Defining parameters
Level: | \( N \) | \(=\) | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 150.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 15 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(90\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(150, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 72 | 12 | 60 |
Cusp forms | 48 | 12 | 36 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(150, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
150.3.b.a | $4$ | $4.087$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{8}^{3}q^{2}+(-\zeta_{8}-2\zeta_{8}^{3})q^{3}+2q^{4}+\cdots\) |
150.3.b.b | $8$ | $4.087$ | 8.0.40960000.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{2}q^{2}-\beta _{3}q^{3}+2q^{4}+(-1-\beta _{4}+\cdots)q^{6}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(150, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(150, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 2}\)