\(36\) −16.0000 + 8.24621i −0.444444 + 0.229061i
\(37\) −23.3238 −0.630373 −0.315187 0.949030i \(-0.602067\pi\)
−0.315187 + 0.949030i \(0.602067\pi\)
\(38\) 16.9706i 0.446594i
\(39\) 0 0
\(40\) 0 0
\(41\) 57.7235i 1.40789i 0.710255 + 0.703945i \(0.248580\pi\)
−0.710255 + 0.703945i \(0.751420\pi\)
\(42\) 5.83095 + 24.0416i 0.138832 + 0.572420i
\(43\) −40.8167 −0.949225 −0.474612 0.880195i \(-0.657412\pi\)
−0.474612 + 0.880195i \(0.657412\pi\)
\(44\) 32.9848i 0.749656i
\(45\) 0 0
\(46\) 34.0000 0.739130
\(47\) 35.3553i 0.752241i −0.926571 0.376121i \(-0.877258\pi\)
0.926571 0.376121i \(-0.122742\pi\)
\(48\) −11.6619 + 2.82843i −0.242956 + 0.0589256i
\(49\) −15.0000 −0.306122
\(50\) 0 0
\(51\) 8.00000 + 32.9848i 0.156863 + 0.646762i
\(52\) 0 0
\(53\) 67.8823i 1.28080i −0.768043 0.640399i \(-0.778769\pi\)
0.768043 0.640399i \(-0.221231\pi\)
\(54\) −25.0000 28.8617i −0.462963 0.534477i
\(55\) 0 0
\(56\) 16.4924i 0.294508i
\(57\) 34.9857 8.48528i 0.613784 0.148865i
\(58\) 0 0
\(59\) 16.4924i 0.279533i 0.990185 + 0.139766i \(0.0446351\pi\)
−0.990185 + 0.139766i \(0.955365\pi\)
\(60\) 0 0
\(61\) −16.0000 −0.262295 −0.131148 0.991363i \(-0.541866\pi\)
−0.131148 + 0.991363i \(0.541866\pi\)
\(62\) 45.2548i 0.729917i
\(63\) −46.6476 + 24.0416i −0.740438 + 0.381613i
\(64\) −8.00000 −0.125000
\(65\) 0 0
\(66\) −68.0000 + 16.4924i −1.03030 + 0.249885i
\(67\) 5.83095 0.0870291 0.0435146 0.999053i \(-0.486145\pi\)
0.0435146 + 0.999053i \(0.486145\pi\)
\(68\) 22.6274i 0.332756i
\(69\) 17.0000 + 70.0928i 0.246377 + 1.01584i
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −11.6619 22.6274i −0.161971 0.314270i
\(73\) 116.619 1.59752 0.798761 0.601649i \(-0.205489\pi\)
0.798761 + 0.601649i \(0.205489\pi\)
\(74\) 32.9848i 0.445741i
\(75\) 0 0
\(76\) 24.0000 0.315789
\(77\) 96.1665i 1.24892i
\(78\) 0 0
\(79\) 72.0000 0.911392 0.455696 0.890135i \(-0.349390\pi\)
0.455696 + 0.890135i \(0.349390\pi\)
\(80\) 0 0
\(81\) 47.0000 65.9697i 0.580247 0.814441i
\(82\) −81.6333 −0.995528
\(83\) 43.8406i 0.528200i 0.964495 + 0.264100i \(0.0850749\pi\)
−0.964495 + 0.264100i \(0.914925\pi\)
\(84\) −34.0000 + 8.24621i −0.404762 + 0.0981692i
\(85\) 0 0
\(86\) 57.7235i 0.671203i
\(87\) 0 0
\(88\) −46.6476 −0.530087
\(89\) 65.9697i 0.741232i −0.928786 0.370616i \(-0.879147\pi\)
0.928786 0.370616i \(-0.120853\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 48.0833i 0.522644i
\(93\) 93.2952 22.6274i 1.00317 0.243306i
\(94\) 50.0000 0.531915
\(95\) 0 0
\(96\) −4.00000 16.4924i −0.0416667 0.171796i
\(97\) 163.267 1.68316 0.841581 0.540131i \(-0.181625\pi\)
0.841581 + 0.540131i \(0.181625\pi\)
\(98\) 21.2132i 0.216461i
\(99\) −68.0000 131.939i −0.686869 1.33272i
\(100\) 0 0
\(101\) 131.939i 1.30633i −0.757215 0.653165i \(-0.773441\pi\)
0.757215 0.653165i \(-0.226559\pi\)
\(102\) −46.6476 + 11.3137i −0.457330 + 0.110919i
\(103\) −99.1262 −0.962390 −0.481195 0.876614i \(-0.659797\pi\)
−0.481195 + 0.876614i \(0.659797\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 96.0000 0.905660
\(107\) 55.1543i 0.515461i −0.966217 0.257731i \(-0.917025\pi\)
0.966217 0.257731i \(-0.0829747\pi\)
\(108\) 40.8167 35.3553i 0.377932 0.327364i
\(109\) −80.0000 −0.733945 −0.366972 0.930232i \(-0.619606\pi\)
−0.366972 + 0.930232i \(0.619606\pi\)
\(110\) 0 0
\(111\) 68.0000 16.4924i 0.612613 0.148580i
\(112\) −23.3238 −0.208248
\(113\) 152.735i 1.35164i 0.737068 + 0.675819i \(0.236210\pi\)
−0.737068 + 0.675819i \(0.763790\pi\)
\(114\) 12.0000 + 49.4773i 0.105263 + 0.434011i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −23.3238 −0.197659
\(119\) 65.9697i 0.554367i
\(120\) 0 0
\(121\) −151.000 −1.24793
\(122\) 22.6274i 0.185471i
\(123\) −40.8167 168.291i −0.331843 1.36822i
\(124\) 64.0000 0.516129
