Newspace parameters
Level: | \( N \) | \(=\) | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 150.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.08720396540\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | 8.0.40960000.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} + 7x^{4} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{8}\cdot 3^{2} \) |
Twist minimal: | no (minimal twist has level 30) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} + 7x^{4} + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( ( -2\nu^{6} - 16\nu^{2} ) / 3 \)
|
\(\beta_{2}\) | \(=\) |
\( ( -2\nu^{7} + \nu^{5} - 13\nu^{3} + 5\nu ) / 3 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -3\nu^{7} - \nu^{6} - 2\nu^{4} - 21\nu^{3} - 8\nu^{2} - 3\nu - 7 ) / 3 \)
|
\(\beta_{4}\) | \(=\) |
\( ( 2\nu^{7} - 3\nu^{6} - 2\nu^{5} + 16\nu^{3} - 18\nu^{2} - 16\nu ) / 3 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 4\nu^{7} + 2\nu^{5} + 26\nu^{3} + 10\nu ) / 3 \)
|
\(\beta_{6}\) | \(=\) |
\( -2\nu^{7} - 2\nu^{6} - 14\nu^{3} - 12\nu^{2} + 2\nu \)
|
\(\beta_{7}\) | \(=\) |
\( ( 8\nu^{7} + 2\nu^{5} - 4\nu^{4} + 58\nu^{3} + 22\nu - 14 ) / 3 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{7} + \beta_{6} - 2\beta_{5} - 2\beta_{4} - 2\beta_{3} - 2\beta_{2} + \beta_1 ) / 12 \)
|
\(\nu^{2}\) | \(=\) |
\( ( 2\beta_{6} + 2\beta_{5} + 2\beta_{4} - 9\beta_1 ) / 12 \)
|
\(\nu^{3}\) | \(=\) |
\( ( 2\beta_{7} - 2\beta_{6} - 5\beta_{5} + 4\beta_{4} - 4\beta_{3} + 14\beta_{2} + 2\beta_1 ) / 12 \)
|
\(\nu^{4}\) | \(=\) |
\( ( -\beta_{7} - 4\beta_{3} + 2\beta_{2} + 2\beta _1 - 14 ) / 4 \)
|
\(\nu^{5}\) | \(=\) |
\( ( -5\beta_{7} - 5\beta_{6} + 19\beta_{5} + 10\beta_{4} + 10\beta_{3} + 28\beta_{2} - 5\beta_1 ) / 12 \)
|
\(\nu^{6}\) | \(=\) |
\( ( -8\beta_{6} - 8\beta_{5} - 8\beta_{4} + 27\beta_1 ) / 6 \)
|
\(\nu^{7}\) | \(=\) |
\( ( -13\beta_{7} + 13\beta_{6} + 37\beta_{5} - 26\beta_{4} + 26\beta_{3} - 100\beta_{2} - 13\beta_1 ) / 12 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(127\) |
\(\chi(n)\) | \(-1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
149.1 |
|
−1.41421 | −1.52896 | − | 2.58114i | 2.00000 | 0 | 2.16228 | + | 3.65028i | − | 7.48683i | −2.82843 | −4.32456 | + | 7.89292i | 0 | |||||||||||||||||||||||||||||||||||
149.2 | −1.41421 | −1.52896 | + | 2.58114i | 2.00000 | 0 | 2.16228 | − | 3.65028i | 7.48683i | −2.82843 | −4.32456 | − | 7.89292i | 0 | |||||||||||||||||||||||||||||||||||||
149.3 | −1.41421 | 2.94317 | − | 0.581139i | 2.00000 | 0 | −4.16228 | + | 0.821854i | − | 11.4868i | −2.82843 | 8.32456 | − | 3.42079i | 0 | ||||||||||||||||||||||||||||||||||||
149.4 | −1.41421 | 2.94317 | + | 0.581139i | 2.00000 | 0 | −4.16228 | − | 0.821854i | 11.4868i | −2.82843 | 8.32456 | + | 3.42079i | 0 | |||||||||||||||||||||||||||||||||||||
149.5 | 1.41421 | −2.94317 | − | 0.581139i | 2.00000 | 0 | −4.16228 | − | 0.821854i | − | 11.4868i | 2.82843 | 8.32456 | + | 3.42079i | 0 | ||||||||||||||||||||||||||||||||||||
149.6 | 1.41421 | −2.94317 | + | 0.581139i | 2.00000 | 0 | −4.16228 | + | 0.821854i | 11.4868i | 2.82843 | 8.32456 | − | 3.42079i | 0 | |||||||||||||||||||||||||||||||||||||
149.7 | 1.41421 | 1.52896 | − | 2.58114i | 2.00000 | 0 | 2.16228 | − | 3.65028i | − | 7.48683i | 2.82843 | −4.32456 | − | 7.89292i | 0 | ||||||||||||||||||||||||||||||||||||
