# Properties

 Label 150.3.d.d Level $150$ Weight $3$ Character orbit 150.d Analytic conductor $4.087$ Analytic rank $0$ Dimension $4$ Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [150,3,Mod(101,150)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(150, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([1, 0]))

N = Newforms(chi, 3, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("150.101");

S:= CuspForms(chi, 3);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$150 = 2 \cdot 3 \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 150.d (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$4.08720396540$$ Analytic rank: $$0$$ Dimension: $$4$$ Coefficient field: $$\Q(\sqrt{-2}, \sqrt{-17})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{4} - 16x^{2} + 81$$ x^4 - 16*x^2 + 81 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 30) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - \beta_{2} q^{2} - \beta_1 q^{3} - 2 q^{4} + (\beta_{3} - 1) q^{6} + (\beta_{2} - 2 \beta_1) q^{7} + 2 \beta_{2} q^{8} + (\beta_{3} + 8) q^{9}+O(q^{10})$$ q - b2 * q^2 - b1 * q^3 - 2 * q^4 + (b3 - 1) * q^6 + (b2 - 2*b1) * q^7 + 2*b2 * q^8 + (b3 + 8) * q^9 $$q - \beta_{2} q^{2} - \beta_1 q^{3} - 2 q^{4} + (\beta_{3} - 1) q^{6} + (\beta_{2} - 2 \beta_1) q^{7} + 2 \beta_{2} q^{8} + (\beta_{3} + 8) q^{9} + 4 \beta_{3} q^{11} + 2 \beta_1 q^{12} + 2 \beta_{3} q^{14} + 4 q^{16} + 8 \beta_{2} q^{17} + ( - 9 \beta_{2} + 2 \beta_1) q^{18} - 12 q^{19} + (\beta_{3} + 17) q^{21} + ( - 4 \beta_{2} + 8 \beta_1) q^{22} + 17 \beta_{2} q^{23} + ( - 2 \beta_{3} + 2) q^{24} + ( - 9 \beta_{2} - 7 \beta_1) q^{27} + ( - 2 \beta_{2} + 4 \beta_1) q^{28} - 32 q^{31} - 4 \beta_{2} q^{32} + ( - 36 \beta_{2} + 4 \beta_1) q^{33} + 16 q^{34} + ( - 2 \beta_{3} - 16) q^{36} + (4 \beta_{2} - 8 \beta_1) q^{37} + 12 \beta_{2} q^{38} - 14 \beta_{3} q^{41} + ( - 18 \beta_{2} + 2 \beta_1) q^{42} + (7 \beta_{2} - 14 \beta_1) q^{43} - 8 \beta_{3} q^{44} + 34 q^{46} + 25 \beta_{2} q^{47} - 4 \beta_1 q^{48} - 15 q^{49} + ( - 8 \beta_{3} + 8) q^{51} + 48 \beta_{2} q^{53} + (7 \beta_{3} - 25) q^{54} - 4 \beta_{3} q^{56} + 12 \beta_1 q^{57} - 4 \beta_{3} q^{59} - 16 q^{61} + 32 \beta_{2} q^{62} + ( - 9 \beta_{2} - 16 \beta_1) q^{63} - 8 q^{64} + ( - 4 \beta_{3} - 68) q^{66} + ( - \beta_{2} + 2 \beta_1) q^{67} - 16 \beta_{2} q^{68} + ( - 17 \beta_{3} + 17) q^{69} + (18 \beta_{2} - 4 \beta_1) q^{72} + ( - 20 \beta_{2} + 