Properties

Label 150.2.l.a.23.9
Level 150
Weight 2
Character 150.23
Analytic conductor 1.198
Analytic rank 0
Dimension 80
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.l (of order \(20\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{20})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 23.9
Character \(\chi\) = 150.23
Dual form 150.2.l.a.137.9

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(0.987688 + 0.156434i) q^{2}\) \(+(0.513483 - 1.65419i) q^{3}\) \(+(0.951057 + 0.309017i) q^{4}\) \(+(-0.545143 - 2.16860i) q^{5}\) \(+(0.765933 - 1.55349i) q^{6}\) \(+(-1.41702 + 1.41702i) q^{7}\) \(+(0.891007 + 0.453990i) q^{8}\) \(+(-2.47267 - 1.69880i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(0.987688 + 0.156434i) q^{2}\) \(+(0.513483 - 1.65419i) q^{3}\) \(+(0.951057 + 0.309017i) q^{4}\) \(+(-0.545143 - 2.16860i) q^{5}\) \(+(0.765933 - 1.55349i) q^{6}\) \(+(-1.41702 + 1.41702i) q^{7}\) \(+(0.891007 + 0.453990i) q^{8}\) \(+(-2.47267 - 1.69880i) q^{9}\) \(+(-0.199188 - 2.22718i) q^{10}\) \(+(2.37267 + 3.26569i) q^{11}\) \(+(0.999524 - 1.41455i) q^{12}\) \(+(0.301677 + 1.90471i) q^{13}\) \(+(-1.62125 + 1.17790i) q^{14}\) \(+(-3.86719 - 0.211770i) q^{15}\) \(+(0.809017 + 0.587785i) q^{16}\) \(+(-1.78386 + 3.50102i) q^{17}\) \(+(-2.17648 - 2.06469i) q^{18}\) \(+(6.42284 - 2.08691i) q^{19}\) \(+(0.151672 - 2.23092i) q^{20}\) \(+(1.61640 + 3.07163i) q^{21}\) \(+(1.83259 + 3.59666i) q^{22}\) \(+(0.317431 - 2.00418i) q^{23}\) \(+(1.20850 - 1.24077i) q^{24}\) \(+(-4.40564 + 2.36439i) q^{25}\) \(+1.92846i q^{26}\) \(+(-4.07980 + 3.21796i) q^{27}\) \(+(-1.78555 + 0.909783i) q^{28}\) \(+(-1.79717 + 5.53113i) q^{29}\) \(+(-3.78645 - 0.814125i) q^{30}\) \(+(-2.88201 - 8.86991i) q^{31}\) \(+(0.707107 + 0.707107i) q^{32}\) \(+(6.62039 - 2.24795i) q^{33}\) \(+(-2.30957 + 3.17886i) q^{34}\) \(+(3.84543 + 2.30047i) q^{35}\) \(+(-1.82669 - 2.37975i) q^{36}\) \(+(-6.31949 + 1.00091i) q^{37}\) \(+(6.67023 - 1.05646i) q^{38}\) \(+(3.30566 + 0.479008i) q^{39}\) \(+(0.498797 - 2.17973i) q^{40}\) \(+(-0.756950 + 1.04185i) q^{41}\) \(+(1.11599 + 3.28668i) q^{42}\) \(+(-6.68950 - 6.68950i) q^{43}\) \(+(1.24738 + 3.83905i) q^{44}\) \(+(-2.33605 + 6.28831i) q^{45}\) \(+(0.627046 - 1.92985i) q^{46}\) \(+(1.18073 - 0.601612i) q^{47}\) \(+(1.38772 - 1.03645i) q^{48}\) \(+2.98411i q^{49}\) \(+(-4.72127 + 1.64609i) q^{50}\) \(+(4.87536 + 4.74855i) q^{51}\) \(+(-0.301677 + 1.90471i) q^{52}\) \(+(-4.96215 - 9.73877i) q^{53}\) \(+(-4.53297 + 2.54012i) q^{54}\) \(+(5.78854 - 6.92563i) q^{55}\) \(+(-1.90589 + 0.619261i) q^{56}\) \(+(-0.154113 - 11.6962i) q^{57}\) \(+(-2.64031 + 5.18189i) q^{58}\) \(+(3.81952 + 2.77504i) q^{59}\) \(+(-3.61247 - 1.39643i) q^{60}\) \(+(-0.433671 + 0.315081i) q^{61}\) \(+(-1.45897 - 9.21155i) q^{62}\) \(+(5.91105 - 1.09660i) q^{63}\) \(+(0.587785 + 0.809017i) q^{64}\) \(+(3.96610 - 1.69256i) q^{65}\) \(+(6.89054 - 1.18462i) q^{66}\) \(+(-1.35097 - 0.688356i) q^{67}\) \(+(-2.77842 + 2.77842i) q^{68}\) \(+(-3.15229 - 1.55420i) q^{69}\) \(+(3.43821 + 2.87370i) q^{70}\) \(+(-0.520251 - 0.169040i) q^{71}\) \(+(-1.43193 - 2.63621i) q^{72}\) \(+(7.37855 + 1.16865i) q^{73}\) \(-6.39826 q^{74}\) \(+(1.64893 + 8.50183i) q^{75}\) \(+6.75337 q^{76}\) \(+(-7.98967 - 1.26544i) q^{77}\) \(+(3.19003 + 0.990230i) q^{78}\) \(+(10.2088 + 3.31704i) q^{79}\) \(+(0.833640 - 2.07486i) q^{80}\) \(+(3.22819 + 8.40112i) q^{81}\) \(+(-0.910612 + 0.910612i) q^{82}\) \(+(3.00600 + 1.53163i) q^{83}\) \(+(0.588101 + 3.42079i) q^{84}\) \(+(8.56476 + 1.95991i) q^{85}\) \(+(-5.56067 - 7.65361i) q^{86}\) \(+(8.22670 + 5.81300i) q^{87}\) \(+(0.631467 + 3.98692i) q^{88}\) \(+(11.4865 - 8.34544i) q^{89}\) \(+(-3.29099 + 5.84546i) q^{90}\) \(+(-3.12650 - 2.27153i) q^{91}\) \(+(0.921220 - 1.80800i) q^{92}\) \(+(-16.1523 + 0.212830i) q^{93}\) \(+(1.26031 - 0.409498i) q^{94}\) \(+(-8.02703 - 12.7909i) q^{95}\) \(+(1.53277 - 0.806599i) q^{96}\) \(+(-4.82956 - 9.47854i) q^{97}\) \(+(-0.466817 + 2.94737i) q^{98}\) \(+(-0.319074 - 12.1057i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut -\mathstrut 4q^{10} \) \(\mathstrut -\mathstrut 4q^{12} \) \(\mathstrut -\mathstrut 8q^{15} \) \(\mathstrut +\mathstrut 20q^{16} \) \(\mathstrut -\mathstrut 8q^{18} \) \(\mathstrut -\mathstrut 40q^{19} \) \(\mathstrut -\mathstrut 36q^{22} \) \(\mathstrut -\mathstrut 104q^{25} \) \(\mathstrut +\mathstrut 4q^{27} \) \(\mathstrut -\mathstrut 16q^{28} \) \(\mathstrut +\mathstrut 12q^{30} \) \(\mathstrut +\mathstrut 4q^{33} \) \(\mathstrut -\mathstrut 40q^{34} \) \(\mathstrut -\mathstrut 24q^{37} \) \(\mathstrut -\mathstrut 40q^{39} \) \(\mathstrut -\mathstrut 8q^{40} \) \(\mathstrut -\mathstrut 4q^{42} \) \(\mathstrut -\mathstrut 24q^{43} \) \(\mathstrut -\mathstrut 72q^{45} \) \(\mathstrut -\mathstrut 4q^{48} \) \(\mathstrut -\mathstrut 12q^{55} \) \(\mathstrut -\mathstrut 64q^{57} \) \(\mathstrut +\mathstrut 20q^{58} \) \(\mathstrut +\mathstrut 24q^{60} \) \(\mathstrut +\mathstrut 64q^{63} \) \(\mathstrut +\mathstrut 96q^{67} \) \(\mathstrut +\mathstrut 140q^{69} \) \(\mathstrut +\mathstrut 76q^{70} \) \(\mathstrut +\mathstrut 8q^{72} \) \(\mathstrut +\mathstrut 100q^{73} \) \(\mathstrut +\mathstrut 132q^{75} \) \(\mathstrut +\mathstrut 100q^{78} \) \(\mathstrut +\mathstrut 80q^{79} \) \(\mathstrut -\mathstrut 40q^{81} \) \(\mathstrut +\mathstrut 96q^{82} \) \(\mathstrut +\mathstrut 60q^{84} \) \(\mathstrut +\mathstrut 32q^{85} \) \(\mathstrut +\mathstrut 80q^{87} \) \(\mathstrut +\mathstrut 4q^{88} \) \(\mathstrut +\mathstrut 52q^{90} \) \(\mathstrut +\mathstrut 12q^{93} \) \(\mathstrut -\mathstrut 32q^{97} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.987688 + 0.156434i 0.698401 + 0.110616i