\(125\) 0 0
\(126\) −34.0000 65.9697i −0.269841 0.523569i
\(127\) −40.8167 −0.321391 −0.160696 0.987004i \(-0.551374\pi\)
−0.160696 + 0.987004i \(0.551374\pi\)
\(128\) 11.3137i 0.0883883i
\(129\) 119.000 28.8617i 0.922481 0.223734i
\(130\) 0 0
\(131\) 49.4773i 0.377689i −0.982007 0.188845i \(-0.939526\pi\)
0.982007 0.188845i \(-0.0604742\pi\)
\(132\) −23.3238 96.1665i −0.176696 0.728534i
\(133\) 69.9714 0.526101
\(134\) 8.24621i 0.0615389i
\(135\) 0 0
\(136\) −32.0000 −0.235294
\(137\) 50.9117i 0.371618i −0.982586 0.185809i \(-0.940509\pi\)
0.982586 0.185809i \(-0.0594906\pi\)
\(138\) −99.1262 + 24.0416i −0.718306 + 0.174215i
\(139\) −44.0000 −0.316547 −0.158273 0.987395i \(-0.550593\pi\)
−0.158273 + 0.987395i \(0.550593\pi\)
\(140\) 0 0
\(141\) 25.0000 + 103.078i 0.177305 + 0.731047i
\(142\) 0 0
\(143\) 0 0
\(144\) 32.0000 16.4924i 0.222222 0.114531i
\(145\) 0 0
\(146\) 164.924i 1.12962i
\(147\) 43.7321 10.6066i 0.297498 0.0721538i
\(148\) 46.6476 0.315187
\(149\) 8.24621i 0.0553437i −0.999617 0.0276718i \(-0.991191\pi\)
0.999617 0.0276718i \(-0.00880935\pi\)
\(150\) 0 0
\(151\) 136.000 0.900662 0.450331 0.892862i \(-0.351306\pi\)
0.450331 + 0.892862i \(0.351306\pi\)
\(152\) 33.9411i 0.223297i
\(153\) −46.6476 90.5097i −0.304886 0.591566i
\(154\) −136.000 −0.883117
\(155\) 0 0
\(156\) 0 0
\(157\) −116.619 −0.742796 −0.371398 0.928474i \(-0.621122\pi\)
−0.371398 + 0.928474i \(0.621122\pi\)
\(158\) 101.823i 0.644452i
\(159\) 48.0000 + 197.909i 0.301887 + 1.24471i
\(160\) 0 0
\(161\) 140.186i 0.870718i
\(162\) 93.2952 + 66.4680i 0.575896 + 0.410297i
\(163\) −99.1262 −0.608136 −0.304068 0.952650i \(-0.598345\pi\)
−0.304068 + 0.952650i \(0.598345\pi\)
\(164\) 115.447i 0.703945i
\(165\) 0 0
\(166\) −62.0000 −0.373494
\(167\) 292.742i 1.75295i 0.481450 + 0.876474i \(0.340110\pi\)
−0.481450 + 0.876474i \(0.659890\pi\)
\(168\) −11.6619 48.0833i −0.0694161 0.286210i
\(169\) −169.000 −1.00000
\(170\) 0 0
\(171\) −96.0000 + 49.4773i −0.561404 + 0.289341i
\(172\) 81.6333 0.474612
\(173\) 164.049i 0.948259i 0.880455 + 0.474129i \(0.157237\pi\)
−0.880455 + 0.474129i \(0.842763\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 65.9697i 0.374828i
\(177\) −11.6619 48.0833i −0.0658865 0.271657i
\(178\) 93.2952 0.524131
\(179\) 16.4924i 0.0921364i 0.998938 + 0.0460682i \(0.0146692\pi\)
−0.998938 + 0.0460682i \(0.985331\pi\)
\(180\) 0 0
\(181\) −82.0000 −0.453039 −0.226519 0.974007i \(-0.572735\pi\)
−0.226519 + 0.974007i \(0.572735\pi\)
\(182\) 0 0
\(183\) 46.6476 11.3137i 0.254905 0.0618235i
\(184\) −68.0000 −0.369565
\(185\) 0 0
\(186\) 32.0000 + 131.939i 0.172043 + 0.709352i
\(187\) −186.590 −0.997810
\(188\) 70.7107i 0.376121i
\(189\) 119.000 103.078i 0.629630 0.545384i
\(190\) 0 0
\(191\) 296.864i 1.55426i 0.629340 + 0.777130i \(0.283325\pi\)
−0.629340 + 0.777130i \(0.716675\pi\)
\(192\) 23.3238 5.65685i 0.121478 0.0294628i
\(193\) 116.619 0.604244 0.302122 0.953269i \(-0.402305\pi\)
0.302122 + 0.953269i \(0.402305\pi\)
\(194\) 230.894i 1.19017i
\(195\) 0 0
\(196\) 30.0000 0.153061
\(197\) 192.333i 0.976310i −0.872757 0.488155i \(-0.837670\pi\)
0.872757 0.488155i \(-0.162330\pi\)
\(198\) 186.590 96.1665i 0.942376 0.485690i
\(199\) 312.000 1.56784 0.783920 0.620862i \(-0.213217\pi\)
0.783920 + 0.620862i \(0.213217\pi\)
\(200\) 0 0
\(201\) −17.0000 + 4.12311i −0.0845771 + 0.0205130i
\(202\) 186.590 0.923715
\(203\) 0 0
\(204\) −16.0000 65.9697i −0.0784314 0.323381i
\(205\) 0 0
\(206\) 140.186i 0.680513i
\(207\) −99.1262 192.333i −0.478870 0.929145i
\(208\) 0 0
\(209\) 197.909i 0.946933i
\(210\) 0 0
\(211\) −12.0000 −0.0568720 −0.0284360 0.999596i \(-0.509053\pi\)
−0.0284360 + 0.999596i \(0.509053\pi\)
\(212\) 135.765i 0.640399i
\(213\) 0 0