149.8 | 1.41421 | 1.52896 | + | 2.58114i | 2.00000 | 0 | 2.16228 | + | 3.65028i | 7.48683i | 2.82843 | −4.32456 | + | 7.89292i | 0 | |||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 150.3.b.b | 8 | |
3.b | odd | 2 | 1 | inner | 150.3.b.b | 8 | |
4.b | odd | 2 | 1 | 1200.3.c.k | 8 | ||
5.b | even | 2 | 1 | inner | 150.3.b.b | 8 | |
5.c | odd | 4 | 1 | 30.3.d.a | ✓ | 4 | |
5.c | odd | 4 | 1 | 150.3.d.c | 4 | ||
12.b | even | 2 | 1 | 1200.3.c.k | 8 | ||
15.d | odd | 2 | 1 | inner | 150.3.b.b | 8 | |
15.e | even | 4 | 1 | 30.3.d.a | ✓ | 4 | |
15.e | even | 4 | 1 | 150.3.d.c | 4 | ||
20.d | odd | 2 | 1 | 1200.3.c.k | 8 | ||
20.e | even | 4 | 1 | 240.3.l.c | 4 | ||
20.e | even | 4 | 1 | 1200.3.l.u | 4 | ||
40.i | odd | 4 | 1 | 960.3.l.e | 4 | ||
40.k | even | 4 | 1 | 960.3.l.f | 4 | ||
45.k | odd | 12 | 2 | 810.3.h.a | 8 | ||
45.l | even | 12 | 2 | 810.3.h.a | 8 | ||
60.h | even | 2 | 1 | 1200.3.c.k | 8 | ||
60.l | odd | 4 | 1 | 240.3.l.c | 4 | ||
60.l | odd | 4 | 1 | 1200.3.l.u | 4 | ||
120.q | odd | 4 | 1 | 960.3.l.f | 4 | ||
120.w | even | 4 | 1 | 960.3.l.e | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
30.3.d.a | ✓ | 4 | 5.c | odd | 4 | 1 | |
30.3.d.a | ✓ | 4 | 15.e | even | 4 | 1 | |
150.3.b.b | 8 | 1.a | even | 1 | 1 | trivial | |
150.3.b.b | 8 | 3.b | odd | 2 | 1 | inner | |
150.3.b.b | 8 | 5.b | even | 2 | 1 | inner | |
150.3.b.b | 8 | 15.d | odd | 2 | 1 | inner | |
150.3.d.c | 4 | 5.c | odd | 4 | 1 | ||
150.3.d.c | 4 | 15.e | even | 4 | 1 | ||
240.3.l.c | 4 | 20.e | even | 4 | 1 | ||
240.3.l.c | 4 | 60.l | odd | 4 | 1 | ||
810.3.h.a | 8 | 45.k | odd | 12 | 2 | ||
810.3.h.a | 8 | 45.l | even | 12 | 2 | ||
960.3.l.e | 4 | 40.i | odd | 4 | 1 | ||
960.3.l.e | 4 | 120.w | even | 4 | 1 | ||
960.3.l.f | 4 | 40.k | even | 4 | 1 | ||
960.3.l.f | 4 | 120.q | odd | 4 | 1 | ||
1200.3.c.k | 8 | 4.b | odd | 2 | 1 | ||
1200.3.c.k | 8 | 12.b | even | 2 | 1 | ||
1200.3.c.k | 8 | 20.d | odd | 2 | 1 | ||
1200.3.c.k | 8 | 60.h | even | 2 | 1 | ||
1200.3.l.u | 4 | 20.e | even | 4 | 1 | ||
1200.3.l.u | 4 | 60.l | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{4} + 188T_{7}^{2} + 7396 \)
acting on \(S_{3}^{\mathrm{new}}(150, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{2} - 2)^{4} \)
$3$
\( T^{8} - 8 T^{6} + 18 T^{4} + \cdots + 6561 \)
$5$
\( T^{8} \)
$7$
\( (T^{4} + 188 T^{2} + 7396)^{2} \)
$11$
\( (T^{2} + 72)^{4} \)
$13$
\( (T^{2} + 100)^{4} \)
$17$
\( (T^{4} - 936 T^{2} + 11664)^{2} \)
$19$
\( (T^{2} + 16 T - 296)^{4} \)
$23$
\( (T^{4} - 396 T^{2} + 26244)^{2} \)
$29$
\( (T^{2} + 720)^{4} \)
$31$
\( (T - 8)^{8} \)
$37$
\( (T^{4} + 3848 T^{2} + 913936)^{2} \)
$41$
\( (T^{4} + 2664 T^{2} + 944784)^{2} \)
$43$
\( (T^{4} + 2012 T^{2} + 376996)^{2} \)
$47$
\( (T^{4} - 9900 T^{2} + 16402500)^{2} \)
$53$
\( (T^{4} - 936 T^{2} + 11664)^{2} \)
$59$
\( (T^{4} + 6624 T^{2} + 3504384)^{2} \)
$61$
\( (T^{2} + 32 T - 1184)^{4} \)
$67$
\( (T^{4} + 15068 T^{2} + 34975396)^{2} \)
$71$
\( (T^{4} + 5040 T^{2} + 1166400)^{2} \)
$73$
\( (T^{4} + 7880 T^{2} + 1123600)^{2} \)
$79$
\( (T^{2} - 56 T + 424)^{4} \)
$83$
\( (T^{4} - 684 T^{2} + 324)^{2} \)
$89$
\( (T^{4} + 3744 T^{2} + 186624)^{2} \)
$97$
\( (T^{4} + 13832 T^{2} + 16289296)^{2} \)
show more
show less