\(3\) 0.513483 1.65419i 0.296460 0.955045i
\(4\) 0.951057 + 0.309017i 0.475528 + 0.154508i
\(5\) −0.545143 2.16860i −0.243795 0.969827i
\(6\) 0.765933 1.55349i 0.312691 0.634212i
\(7\) −1.41702 + 1.41702i −0.535583 + 0.535583i −0.922229 0.386645i \(-0.873634\pi\)
0.386645 + 0.922229i \(0.373634\pi\)
\(8\) 0.891007 + 0.453990i 0.315018 + 0.160510i
\(9\) −2.47267 1.69880i −0.824223 0.566265i
\(10\) −0.199188 2.22718i −0.0629888 0.704296i
\(11\) 2.37267 + 3.26569i 0.715386 + 0.984644i 0.999664 + 0.0259024i \(0.00824591\pi\)
−0.284279 + 0.958742i \(0.591754\pi\)
\(12\) 0.999524 1.41455i 0.288538 0.408345i
\(13\) 0.301677 + 1.90471i 0.0836701 + 0.528272i 0.993549 + 0.113399i \(0.0361740\pi\)
−0.909879 + 0.414873i \(0.863826\pi\)
\(14\) −1.62125 + 1.17790i −0.433296 + 0.314808i
\(15\) −3.86719 0.211770i −0.998504 0.0546789i
\(16\) 0.809017 + 0.587785i 0.202254 + 0.146946i
\(17\) −1.78386 + 3.50102i −0.432649 + 0.849121i 0.567028 + 0.823699i \(0.308093\pi\)
−0.999677 + 0.0254227i \(0.991907\pi\)
\(18\) −2.17648 2.06469i −0.513001 0.486652i
\(19\) 6.42284 2.08691i 1.47350 0.478769i 0.541336 0.840806i \(-0.317919\pi\)
0.932164 + 0.362037i \(0.117919\pi\)
\(20\) 0.151672 2.23092i 0.0339148 0.498848i
\(21\) 1.61640 + 3.07163i 0.352727 + 0.670285i
\(22\) 1.83259 + 3.59666i 0.390709 + 0.766810i
\(23\) 0.317431 2.00418i 0.0661889 0.417900i −0.932239 0.361844i \(-0.882147\pi\)
0.998428 0.0560564i \(-0.0178527\pi\)
\(24\) 1.20850 1.24077i 0.246684 0.253272i
\(25\) −4.40564 + 2.36439i −0.881128 + 0.472879i
\(26\) 1.92846i 0.378201i
\(27\) −4.07980 + 3.21796i −0.785158 + 0.619296i
\(28\) −1.78555 + 0.909783i −0.337437 + 0.171933i
\(29\) −1.79717 + 5.53113i −0.333727 + 1.02710i 0.633619 + 0.773645i \(0.281569\pi\)
−0.967346 + 0.253460i \(0.918431\pi\)
\(30\) −3.78645 0.814125i −0.691308 0.148638i
\(31\) −2.88201 8.86991i −0.517624 1.59308i −0.778457 0.627698i \(-0.783997\pi\)
0.260833 0.965384i \(-0.416003\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 6.62039 2.24795i 1.15246 0.391319i
\(34\) −2.30957 + 3.17886i −0.396089 + 0.545169i
\(35\) 3.84543 + 2.30047i 0.649996 + 0.388850i
\(36\) −1.82669 2.37975i −0.304449 0.396625i
\(37\) −6.31949 + 1.00091i −1.03892 + 0.164548i −0.652510 0.757780i \(-0.726284\pi\)
−0.386407 + 0.922328i \(0.626284\pi\)
\(38\) 6.67023 1.05646i 1.08205 0.171380i
\(39\) 3.30566 + 0.479008i 0.529329 + 0.0767027i
\(40\) 0.498797 2.17973i 0.0788667 0.344645i
\(41\) −0.756950 + 1.04185i −0.118216 + 0.162710i −0.864024 0.503451i \(-0.832064\pi\)