\(214\) 78.0000 0.364486
\(215\) 0 0
\(216\) 50.0000 + 57.7235i 0.231481 + 0.267238i
\(217\) 186.590 0.859864
\(218\) 113.137i 0.518977i
\(219\) −340.000 + 82.4621i −1.55251 + 0.376539i
\(220\) 0 0
\(221\) 0 0
\(222\) 23.3238 + 96.1665i 0.105062 + 0.433183i
\(223\) −40.8167 −0.183034 −0.0915172 0.995803i \(-0.529172\pi\)
−0.0915172 + 0.995803i \(0.529172\pi\)
\(224\) 32.9848i 0.147254i
\(225\) 0 0
\(226\) −216.000 −0.955752
\(227\) 159.806i 0.703992i −0.936002 0.351996i \(-0.885503\pi\)
0.936002 0.351996i \(-0.114497\pi\)
\(228\) −69.9714 + 16.9706i −0.306892 + 0.0744323i
\(229\) −82.0000 −0.358079 −0.179039 0.983842i \(-0.557299\pi\)
−0.179039 + 0.983842i \(0.557299\pi\)
\(230\) 0 0
\(231\) −68.0000 280.371i −0.294372 1.21373i
\(232\) 0 0
\(233\) 192.333i 0.825464i −0.910853 0.412732i \(-0.864575\pi\)
0.910853 0.412732i \(-0.135425\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 32.9848i 0.139766i
\(237\) −209.914 + 50.9117i −0.885714 + 0.214817i
\(238\) −93.2952 −0.391997
\(239\) 461.788i 1.93217i −0.258231 0.966083i \(-0.583139\pi\)
0.258231 0.966083i \(-0.416861\pi\)
\(240\) 0 0
\(241\) 304.000 1.26141 0.630705 0.776022i \(-0.282766\pi\)
0.630705 + 0.776022i \(0.282766\pi\)
\(242\) 213.546i 0.882423i
\(243\) −90.3798 + 225.567i −0.371933 + 0.928260i
\(244\) 32.0000 0.131148
\(245\) 0 0
\(246\) 238.000 57.7235i 0.967480 0.234648i
\(247\) 0 0
\(248\) 90.5097i 0.364958i
\(249\) −31.0000 127.816i −0.124498 0.513318i
\(250\) 0 0
\(251\) 346.341i 1.37984i −0.723884 0.689922i \(-0.757645\pi\)
0.723884 0.689922i \(-0.242355\pi\)
\(252\) 93.2952 48.0833i 0.370219 0.190807i
\(253\) −396.505 −1.56721
\(254\) 57.7235i 0.227258i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 390.323i 1.51877i 0.650644 + 0.759383i \(0.274499\pi\)
−0.650644 + 0.759383i \(0.725501\pi\)
\(258\) 40.8167 + 168.291i 0.158204 + 0.652292i
\(259\) 136.000 0.525097
\(260\) 0 0
\(261\) 0 0
\(262\) 69.9714 0.267066
\(263\) 295.571i 1.12384i −0.827191 0.561921i \(-0.810062\pi\)
0.827191 0.561921i \(-0.189938\pi\)
\(264\) 136.000 32.9848i 0.515152 0.124943i
\(265\) 0 0
\(266\) 98.9545i 0.372010i
\(267\) 46.6476 + 192.333i 0.174710 + 0.720348i
\(268\) −11.6619 −0.0435146
\(269\) 74.2159i 0.275896i 0.990440 + 0.137948i \(0.0440506\pi\)
−0.990440 + 0.137948i \(0.955949\pi\)
\(270\) 0 0
\(271\) 40.0000 0.147601 0.0738007 0.997273i \(-0.476487\pi\)
0.0738007 + 0.997273i \(0.476487\pi\)
\(272\) 45.2548i 0.166378i
\(273\) 0 0
\(274\) 72.0000 0.262774
\(275\) 0 0
\(276\) −34.0000 140.186i −0.123188 0.507919i
\(277\) −443.152 −1.59983 −0.799914 0.600115i \(-0.795122\pi\)
−0.799914 + 0.600115i \(0.795122\pi\)
\(278\) 62.2254i 0.223832i
\(279\) −256.000 + 131.939i −0.917563 + 0.472901i
\(280\) 0 0
\(281\) 519.511i 1.84879i −0.381431 0.924397i \(-0.624569\pi\)
0.381431 0.924397i \(-0.375431\pi\)
\(282\) −145.774 + 35.3553i −0.516928 + 0.125374i
\(283\) 320.702 1.13322 0.566612 0.823985i \(-0.308254\pi\)
0.566612 + 0.823985i \(0.308254\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 336.583i 1.17276i
\(288\) 23.3238 + 45.2548i 0.0809854 + 0.157135i
\(289\) 161.000 0.557093
\(290\) 0 0
\(291\) −476.000 + 115.447i −1.63574 + 0.396725i
\(292\) −233.238 −0.798761
\(293\) 84.8528i 0.289600i −0.989461 0.144800i \(-0.953746\pi\)
0.989461 0.144800i \(-0.0462539\pi\)
\(294\) 15.0000 + 61.8466i 0.0510204 + 0.210363i
\(295\) 0 0
\(296\) 65.9697i 0.222871i
\(297\) 291.548 + 336.583i 0.981642 + 1.13328i
\(298\) 11.6619 0.0391339
\(299\) 0 0
\(300\) 0 0
\(301\) 238.000 0.790698
\(302\) 192.333i 0.636864i
\(303\) 93.2952 + 384.666i 0.307905 + 1.26953i
\(304\) −48.0000 −0.157895
\(305\) 0 0
\(306\) 128.000 65.9697i 0.418301 0.215587i
\(307\) 367.350 1.19658 0.598290 0.801280i \(-0.295847\pi\)
