Newspace parameters
Level: | \( N \) | \(=\) | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 150.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.08720396540\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(\sqrt{-2}, \sqrt{-5})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} - 4x^{2} + 9 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 3 \) |
Twist minimal: | no (minimal twist has level 30) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - 4x^{2} + 9 \)
:
\(\beta_{1}\) | \(=\) |
\( ( \nu^{3} - \nu ) / 3 \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} + \nu - 2 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -\nu^{3} - 3\nu^{2} + 7\nu + 6 ) / 3 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{3} + \beta_{2} + \beta_1 ) / 3 \)
|
\(\nu^{2}\) | \(=\) |
\( ( -\beta_{3} + 2\beta_{2} - \beta _1 + 6 ) / 3 \)
|
\(\nu^{3}\) | \(=\) |
\( ( \beta_{3} + \beta_{2} + 10\beta_1 ) / 3 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(127\) |
\(\chi(n)\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101.1 |
|
− | 1.41421i | −2.58114 | + | 1.52896i | −2.00000 | 0 | 2.16228 | + | 3.65028i | 7.48683 | 2.82843i | 4.32456 | − | 7.89292i | 0 | |||||||||||||||||||||||
101.2 | − | 1.41421i | 0.581139 | − | 2.94317i | −2.00000 | 0 | −4.16228 | − | 0.821854i | −11.4868 | 2.82843i | −8.32456 | − | 3.42079i | 0 | ||||||||||||||||||||||||
101.3 | 1.41421i | −2.58114 | − | 1.52896i | −2.00000 | 0 | 2.16228 | − | 3.65028i | 7.48683 | − | 2.82843i | 4.32456 | + | 7.89292i | 0 | ||||||||||||||||||||||||
101.4 | 1.41421i | 0.581139 | + | 2.94317i | −2.00000 | 0 | −4.16228 | + | 0.821854i | −11.4868 | − | 2.82843i | −8.32456 | + | 3.42079i | 0 | ||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 150.3.d.c | 4 | |
3.b | odd | 2 | 1 | inner | 150.3.d.c | 4 | |
4.b | odd | 2 | 1 | 1200.3.l.u | 4 | ||
5.b | even | 2 | 1 | 30.3.d.a | ✓ | 4 | |
5.c | odd | 4 | 2 | 150.3.b.b | 8 | ||
12.b | even | 2 | 1 | 1200.3.l.u | 4 | ||
15.d | odd | 2 | 1 | 30.3.d.a | ✓ | 4 | |
15.e | even | 4 | 2 | 150.3.b.b | 8 | ||
20.d | odd | 2 | 1 | 240.3.l.c | 4 | ||
20.e | even | 4 | 2 | 1200.3.c.k | 8 | ||
40.e | odd | 2 | 1 | 960.3.l.f | 4 | ||
40.f | even | 2 | 1 | 960.3.l.e | 4 | ||
45.h | odd | 6 | 2 | 810.3.h.a | 8 | ||
45.j | even | 6 | 2 | 810.3.h.a | 8 | ||
60.h | even | 2 | 1 | 240.3.l.c | 4 | ||
60.l | odd | 4 | 2 | 1200.3.c.k | 8 | ||
120.i | odd | 2 | 1 | 960.3.l.e | 4 | ||
120.m | even | 2 | 1 | 960.3.l.f | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
30.3.d.a | ✓ | 4 | 5.b | even | 2 | 1 | |
30.3.d.a | ✓ | 4 | 15.d | odd | 2 | 1 | |
150.3.b.b | 8 | 5.c | odd | 4 | 2 | ||
150.3.b.b | 8 | 15.e | even | 4 | 2 | ||
150.3.d.c | 4 | 1.a | even | 1 | 1 | trivial | |
150.3.d.c | 4 | 3.b | odd | 2 | 1 | inner | |
240.3.l.c | 4 | 20.d | odd | 2 | 1 | ||
240.3.l.c | 4 | 60.h | even | 2 | 1 | ||
810.3.h.a | 8 | 45.h | odd | 6 | 2 | ||
810.3.h.a | 8 | 45.j | even | 6 | 2 | ||
960.3.l.e | 4 | 40.f | even | 2 | 1 | ||
960.3.l.e | 4 | 120.i | odd | 2 | 1 | ||
960.3.l.f | 4 | 40.e | odd | 2 | 1 | ||
960.3.l.f | 4 | 120.m | even | 2 | 1 | ||
1200.3.c.k | 8 | 20.e | even | 4 | 2 | ||
1200.3.c.k | 8 | 60.l | odd | 4 | 2 | ||
1200.3.l.u | 4 | 4.b | odd | 2 | 1 | ||
1200.3.l.u | 4 | 12.b | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{2} + 4T_{7} - 86 \)
acting on \(S_{3}^{\mathrm{new}}(150, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} + 2)^{2} \)
$3$
\( T^{4} + 4 T^{3} + 12 T^{2} + 36 T + 81 \)
$5$
\( T^{4} \)
$7$
\( (T^{2} + 4 T - 86)^{2} \)
$11$
\( (T^{2} + 72)^{2} \)
$13$
\( (T - 10)^{4} \)
$17$
\( T^{4} + 936 T^{2} + 11664 \)
$19$
\( (T^{2} - 16 T - 296)^{2} \)
$23$
\( T^{4} + 396 T^{2} + 26244 \)
$29$
\( (T^{2} + 720)^{2} \)
$31$
\( (T - 8)^{4} \)
$37$
\( (T^{2} - 44 T - 956)^{2} \)
$41$
\( T^{4} + 2664 T^{2} + 944784 \)
$43$
\( (T^{2} + 28 T - 614)^{2} \)
$47$
\( T^{4} + 9900 T^{2} + \cdots + 16402500 \)
$53$
\( T^{4} + 936 T^{2} + 11664 \)
$59$
\( T^{4} + 6624 T^{2} + \cdots + 3504384 \)
$61$
\( (T^{2} + 32 T - 1184)^{2} \)
$67$
\( (T^{2} - 164 T + 5914)^{2} \)
$71$
\( T^{4} + 5040 T^{2} + \cdots + 1166400 \)
$73$
\( (T^{2} + 100 T + 1060)^{2} \)
$79$
\( (T^{2} + 56 T + 424)^{2} \)
$83$
\( T^{4} + 684T^{2} + 324 \)
$89$
\( T^{4} + 3744 T^{2} + 186624 \)
$97$
\( (T^{2} + 148 T + 4036)^{2} \)
show more
show less