0.745808 + 0.666161i \(0.232064\pi\)
\(42\) 1.11599 + 3.28668i 0.172201 + 0.507145i
\(43\) −6.68950 6.68950i −1.02014 1.02014i −0.999793 0.0203466i \(-0.993523\pi\)
−0.0203466 0.999793i \(-0.506477\pi\)
\(44\) 1.24738 + 3.83905i 0.188050 + 0.578759i
\(45\) −2.33605 + 6.28831i −0.348237 + 0.937407i
\(46\) 0.627046 1.92985i 0.0924528 0.284541i
\(47\) 1.18073 0.601612i 0.172227 0.0877541i −0.365752 0.930712i \(-0.619188\pi\)
0.537979 + 0.842958i \(0.319188\pi\)
\(48\) 1.38772 1.03645i 0.200301 0.149598i
\(49\) 2.98411i 0.426301i
\(50\) −4.72127 + 1.64609i −0.667688 + 0.232792i
\(51\) 4.87536 + 4.74855i 0.682686 + 0.664930i
\(52\) −0.301677 + 1.90471i −0.0418351 + 0.264136i
\(53\) −4.96215 9.73877i −0.681604 1.33772i −0.929459 0.368926i \(-0.879725\pi\)
0.247854 0.968797i \(-0.420275\pi\)
\(54\) −4.53297 + 2.54012i −0.616859 + 0.345666i
\(55\) 5.78854 6.92563i 0.780526 0.933852i
\(56\) −1.90589 + 0.619261i −0.254685 + 0.0827522i
\(57\) −0.154113 11.6962i −0.0204128 1.54920i
\(58\) −2.64031 + 5.18189i −0.346689 + 0.680416i
\(59\) 3.81952 + 2.77504i 0.497259 + 0.361280i 0.807969 0.589225i \(-0.200567\pi\)
−0.310710 + 0.950505i \(0.600567\pi\)
\(60\) −3.61247 1.39643i −0.466369 0.180279i
\(61\) −0.433671 + 0.315081i −0.0555259 + 0.0403419i −0.615202 0.788370i \(-0.710926\pi\)
0.559676 + 0.828711i \(0.310926\pi\)
\(62\) −1.45897 9.21155i −0.185289 1.16987i
\(63\) 5.91105 1.09660i 0.744722 0.138158i
\(64\) 0.587785 + 0.809017i 0.0734732 + 0.101127i
\(65\) 3.96610 1.69256i 0.491934 0.209936i
\(66\) 6.89054 1.18462i 0.848167 0.145817i
\(67\) −1.35097 0.688356i −0.165048 0.0840960i 0.369515 0.929225i \(-0.379524\pi\)
−0.534563 + 0.845129i \(0.679524\pi\)
\(68\) −2.77842 + 2.77842i −0.336933 + 0.336933i
\(69\) −3.15229 1.55420i −0.379491 0.187104i
\(70\) 3.43821 + 2.87370i 0.410945 + 0.343473i
\(71\) −0.520251 0.169040i −0.0617424 0.0200613i 0.277983 0.960586i \(-0.410334\pi\)
−0.339725 + 0.940525i \(0.610334\pi\)
\(72\) −1.43193 2.63621i −0.168754 0.310680i
\(73\) 7.37855 + 1.16865i 0.863594 + 0.136780i 0.572490 0.819912i \(-0.305977\pi\)
0.291104 + 0.956691i \(0.405977\pi\)
\(74\) −6.39826 −0.743783
\(75\) 1.64893 + 8.50183i 0.190402 + 0.981706i
\(76\) 6.75337 0.774665
\(77\) −7.98967 1.26544i −0.910508 0.144210i
\(78\) 3.19003 + 0.990230i 0.361199 + 0.112121i
\(79\) 10.2088 + 3.31704i 1.14858 + 0.373196i 0.820607 0.571492i \(-0.193635\pi\)
0.327971 + 0.944688i \(0.393635\pi\)
\(80\) 0.833640 2.07486i 0.0932038 0.231976i
\(81\) 3.22819 + 8.40112i 0.358688 + 0.933458i
\(82\) −0.910612 + 0.910612i −0.100560 + 0.100560i
\(83\) 3.00600 + 1.53163i 0.329952 + 0.168119i 0.611116 0.791541i \(-0.290721\pi\)
−0.281165 + 0.959659i \(0.590721\pi\)