0.598290 + 0.801280i \(0.295847\pi\)
\(308\) 192.333i 0.624458i
\(309\) 289.000 70.0928i 0.935275 0.226838i
\(310\) 0 0
\(311\) 98.9545i 0.318182i 0.987264 + 0.159091i \(0.0508563\pi\)
−0.987264 + 0.159091i \(0.949144\pi\)
\(312\) 0 0
\(313\) 186.590 0.596136 0.298068 0.954545i \(-0.403658\pi\)
0.298068 + 0.954545i \(0.403658\pi\)
\(314\) 164.924i 0.525236i
\(315\) 0 0
\(316\) −144.000 −0.455696
\(317\) 520.431i 1.64174i −0.571117 0.820868i \(-0.693490\pi\)
0.571117 0.820868i \(-0.306510\pi\)
\(318\) −279.886 + 67.8823i −0.880144 + 0.213466i
\(319\) 0 0
\(320\) 0 0
\(321\) 39.0000 + 160.801i 0.121495 + 0.500938i
\(322\) −198.252 −0.615691
\(323\) 135.765i 0.420324i
\(324\) −94.0000 + 131.939i −0.290123 + 0.407220i
\(325\) 0 0
\(326\) 140.186i 0.430017i
\(327\) 233.238 56.5685i 0.713266 0.172992i
\(328\) 163.267 0.497764
\(329\) 206.155i 0.626612i
\(330\) 0 0
\(331\) 292.000 0.882175 0.441088 0.897464i \(-0.354593\pi\)
0.441088 + 0.897464i \(0.354593\pi\)
\(332\) 87.6812i 0.264100i
\(333\) −186.590 + 96.1665i −0.560332 + 0.288788i
\(334\) −414.000 −1.23952
\(335\) 0 0
\(336\) 68.0000 16.4924i 0.202381 0.0490846i
\(337\) 326.533 0.968942 0.484471 0.874807i \(-0.339012\pi\)
0.484471 + 0.874807i \(0.339012\pi\)
\(338\) 239.002i 0.707107i
\(339\) −108.000 445.295i −0.318584 1.31356i
\(340\) 0 0
\(341\) 527.758i 1.54768i
\(342\) −69.9714 135.765i −0.204595 0.396972i
\(343\) 373.181 1.08799
\(344\) 115.447i 0.335602i
\(345\) 0 0
\(346\) −232.000 −0.670520
\(347\) 394.566i 1.13708i 0.822657 + 0.568538i \(0.192491\pi\)
−0.822657 + 0.568538i \(0.807509\pi\)
\(348\) 0 0
\(349\) −254.000 −0.727794 −0.363897 0.931439i \(-0.618554\pi\)
−0.363897 + 0.931439i \(0.618554\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 93.2952 0.265043
\(353\) 345.068i 0.977530i −0.872415 0.488765i \(-0.837448\pi\)
0.872415 0.488765i \(-0.162552\pi\)
\(354\) 68.0000 16.4924i 0.192090 0.0465888i
\(355\) 0 0
\(356\) 131.939i 0.370616i
\(357\) −46.6476 192.333i −0.130666 0.538748i
\(358\) −23.3238 −0.0651503
\(359\) 395.818i 1.10256i 0.834321 + 0.551279i \(0.185860\pi\)
−0.834321 + 0.551279i \(0.814140\pi\)
\(360\) 0 0
\(361\) −217.000 −0.601108
\(362\) 115.966i 0.320347i
\(363\) 440.237 106.773i 1.21277 0.294141i
\(364\) 0 0
\(365\) 0 0
\(366\) 16.0000 + 65.9697i 0.0437158 + 0.180245i
\(367\) 413.998 1.12806 0.564029 0.825755i \(-0.309250\pi\)
0.564029 + 0.825755i \(0.309250\pi\)
\(368\) 96.1665i 0.261322i
\(369\) 238.000 + 461.788i 0.644986 + 1.25146i
\(370\) 0 0
\(371\) 395.818i 1.06690i
\(372\) −186.590 + 45.2548i −0.501587 + 0.121653i
\(373\) −629.743 −1.68832 −0.844159 0.536092i \(-0.819900\pi\)
−0.844159 + 0.536092i \(0.819900\pi\)
\(374\) 263.879i 0.705558i
\(375\) 0 0
\(376\) −100.000 −0.265957
\(377\) 0 0
\(378\) 145.774 + 168.291i 0.385645 + 0.445215i
\(379\) 572.000 1.50923 0.754617 0.656165i \(-0.227822\pi\)
0.754617 + 0.656165i \(0.227822\pi\)
\(380\) 0 0
\(381\) 119.000 28.8617i 0.312336 0.0757526i
\(382\) −419.829 −1.09903
\(383\) 193.747i 0.505868i 0.967484 + 0.252934i \(0.0813955\pi\)
−0.967484 + 0.252934i \(0.918605\pi\)
\(384\) 8.00000 + 32.9848i 0.0208333 + 0.0858980i
\(385\) 0 0
\(386\) 164.924i 0.427265i
\(387\) −326.533 + 168.291i −0.843755 + 0.434862i
\(388\) −326.533 −0.841581
\(389\) 387.572i 0.996329i −0.867083 0.498164i \(-0.834008\pi\)
0.867083 0.498164i \(-0.165992\pi\)
\(390\) 0 0
\(391\) −272.000 −0.695652
\(392\) 42.4264i 0.108231i
\(393\) 34.9857 + 144.250i 0.0890222 + 0.367048i
\(394\) 272.000 0.690355
\(395\) 0 0
\(396\) 136.000 + 263.879i 0.343434 + 0.666361i
\(397\) −513.124 −1.29250 −0.646252 0.763124i \(-0.723664\pi\)
−0.646252 + 0.763124i \(0.723664\pi\)
\(398\) 441.235i 1.10863i
\(399\) −204.000 + 49.4773i −0.511278 + 0.124003i