40 \beta_1) q^{73} + 8 \beta_{3} q^{74} + 24 q^{76} - 68 \beta_{2} q^{77} + 72 q^{79} + (16 \beta_{3} + 47) q^{81} + (14 \beta_{2} - 28 \beta_1) q^{82} - 31 \beta_{2} q^{83} + ( - 2 \beta_{3} - 34) q^{84} + 14 \beta_{3} q^{86} + (8 \beta_{2} - 16 \beta_1) q^{88} + 16 \beta_{3} q^{89} - 34 \beta_{2} q^{92} + 32 \beta_1 q^{93} + 50 q^{94} + (4 \beta_{3} - 4) q^{96} + ( - 28 \beta_{2} + 56 \beta_1) q^{97} + 15 \beta_{2} q^{98} + (32 \beta_{3} - 68) q^{99}+O(q^{100})$$ q - b2 * q^2 - b1 * q^3 - 2 * q^4 + (b3 - 1) * q^6 + (b2 - 2*b1) * q^7 + 2*b2 * q^8 + (b3 + 8) * q^9 + 4*b3 * q^11 + 2*b1 * q^12 + 2*b3 * q^14 + 4 * q^16 + 8*b2 * q^17 + (-9*b2 + 2*b1) * q^18 - 12 * q^19 + (b3 + 17) * q^21 + (-4*b2 + 8*b1) * q^22 + 17*b2 * q^23 + (-2*b3 + 2) * q^24 + (-9*b2 - 7*b1) * q^27 + (-2*b2 + 4*b1) * q^28 - 32 * q^31 - 4*b2 * q^32 + (-36*b2 + 4*b1) * q^33 + 16 * q^34 + (-2*b3 - 16) * q^36 + (4*b2 - 8*b1) * q^37 + 12*b2 * q^38 - 14*b3 * q^41 + (-18*b2 + 2*b1) * q^42 + (7*b2 - 14*b1) * q^43 - 8*b3 * q^44 + 34 * q^46 + 25*b2 * q^47 - 4*b1 * q^48 - 15 * q^49 + (-8*b3 + 8) * q^51 + 48*b2 * q^53 + (7*b3 - 25) * q^54 - 4*b3 * q^56 + 12*b1 * q^57 - 4*b3 * q^59 - 16 * q^61 + 32*b2 * q^62 + (-9*b2 - 16*b1) * q^63 - 8 * q^64 + (-4*b3 - 68) * q^66 + (-b2 + 2*b1) * q^67 - 16*b2 * q^68 + (-17*b3 + 17) * q^69 + (18*b2 - 4*b1) * q^72 + (-20*b2 + 40*b1) * q^73 + 8*b3 * q^74 + 24 * q^76 - 68*b2 * q^77 + 72 * q^79 + (16*b3 + 47) * q^81 + (14*b2 - 28*b1) * q^82 - 31*b2 * q^83 + (-2*b3 - 34) * q^84 + 14*b3 * q^86 + (8*b2 - 16*b1) * q^88 + 16*b3 * q^89 - 34*b2 * q^92 + 32*b1 * q^93 + 50 * q^94 + (4*b3 - 4) * q^96 + (-28*b2 + 56*b1) * q^97 + 15*b2 * q^98 + (32*b3 - 68) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q - 8 q^{4} - 4 q^{6} + 32 q^{9}+O(q^{10})$$ 4 * q - 8 * q^4 - 4 * q^6 + 32 * q^9 $$4 q - 8 q^{4} - 4 q^{6} + 32 q^{9} + 16 q^{16} - 48 q^{19} + 68 q^{21} + 8 q^{24} - 128 q^{31} + 64 q^{34} - 64 q^{36} + 136 q^{46} - 60 q^{49} + 32 q^{51} - 100 q^{54} - 64 q^{61} - 32 q^{64} - 272 q^{66} + 68 q^{69} + 96 q^{76} + 288 q^{79} + 188 q^{81} - 136 q^{84} + 200 q^{94} - 16 q^{96} - 272 q^{99}+O(q^{100})$$ 4 * q - 8 * q^4 - 4 * q^6 + 32 * q^9 + 16 * q^16 - 48 * q^19 + 68 * q^21 + 8 * q^24 - 128 * q^31 + 64 * q^34 - 64 * q^36 + 136 * q^46 - 60 * q^49 + 32 * q^51 - 100 * q^54 - 64 * q^61 - 32 * q^64 - 272 * q^66 + 68 * q^69 + 96 * q^76 + 288 * q^79 + 188 * q^81 - 136 * q^84 + 200 * q^94 - 16 * q^96 - 272 * q^99