\(84\) 0.588101 + 3.42079i 0.0641671 + 0.373239i
\(85\) 8.56476 + 1.95991i 0.928978 + 0.212583i
\(86\) −5.56067 7.65361i −0.599623 0.825310i
\(87\) 8.22670 + 5.81300i 0.881995 + 0.623219i
\(88\) 0.631467 + 3.98692i 0.0673146 + 0.425007i
\(89\) 11.4865 8.34544i 1.21757 0.884615i 0.221672 0.975121i \(-0.428849\pi\)
0.995896 + 0.0905063i \(0.0288485\pi\)
\(90\) −3.29099 + 5.84546i −0.346901 + 0.616165i
\(91\) −3.12650 2.27153i −0.327746 0.238122i
\(92\) 0.921220 1.80800i 0.0960439 0.188497i
\(93\) −16.1523 + 0.212830i −1.67492 + 0.0220694i
\(94\) 1.26031 0.409498i 0.129991 0.0422365i
\(95\) −8.02703 12.7909i −0.823556 1.31232i
\(96\) 1.53277 0.806599i 0.156438 0.0823232i
\(97\) −4.82956 9.47854i −0.490367 0.962400i −0.995076 0.0991108i \(-0.968400\pi\)
0.504709 0.863290i \(-0.331600\pi\)
\(98\) −0.466817 + 2.94737i −0.0471557 + 0.297729i
\(99\) −0.319074 12.1057i −0.0320681 1.21666i
\(100\) −4.92065 + 0.887255i −0.492065 + 0.0887255i
\(101\) 11.9603i 1.19010i −0.803690 0.595048i \(-0.797133\pi\)
0.803690 0.595048i \(-0.202867\pi\)
\(102\) 4.07250 + 5.45276i 0.403237 + 0.539904i
\(103\) 2.58470 1.31697i 0.254678 0.129765i −0.321991 0.946743i \(-0.604352\pi\)
0.576669 + 0.816978i \(0.304352\pi\)
\(104\) −0.595926 + 1.83407i −0.0584353 + 0.179845i
\(105\) 5.77997 5.17980i 0.564067 0.505497i
\(106\) −3.37758 10.3951i −0.328060 1.00966i
\(107\) 10.4011 + 10.4011i 1.00551 + 1.00551i 0.999985 + 0.00552544i \(0.00175881\pi\)
0.00552544 + 0.999985i \(0.498241\pi\)
\(108\) −4.87452 + 1.79973i −0.469051 + 0.173179i
\(109\) −7.36263 + 10.1338i −0.705212 + 0.970641i 0.294675 + 0.955598i \(0.404789\pi\)
−0.999887 + 0.0150436i \(0.995211\pi\)
\(110\) 6.80068 5.93484i 0.648419 0.565865i
\(111\) −1.58926 + 10.9676i −0.150846 + 1.04100i
\(112\) −1.97930 + 0.313490i −0.187026 + 0.0296220i
\(113\) −14.3852 + 2.27840i −1.35325 + 0.214333i −0.790585 0.612353i \(-0.790223\pi\)
−0.562663 + 0.826686i \(0.690223\pi\)
\(114\) 1.67747 11.5763i 0.157109 1.08422i
\(115\) −4.51931 + 0.404185i −0.421428 + 0.0376904i
\(116\) −3.41843 + 4.70506i −0.317393 + 0.436854i
\(117\) 2.48977 5.22221i 0.230179 0.482794i
\(118\) 3.33838 + 3.33838i 0.307323 + 0.307323i
\(119\) −2.43325 7.48877i −0.223056 0.686495i
\(120\) −3.34955 1.94436i −0.305771 0.177495i
\(121\) −1.63603 + 5.03519i −0.148730 + 0.457744i
\(122\) −0.477622 + 0.243360i −0.0432418 + 0.0220328i
\(123\) 1.33474 + 1.78711i 0.120349 + 0.161138i
\(124\) 9.32637i 0.837533i
\(125\) 7.52912 + 8.26513i 0.673425 + 0.739255i
\(126\) 6.00982 0.158403i 0.535397 0.0141117i
\(127\) 0.572870 3.61696i 0.0508340 0.320953i −0.949147 0.314832i \(-0.898052\pi\)
0.999981 0.00612070i \(-0.00194829\pi\)
\(128\) 0.453990 + 0.891007i 0.0401275 + 0.0787546i