\(400\) 0 0
\(401\) 65.9697i 0.164513i 0.996611 + 0.0822565i \(0.0262127\pi\)
−0.996611 + 0.0822565i \(0.973787\pi\)
\(402\) −5.83095 24.0416i −0.0145049 0.0598051i
\(403\) 0 0
\(404\) 263.879i 0.653165i
\(405\) 0 0
\(406\) 0 0
\(407\) 384.666i 0.945126i
\(408\) 93.2952 22.6274i 0.228665 0.0554594i
\(409\) −640.000 −1.56479 −0.782396 0.622781i \(-0.786003\pi\)
−0.782396 + 0.622781i \(0.786003\pi\)
\(410\) 0 0
\(411\) 36.0000 + 148.432i 0.0875912 + 0.361148i
\(412\) 198.252 0.481195
\(413\) 96.1665i 0.232849i
\(414\) 272.000 140.186i 0.657005 0.338613i
\(415\) 0 0
\(416\) 0 0
\(417\) 128.281 31.1127i 0.307628 0.0746108i
\(418\) −279.886 −0.669583
\(419\) 577.235i 1.37765i 0.724928 + 0.688824i \(0.241873\pi\)
−0.724928 + 0.688824i \(0.758127\pi\)
\(420\) 0 0
\(421\) −656.000 −1.55819 −0.779097 0.626903i \(-0.784322\pi\)
−0.779097 + 0.626903i \(0.784322\pi\)
\(422\) 16.9706i 0.0402146i
\(423\) −145.774 282.843i −0.344619 0.668659i
\(424\) −192.000 −0.452830
\(425\) 0 0
\(426\) 0 0
\(427\) 93.2952 0.218490
\(428\) 110.309i 0.257731i
\(429\) 0 0
\(430\) 0 0
\(431\) 362.833i 0.841841i −0.907098 0.420920i \(-0.861707\pi\)
0.907098 0.420920i \(-0.138293\pi\)
\(432\) −81.6333 + 70.7107i −0.188966 + 0.163682i
\(433\) −163.267 −0.377059 −0.188530 0.982068i \(-0.560372\pi\)
−0.188530 + 0.982068i \(0.560372\pi\)
\(434\) 263.879i 0.608016i
\(435\) 0 0
\(436\) 160.000 0.366972
\(437\) 288.500i 0.660182i
\(438\) −116.619 480.833i −0.266254 1.09779i
\(439\) −432.000 −0.984055 −0.492027 0.870580i \(-0.663744\pi\)
−0.492027 + 0.870580i \(0.663744\pi\)
\(440\) 0 0
\(441\) −120.000 + 61.8466i −0.272109 + 0.140242i
\(442\) 0 0
\(443\) 123.037i 0.277735i −0.990311 0.138867i \(-0.955654\pi\)
0.990311 0.138867i \(-0.0443462\pi\)
\(444\) −136.000 + 32.9848i −0.306306 + 0.0742902i
\(445\) 0 0
\(446\) 57.7235i 0.129425i
\(447\) 5.83095 + 24.0416i 0.0130446 + 0.0537844i
\(448\) 46.6476 0.104124
\(449\) 865.852i 1.92840i −0.265174 0.964201i \(-0.585429\pi\)
0.265174 0.964201i \(-0.414571\pi\)
\(450\) 0 0
\(451\) 952.000 2.11086
\(452\) 305.470i 0.675819i
\(453\) −396.505 + 96.1665i −0.875286 + 0.212288i
\(454\) 226.000 0.497797
\(455\) 0 0
\(456\) −24.0000 98.9545i −0.0526316 0.217006i
\(457\) 466.476 1.02074 0.510368 0.859956i \(-0.329509\pi\)
0.510368 + 0.859956i \(0.329509\pi\)
\(458\) 115.966i 0.253200i
\(459\) 200.000 + 230.894i 0.435730 + 0.503037i
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 396.505 96.1665i 0.858235 0.208153i
\(463\) 612.250 1.32235 0.661177 0.750230i \(-0.270057\pi\)
0.661177 + 0.750230i \(0.270057\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 272.000 0.583691
\(467\) 767.918i 1.64436i −0.569225 0.822182i \(-0.692757\pi\)
0.569225 0.822182i \(-0.307243\pi\)
\(468\) 0 0
\(469\) −34.0000 −0.0724947
\(470\) 0 0
\(471\) 340.000 82.4621i 0.721868 0.175079i
\(472\) 46.6476 0.0988297
\(473\) 673.166i 1.42318i
\(474\) −72.0000 296.864i −0.151899 0.626295i
\(475\) 0 0
\(476\) 131.939i 0.277184i
\(477\) −279.886 543.058i −0.586762 1.13849i
\(478\) 653.067 1.36625
\(479\) 560.742i 1.17065i −0.810798 0.585326i \(-0.800967\pi\)
0.810798 0.585326i \(-0.199033\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 429.921i 0.891952i
\(483\) −99.1262 408.708i −0.205230 0.846186i
\(484\) 302.000 0.623967
\(485\) 0 0
\(486\) −319.000 127.816i −0.656379 0.262996i
\(487\) −647.236 −1.32903 −0.664513 0.747277i \(-0.731361\pi\)
−0.664513 + 0.747277i \(0.731361\pi\)
\(488\) 45.2548i 0.0927353i
\(489\) 289.000 70.0928i 0.591002 0.143339i
\(490\) 0 0
\(491\) 346.341i 0.705379i −0.935740 0.352689i \(-0.885267\pi\)
0.935740 0.352689i \(-0.114733\pi\)
\(492\) 81.6333 + 336.583i 0.165921 + 0.684111i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −128.000 −0.258065