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} - 16x^{2} + 81$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$( \nu^{3} - 7\nu ) / 9$$ (v^3 - 7*v) / 9 $$\beta_{3}$$ $$=$$ $$\nu^{2} - 8$$ v^2 - 8
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$\beta_{3} + 8$$ b3 + 8 $$\nu^{3}$$ $$=$$ $$9\beta_{2} + 7\beta_1$$ 9*b2 + 7*b1

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/150\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$127$$ $$\chi(n)$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
101.1
 2.91548 + 0.707107i −2.91548 + 0.707107i 2.91548 − 0.707107i −2.91548 − 0.707107i
1.41421i −2.91548 0.707107i −2.00000 0 −1.00000 + 4.12311i −5.83095 2.82843i 8.00000 + 4.12311i 0
101.2 1.41421i 2.91548 0.707107i −2.00000 0 −1.00000 4.12311i 5.83095 2.82843i 8.00000 4.12311i 0
101.3 1.41421i −2.91548 + 0.707107i −2.00000 0 −1.00000 4.12311i −5.83095 2.82843i 8.00000 4.12311i 0
101.4 1.41421i 2.91548 + 0.707107i −2.00000 0 −1.00000 + 4.12311i 5.83095 2.82843i 8.00000 + 4.12311i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 150.3.d.d 4
3.b odd 2 1 inner 150.3.d.d 4
4.b odd 2 1 1200.3.l.t 4
5.b even 2 1 inner 150.3.d.d 4
5.c odd 4 2 30.3.b.a 4
12.b even 2 1 1200.3.l.t 4
15.d odd 2 1 inner 150.3.d.d 4
15.e even 4 2 30.3.b.a 4
20.d odd 2 1 1200.3.l.t 4
20.e even 4 2 240.3.c.c 4
40.i odd 4 2 960.3.c.f 4
40.k even 4 2 960.3.c.e 4
45.k odd 12 4 810.3.j.c 8
45.l even 12 4 810.3.j.c 8
60.h even 2 1 1200.3.l.t 4
60.l odd 4 2 240.3.c.c 4
120.q odd 4 2 960.3.c.e 4
120.w even 4 2 960.3.c.f 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.3.b.a 4 5.c odd 4 2
30.3.b.a 4 15.e even 4 2
150.3.d.d 4 1.a even 1 1 trivial
150.3.d.d 4 3.b odd 2 1 inner
150.3.d.d 4 5.b even 2 1 inner
150.3.d.d 4 15.d odd 2 1 inner
240.3.c.c 4 20.e even 4 2
240.3.c.c 4 60.l odd 4 2
810.3.j.c 8 45.k odd 12 4
810.3.j.c 8 45.l even 12 4
960.3.c.e 4 40.k even 4 2
960.3.c.e 4 120.q odd 4 2
960.3.c.f 4 40.i odd 4 2
960.3.c.f 4 120.w even 4 2
1200.3.l.t 4 4.b odd 2 1
1200.3.l.t 4 12.b even 2 1
1200.3.l.t 4 20.d odd 2 1
1200.3.l.t 4 60.h even 2 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{7}^{2} - 34$$ acting on $$S_{3}^{\mathrm{new}}(150, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$(T^{2} + 2)^{2}$$
$3$ $$T^{4} - 16T^{2} + 81$$
$5$ $$T^{4}$$
$7$ $$(T^{2} - 34)^{2}$$
$11$ $$(T^{2} + 272)^{2}$$
$13$ $$T^{4}$$
$17$ $$(T^{2} + 128)^{2}$$
$19$ $$(T + 12)^{4}$$
$23$ $$(T^{2} + 578)^{2}$$
$29$ $$T^{4}$$
$31$ $$(T + 32)^{4}$$
$37$ $$(T^{2} - 544)^{2}$$
$41$ $$(T^{2} + 3332)^{2}$$
$43$ $$(T^{2} - 1666)^{2}$$
$47$ $$(T^{2} + 1250)^{2}$$
$53$ $$(T^{2} + 4608)^{2}$$
$59$ $$(T^{2} + 272)^{2}$$
$61$ $$(T + 16)^{4}$$
$67$ $$(T^{2} - 34)^{2}$$
$71$ $$T^{4}$$
$73$ $$(T^{2} - 13600)^{2}$$
$79$ $$(T - 72)^{4}$$
$83$ $$(T^{2} + 1922)^{2}$$
$89$ $$(T^{2} + 4352)^{2}$$
$97$ $$(T^{2} - 26656)^{2}$$