\(129\) −14.5006 + 7.63074i −1.27671 + 0.671849i
\(130\) 4.18205 1.05128i 0.366790 0.0922037i
\(131\) −2.34952 + 0.763407i −0.205279 + 0.0666992i −0.409852 0.912152i \(-0.634420\pi\)
0.204573 + 0.978851i \(0.434420\pi\)
\(132\) 6.99103 0.0921166i 0.608491 0.00801772i
\(133\) −6.14410 + 12.0585i −0.532761 + 1.04560i
\(134\) −1.22666 0.891220i −0.105967 0.0769897i
\(135\) 9.20253 + 7.09320i 0.792027 + 0.610485i
\(136\) −3.17886 + 2.30957i −0.272585 + 0.198044i
\(137\) 0.709676 + 4.48072i 0.0606317 + 0.382814i 0.999280 + 0.0379379i \(0.0120789\pi\)
−0.938648 + 0.344876i \(0.887921\pi\)
\(138\) −2.87035 2.02820i −0.244341 0.172651i
\(139\) 3.37296 + 4.64248i 0.286091 + 0.393770i 0.927739 0.373228i \(-0.121749\pi\)
−0.641649 + 0.766999i \(0.721749\pi\)
\(140\) 2.94633 + 3.37618i 0.249011 + 0.285339i
\(141\) −0.388893 2.26206i −0.0327507 0.190500i
\(142\) −0.487402 0.248344i −0.0409019 0.0208405i
\(143\) −5.50443 + 5.50443i −0.460304 + 0.460304i
\(144\) −1.00191 2.82775i −0.0834921 0.235646i
\(145\) 12.9745 + 0.882088i 1.07747 + 0.0732534i
\(146\) 7.10489 + 2.30852i 0.588005 + 0.191054i
\(147\) 4.93627 + 1.53229i 0.407137 + 0.126381i
\(148\) −6.31949 1.00091i −0.519459 0.0822742i
\(149\) −15.3490 −1.25744 −0.628720 0.777632i \(-0.716421\pi\)
−0.628720 + 0.777632i \(0.716421\pi\)
\(150\) 0.298648 + 8.65510i 0.0243845 + 0.706686i
\(151\) −22.6955 −1.84694 −0.923468 0.383676i \(-0.874658\pi\)
−0.923468 + 0.383676i \(0.874658\pi\)
\(152\) 6.67023 + 1.05646i 0.541027 + 0.0856902i
\(153\) 10.3584 5.62645i 0.837427 0.454872i
\(154\) −7.69335 2.49972i −0.619948 0.201433i
\(155\) −17.6642 + 11.0853i −1.41882 + 0.890392i
\(156\) 2.99585 + 1.47707i 0.239860 + 0.118260i
\(157\) 0.431200 0.431200i 0.0344135 0.0344135i −0.689691 0.724104i \(-0.742253\pi\)
0.724104 + 0.689691i \(0.242253\pi\)
\(158\) 9.56420 + 4.87320i 0.760887 + 0.387691i
\(159\) −18.6577 + 3.20763i −1.47965 + 0.254382i
\(160\) 1.14796 1.91891i 0.0907539 0.151703i
\(161\) 2.39016 + 3.28977i 0.188371 + 0.259270i
\(162\) 1.87422 + 8.80269i 0.147253 + 0.691604i
\(163\) 3.70877 + 23.4163i 0.290493 + 1.83410i 0.512049 + 0.858956i \(0.328886\pi\)
−0.221556 + 0.975148i \(0.571114\pi\)
\(164\) −1.04185 + 0.756950i −0.0813550 + 0.0591079i
\(165\) −8.48397 13.1315i −0.660476 1.02229i
\(166\) 2.72939 + 1.98302i 0.211842 + 0.153912i
\(167\) −1.54555 + 3.03330i −0.119598 + 0.234724i −0.943042 0.332673i \(-0.892050\pi\)
0.823444 + 0.567397i \(0.192050\pi\)
\(168\) 0.0457310 + 3.47068i 0.00352823 + 0.267768i
\(169\) 8.82681 2.86800i 0.678986 0.220616i
\(170\) 8.15271 + 3.27561i 0.625285 + 0.251228i
\(171\) −19.4268 5.75086i −1.48560 0.439779i
\(172\) −4.29493 8.42926i −0.327485 0.642725i
\(173\) 0.203505 1.28488i 0.0154722 0.0976874i −0.978744 0.205087i \(-0.934252\pi\)