\(497\) 0 0
\(498\) 180.760 43.8406i 0.362971 0.0880334i
\(499\) 660.000 1.32265 0.661323 0.750102i \(-0.269995\pi\)
0.661323 + 0.750102i \(0.269995\pi\)
\(500\) 0 0
\(501\) −207.000 853.483i −0.413174 1.70356i
\(502\) 489.800 0.975697
\(503\) 182.434i 0.362691i 0.983419 + 0.181345i \(0.0580452\pi\)
−0.983419 + 0.181345i \(0.941955\pi\)
\(504\) 68.0000 + 131.939i 0.134921 + 0.261784i
\(505\) 0 0
\(506\) 560.742i 1.10819i
\(507\) 492.715 119.501i 0.971825 0.235702i
\(508\) 81.6333 0.160696
\(509\) 395.818i 0.777639i 0.921314 + 0.388819i \(0.127117\pi\)
−0.921314 + 0.388819i \(0.872883\pi\)
\(510\) 0 0
\(511\) −680.000 −1.33072
\(512\) 22.6274i 0.0441942i
\(513\) 244.900 212.132i 0.477388 0.413513i
\(514\) −552.000 −1.07393
\(515\) 0 0
\(516\) −238.000 + 57.7235i −0.461240 + 0.111867i
\(517\) −583.095 −1.12784
\(518\) 192.333i 0.371299i
\(519\) −116.000 478.280i −0.223507 0.921542i
\(520\) 0 0
\(521\) 131.939i 0.253243i −0.991951 0.126621i \(-0.959587\pi\)
0.991951 0.126621i \(-0.0404133\pi\)
\(522\) 0 0
\(523\) 145.774 0.278726 0.139363 0.990241i \(-0.455494\pi\)
0.139363 + 0.990241i \(0.455494\pi\)
\(524\) 98.9545i 0.188845i
\(525\) 0 0
\(526\) 418.000 0.794677
\(527\) 362.039i 0.686980i
\(528\) 46.6476 + 192.333i 0.0883478 + 0.364267i
\(529\) −49.0000 −0.0926276
\(530\) 0 0
\(531\) 68.0000 + 131.939i 0.128060 + 0.248473i
\(532\) −139.943 −0.263050
\(533\) 0 0
\(534\) −272.000 + 65.9697i −0.509363 + 0.123539i
\(535\) 0 0
\(536\) 16.4924i 0.0307694i
\(537\) −11.6619 48.0833i −0.0217168 0.0895405i
\(538\) −104.957 −0.195088
\(539\) 247.386i 0.458973i
\(540\) 0 0
\(541\) 418.000 0.772643 0.386322 0.922364i \(-0.373745\pi\)
0.386322 + 0.922364i \(0.373745\pi\)
\(542\) 56.5685i 0.104370i
\(543\) 239.069 57.9828i 0.440274 0.106782i
\(544\) 64.0000 0.117647
\(545\) 0 0
\(546\) 0 0
\(547\) −285.717 −0.522334 −0.261167 0.965294i \(-0.584107\pi\)
−0.261167 + 0.965294i \(0.584107\pi\)
\(548\) 101.823i 0.185809i
\(549\) −128.000 + 65.9697i −0.233151 + 0.120163i
\(550\) 0 0
\(551\) 0 0
\(552\) 198.252 48.0833i 0.359153 0.0871074i
\(553\) −419.829 −0.759184
\(554\) 626.712i 1.13125i
\(555\) 0 0
\(556\) 88.0000 0.158273
\(557\) 424.264i 0.761695i 0.924638 + 0.380847i \(0.124368\pi\)
−0.924638 + 0.380847i \(0.875632\pi\)
\(558\) −186.590 362.039i −0.334392 0.648815i
\(559\) 0 0
\(560\) 0 0
\(561\) 544.000 131.939i 0.969697 0.235186i
\(562\) 734.700 1.30730
\(563\) 813.173i 1.44436i 0.691707 + 0.722178i \(0.256859\pi\)
−0.691707 + 0.722178i \(0.743141\pi\)
\(564\) −50.0000 206.155i −0.0886525 0.365524i
\(565\) 0 0
\(566\) 453.542i 0.801310i
\(567\) −274.055 + 384.666i −0.483342 + 0.678423i
\(568\) 0 0
\(569\) 453.542i 0.797085i 0.917150 + 0.398543i \(0.130484\pi\)
−0.917150 + 0.398543i \(0.869516\pi\)
\(570\) 0 0
\(571\) 220.000 0.385289 0.192644 0.981269i \(-0.438294\pi\)
0.192644 + 0.981269i \(0.438294\pi\)
\(572\) 0 0
\(573\) −209.914 865.499i −0.366343 1.51047i
\(574\) 476.000 0.829268
\(575\) 0 0
\(576\) −64.0000 + 32.9848i −0.111111 + 0.0572654i
\(577\) 46.6476 0.0808451 0.0404225 0.999183i \(-0.487130\pi\)
0.0404225 + 0.999183i \(0.487130\pi\)
\(578\) 227.688i 0.393925i
\(579\) −340.000 + 82.4621i −0.587219 + 0.142422i
\(580\) 0 0
\(581\) 255.633i 0.439987i
\(582\) −163.267 673.166i −0.280527 1.15664i
\(583\) −1119.54 −1.92031
\(584\) 329.848i 0.564809i
\(585\) 0 0
\(586\) 120.000 0.204778
\(587\) 55.1543i 0.0939597i 0.998896 + 0.0469798i \(0.0149597\pi\)
−0.998896 + 0.0469798i \(0.985040\pi\)
\(588\) −87.4643 + 21.2132i −0.148749 + 0.0360769i
\(589\) 384.000 0.651952
\(590\) 0 0
\(591\) 136.000 + 560.742i 0.230118 + 0.948803i
\(592\) −93.2952 −0.157593
\(593\) 390.323i 0.658217i −0.944292 0.329109i \(-0.893252\pi\)
0.944292 0.329109i \(-0.106748\pi\)
\(594\) −476.000 + 412.311i −0.801347 + 0.694126i
\(595\) 0 0
\(596\) 16.4924i 0.0276718i
\(597\) −909.628 + 220.617i −1.52367 + 0.369543i
\(598\) 0 0
\(599\) 98.9545i 0.165200i −0.996583 0.0825998i \(-0.973678\pi\)
0.996583 0.0825998i \(-0.0263223\pi\)
\(600\) 0 0
\(601\) −880.000 −1.46423 −0.732113 0.681183i \(-0.761466\pi\)
−0.732113 + 0.681183i \(0.761466\pi\)
\(602\) 336.583i 0.559108i
\(603\) 46.6476 24.0416i 0.0773592 0.0398700i
\(604\) −272.000 −0.450331
\(605\) 0 0
\(606\) −544.000 + 131.939i −0.897690 + 0.217722i
\(607\) 425.659 0.701251 0.350626 0.936516i \(-0.385969\pi\)
0.350626 + 0.936516i \(0.385969\pi\)
\(608\) 67.8823i 0.111648i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 93.2952 + 181.019i 0.152443 + 0.295783i
\(613\) 606.419 0.989264 0.494632 0.869102i \(-0.335303\pi\)
0.494632 + 0.869102i \(0.335303\pi\)
\(614\) 519.511i 0.846110i
\(615\) 0 0
\(616\) 272.000 0.441558
\(617\) 113.137i 0.183366i −0.995788 0.0916832i \(-0.970775\pi\)
0.995788 0.0916832i \(-0.0292247\pi\)
\(618\) 99.1262 + 408.708i 0.160398 + 0.661339i
\(619\) −52.0000 −0.0840065 −0.0420032 0.999117i \(-0.513374\pi\)
−0.0420032 + 0.999117i \(0.513374\pi\)
\(620\) 0 0
\(621\) 425.000 + 490.650i 0.684380 + 0.790096i
\(622\) −139.943 −0.224988
\(623\) 384.666i 0.617442i
\(624\) 0 0
\(625\) 0 0
\(626\) 263.879i 0.421532i
\(627\) −139.943 576.999i −0.223194 0.920254i
\(628\) 233.238 0.371398
\(629\) 263.879i 0.419521i
\(630\) 0 0
\(631\) −544.000 −0.862124 −0.431062 0.902322i \(-0.641861\pi\)
−0.431062 + 0.902322i \(0.641861\pi\)
\(632\) 203.647i 0.322226i
\(633\) 34.9857 8.48528i 0.0552697 0.0134049i
\(634\) 736.000 1.16088
\(635\) 0 0
\(636\) −96.0000 395.818i −0.150943 0.622356i
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 849.360i 1.32505i 0.749038 + 0.662527i \(0.230516\pi\)
−0.749038 + 0.662527i \(0.769484\pi\)
\(642\) −227.407 + 55.1543i −0.354217 + 0.0859102i
\(643\) −367.350 −0.571306 −0.285653 0.958333i \(-0.592211\pi\)
−0.285653 + 0.958333i \(0.592211\pi\)
\(644\) 280.371i 0.435359i
\(645\) 0 0
\(646\) −192.000 −0.297214
\(647\) 971.565i 1.50165i −0.660504 0.750823i \(-0.729657\pi\)
0.660504 0.750823i \(-0.270343\pi\)
\(648\) −186.590 132.936i −0.287948 0.205148i
\(649\) 272.000 0.419106
\(650\) 0 0
\(651\) −544.000 + 131.939i −0.835637 + 0.202672i
\(652\) 198.252 0.304068
\(653\) 350.725i 0.537098i −0.963266 0.268549i \(-0.913456\pi\)
0.963266 0.268549i \(-0.0865441\pi\)
\(654\) 80.0000 + 329.848i 0.122324 + 0.504355i
\(655\) 0 0
\(656\) 230.894i 0.351972i
\(657\) 932.952 480.833i 1.42002 0.731861i
\(658\) −291.548 −0.443081
\(659\) 577.235i 0.875925i −0.898993 0.437963i \(-0.855700\pi\)
0.898993 0.437963i \(-0.144300\pi\)
\(660\) 0 0
\(661\) 80.0000 0.121029 0.0605144 0.998167i \(-0.480726\pi\)
0.0605144 + 0.998167i \(0.480726\pi\)
\(662\) 412.950i 0.623792i
\(663\) 0 0
\(664\) 124.000 0.186747
\(665\) 0 0
\(666\) −136.000 263.879i −0.204204 0.396214i
\(667\) 0 0
\(668\) 585.484i 0.876474i
\(669\) 119.000 28.8617i 0.177877 0.0431416i
\(670\) 0 0
\(671\) 263.879i 0.393262i
\(672\) 23.3238 + 96.1665i 0.0347080 + 0.143105i
\(673\) 489.800 0.727786 0.363893 0.931441i \(-0.381447\pi\)
0.363893 + 0.931441i \(0.381447\pi\)
\(674\) 461.788i 0.685145i
\(675\) 0 0
\(676\) 338.000 0.500000
\(677\) 192.333i 0.284096i 0.989860 + 0.142048i \(0.0453687\pi\)
−0.989860 + 0.142048i \(0.954631\pi\)
\(678\) 629.743 152.735i 0.928824 0.225273i
\(679\) −952.000 −1.40206
\(680\) 0 0
\(681\) 113.000 + 465.911i 0.165932 + 0.684157i
\(682\) −746.362 −1.09437
\(683\) 236.174i 0.345789i −0.984940 0.172894i \(-0.944688\pi\)
0.984940 0.172894i \(-0.0553119\pi\)
\(684\) 192.000 98.9545i 0.280702 0.144670i
\(685\) 0 0