0.994216 + 0.107399i \(0.0342523\pi\)
\(174\) 7.21606 + 7.02837i 0.547048 + 0.532820i
\(175\) 2.89248 9.59327i 0.218651 0.725183i
\(176\) 4.03662i 0.304272i
\(177\) 6.55170 4.89326i 0.492456 0.367800i
\(178\) 12.6506 6.44581i 0.948203 0.483134i
\(179\) 7.13852 21.9701i 0.533558 1.64212i −0.213186 0.977012i \(-0.568384\pi\)
0.746744 0.665112i \(-0.231616\pi\)
\(180\) −4.16491 + 5.25866i −0.310434 + 0.391958i
\(181\) 5.01359 + 15.4302i 0.372657 + 1.14692i 0.945046 + 0.326938i \(0.106017\pi\)
−0.572389 + 0.819983i \(0.693983\pi\)
\(182\) −2.73266 2.73266i −0.202558 0.202558i
\(183\) 0.298519 + 0.879162i 0.0220672 + 0.0649895i
\(184\) 1.19271 1.64163i 0.0879279 0.121022i
\(185\) 5.61560 + 13.1588i 0.412867 + 0.967454i
\(186\) −15.9868 2.31657i −1.17221 0.169859i
\(187\) −15.6658 + 2.48121i −1.14559 + 0.181444i
\(188\) 1.30885 0.207301i 0.0954576 0.0151190i
\(189\) 1.22125 10.3411i 0.0888329 0.752202i
\(190\) −5.92727 13.8891i −0.430009 1.00762i
\(191\) 3.27557 4.50844i 0.237012 0.326219i −0.673898 0.738825i \(-0.735381\pi\)
0.910910 + 0.412606i \(0.135381\pi\)
\(192\) 1.64008 0.556890i 0.118363 0.0401901i
\(193\) −6.12138 6.12138i −0.440626 0.440626i 0.451596 0.892222i \(-0.350855\pi\)
−0.892222 + 0.451596i \(0.850855\pi\)
\(194\) −3.28733 10.1174i −0.236016 0.726384i
\(195\) −0.763280 7.42977i −0.0546596 0.532057i
\(196\) −0.922140 + 2.83806i −0.0658671 + 0.202718i
\(197\) 15.7984 8.04970i 1.12559 0.573518i 0.210834 0.977522i \(-0.432382\pi\)
0.914757 + 0.404004i \(0.132382\pi\)
\(198\) 1.57860 12.0065i 0.112186 0.853267i
\(199\) 10.3594i 0.734359i −0.930150 0.367180i \(-0.880323\pi\)
0.930150 0.367180i \(-0.119677\pi\)
\(200\) −4.99886 + 0.106572i −0.353473 + 0.00753580i
\(201\) −1.83237 + 1.88130i −0.129246 + 0.132697i
\(202\) 1.87101 11.8131i 0.131644 0.831165i
\(203\) −5.29109 10.3843i −0.371362 0.728838i
\(204\) 3.16936 + 6.02270i 0.221899 + 0.421674i
\(205\) 2.67201 + 1.07356i 0.186621 + 0.0749808i
\(206\) 2.75890 0.896420i 0.192221 0.0624565i
\(207\) −4.18959 + 4.41642i −0.291197 + 0.306963i
\(208\) −0.875501 + 1.71827i −0.0607050 + 0.119140i
\(209\) 22.0545 + 16.0235i 1.52554 + 1.10837i
\(210\) 6.51911 4.21184i 0.449861 0.290645i
\(211\) 17.8594 12.9756i 1.22949 0.893278i 0.232640 0.972563i \(-0.425264\pi\)
0.996852 + 0.0792851i \(0.0252638\pi\)
\(212\) −1.70984 10.7955i −0.117432 0.741439i
\(213\) −0.546764 + 0.773793i −0.0374636 + 0.0530194i
\(214\) 8.64594 + 11.9001i 0.591024 + 0.813475i
\(215\) −10.8601 + 18.1536i −0.740653 + 1.23806i
\(216\) −5.09605 + 1.01503i −0.346742 + 0.0690640i
\(217\) 16.6527 + 8.48497i 1.13046 + 0.575998i
\(218\) −8.85726 + 8.85726i −0.599889 + 0.599889i
\(219\) 5.72192 11.6054i 0.386652 0.784222i