\(686\) 527.758i 0.769326i
\(687\) 239.069 57.9828i 0.347990 0.0843999i
\(688\) −163.267 −0.237306
\(689\) 0 0
\(690\) 0 0
\(691\) −548.000 −0.793054 −0.396527 0.918023i \(-0.629785\pi\)
−0.396527 + 0.918023i \(0.629785\pi\)
\(692\) 328.098i 0.474129i
\(693\) 396.505 + 769.332i 0.572157 + 1.11015i
\(694\) −558.000 −0.804035
\(695\) 0 0
\(696\) 0 0
\(697\) 653.067 0.936968
\(698\) 359.210i 0.514628i
\(699\) 136.000 + 560.742i 0.194564 + 0.802207i
\(700\) 0 0
\(701\) 57.7235i 0.0823445i 0.999152 + 0.0411722i \(0.0131092\pi\)
−0.999152 + 0.0411722i \(0.986891\pi\)
\(702\) 0 0
\(703\) 279.886 0.398130
\(704\) 131.939i 0.187414i
\(705\) 0 0
\(706\) 488.000 0.691218
\(707\) 769.332i 1.08816i
\(708\) 23.3238 + 96.1665i 0.0329432 + 0.135828i
\(709\) −1230.00 −1.73484 −0.867419 0.497579i \(-0.834223\pi\)
−0.867419 + 0.497579i \(0.834223\pi\)
\(710\) 0 0
\(711\) 576.000 296.864i 0.810127 0.417530i
\(712\) −186.590 −0.262065
\(713\) 769.332i 1.07901i
\(714\) 272.000 65.9697i 0.380952 0.0923945i
\(715\) 0 0
\(716\) 32.9848i 0.0460682i
\(717\) 326.533 + 1346.33i 0.455416 + 1.87773i
\(718\) −559.771 −0.779626
\(719\) 626.712i 0.871644i 0.900033 + 0.435822i \(0.143542\pi\)
−0.900033 + 0.435822i \(0.856458\pi\)
\(720\) 0 0
\(721\) 578.000 0.801664
\(722\) 306.884i 0.425048i
\(723\) −886.305 + 214.960i −1.22587 + 0.297317i
\(724\) 164.000 0.226519
\(725\) 0 0
\(726\) 151.000 + 622.589i 0.207989 + 0.857561i
\(727\) −367.350 −0.505296 −0.252648 0.967558i \(-0.581301\pi\)
−0.252648 + 0.967558i \(0.581301\pi\)
\(728\) 0 0
\(729\) 104.000 721.543i 0.142661 0.989772i
\(730\) 0 0
\(731\) 461.788i 0.631721i
\(732\) −93.2952 + 22.6274i −0.127453 + 0.0309118i
\(733\) 1002.92 1.36825 0.684123 0.729367i \(-0.260185\pi\)
0.684123 + 0.729367i \(0.260185\pi\)
\(734\) 585.481i 0.797658i
\(735\) 0 0
\(736\) 136.000 0.184783
\(737\) 96.1665i 0.130484i
\(738\) −653.067 + 336.583i −0.884914 + 0.456074i
\(739\) 340.000 0.460081 0.230041 0.973181i \(-0.426114\pi\)
0.230041 + 0.973181i \(0.426114\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −559.771 −0.754409
\(743\) 1243.09i 1.67307i −0.547911 0.836537i \(-0.684577\pi\)
0.547911 0.836537i \(-0.315423\pi\)
\(744\) −64.0000 263.879i −0.0860215 0.354676i
\(745\) 0 0
\(746\) 890.591i 1.19382i
\(747\) 180.760 + 350.725i 0.241981 + 0.469511i
\(748\) 373.181 0.498905
\(749\) 321.602i 0.429375i
\(750\) 0 0
\(751\) −520.000 −0.692410 −0.346205 0.938159i \(-0.612530\pi\)
−0.346205 + 0.938159i \(0.612530\pi\)
\(752\) 141.421i 0.188060i
\(753\) 244.900 + 1009.75i 0.325232 + 1.34097i
\(754\) 0 0
\(755\) 0 0
\(756\) −238.000 + 206.155i −0.314815 + 0.272692i
\(757\) 816.333 1.07838 0.539190 0.842184i \(-0.318731\pi\)
0.539190 + 0.842184i \(0.318731\pi\)
\(758\) 808.930i 1.06719i
\(759\) 1156.00 280.371i 1.52306 0.369395i
\(760\) 0 0
\(761\) 395.818i 0.520129i −0.965591 0.260064i \(-0.916256\pi\)
0.965591 0.260064i \(-0.0837438\pi\)
\(762\) 40.8167 + 168.291i 0.0535652 + 0.220855i
\(763\) 466.476 0.611371
\(764\) 593.727i 0.777130i
\(765\) 0 0
\(766\) −274.000 −0.357702
\(767\) 0 0
\(768\) −46.6476 + 11.3137i −0.0607391 + 0.0147314i
\(769\) 306.000 0.397919 0.198960 0.980008i \(-0.436244\pi\)
0.198960 + 0.980008i \(0.436244\pi\)
\(770\) 0 0
\(771\) −276.000 1137.98i −0.357977 1.47598i
\(772\) −233.238 −0.302122
\(773\) 305.470i 0.395175i −0.980285 0.197587i \(-0.936689\pi\)
0.980285 0.197587i \(-0.0633106\pi\)
\(774\) −238.000 461.788i −0.307494 0.596625i
\(775\) 0 0
\(776\) 461.788i 0.595087i
\(777\) −396.505 + 96.1665i −0.510302 + 0.123766i
\(778\) 548.109 0.704511
\(779\) 692.682i 0.889194i
\(780\) 0 0
\(781\) 0 0
\(782\) 384.666i 0.491900i
\(783\) 0 0
\(784\) −60.0000 −0.0765306
\(785\) 0 0
\(786\) −204.000 + 49.4773i −0.259542 + 0.0629482i