\(220\) 7.64536 4.79791i 0.515450 0.323475i
\(221\) −7.20658 2.34156i −0.484767 0.157510i
\(222\) −3.28540 + 10.5839i −0.220502 + 0.710346i
\(223\) 14.8047 + 2.34483i 0.991395 + 0.157022i 0.631004 0.775780i \(-0.282643\pi\)
0.360391 + 0.932801i \(0.382643\pi\)
\(224\) −2.00397 −0.133896
\(225\) 14.9103 + 1.63791i 0.994020 + 0.109194i
\(226\) −14.5645 −0.968819
\(227\) −3.77582 0.598031i −0.250610 0.0396927i 0.0298656 0.999554i \(-0.490492\pi\)
−0.280475 + 0.959861i \(0.590492\pi\)
\(228\) 3.46774 11.1713i 0.229657 0.739840i
\(229\) −21.4172 6.95886i −1.41529 0.459854i −0.501185 0.865340i \(-0.667102\pi\)
−0.914101 + 0.405486i \(0.867102\pi\)
\(230\) −4.52689 0.307767i −0.298495 0.0202935i
\(231\) −6.19584 + 12.5666i −0.407656 + 0.826823i
\(232\) −4.11237 + 4.11237i −0.269990 + 0.269990i
\(233\) 15.3187 + 7.80526i 1.00356 + 0.511340i 0.876934 0.480611i \(-0.159585\pi\)
0.126626 + 0.991950i \(0.459585\pi\)
\(234\) 3.27605 4.76843i 0.214162 0.311722i
\(235\) −1.94832 2.23256i −0.127094 0.145636i
\(236\) 2.77504 + 3.81952i 0.180640 + 0.248630i
\(237\) 10.7290 15.1840i 0.696926 0.986307i
\(238\) −1.23179 7.77722i −0.0798451 0.504122i
\(239\) −2.77696 + 2.01758i −0.179626 + 0.130506i −0.673965 0.738763i \(-0.735410\pi\)
0.494339 + 0.869269i \(0.335410\pi\)
\(240\) −3.00415 2.44440i −0.193917 0.157786i
\(241\) −6.92845 5.03381i −0.446300 0.324256i 0.341833 0.939761i \(-0.388952\pi\)
−0.788133 + 0.615505i \(0.788952\pi\)
\(242\) −2.40357 + 4.71726i −0.154507 + 0.303237i
\(243\) 15.5546 1.02620i 0.997831 0.0658306i
\(244\) −0.509811 + 0.165648i −0.0326373 + 0.0106045i
\(245\) 6.47133 1.62677i 0.413438 0.103930i
\(246\) 1.03874 + 1.97391i 0.0662276 + 0.125852i
\(247\) 5.91258 + 11.6041i 0.376209 + 0.738351i
\(248\) 1.45897 9.21155i 0.0926444 0.584934i
\(249\) 4.07714 4.18602i 0.258378 0.265278i
\(250\) 6.14348 + 9.34118i 0.388548 + 0.590788i
\(251\) 11.9423i 0.753789i −0.926256 0.376894i \(-0.876992\pi\)
0.926256 0.376894i \(-0.123008\pi\)
\(252\) 5.96061 + 0.783690i 0.375483 + 0.0493678i
\(253\) 7.29820 3.71862i 0.458834 0.233787i
\(254\) 1.13163 3.48281i 0.0710050 0.218531i
\(255\) 7.63993 13.1613i 0.478431 0.824194i
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 2.09358 + 2.09358i 0.130594 + 0.130594i 0.769382 0.638789i \(-0.220564\pi\)
−0.638789 + 0.769382i \(0.720564\pi\)
\(258\) −15.5158 + 5.26839i −0.965973 + 0.327996i
\(259\) 7.53654 10.3732i 0.468298 0.644556i
\(260\) 4.29501 0.384125i 0.266366 0.0238224i
\(261\) 13.8401 10.6236i 0.856679 0.657586i
\(262\) −2.44002 + 0.386461i −0.150745 + 0.0238757i
\(263\) 22.4419 3.55445i 1.38383 0.219177i 0.580279 0.814418i \(-0.302943\pi\)
0.803547 + 0.595241i \(0.202943\pi\)
\(264\) 6.91936 + 1.00265i 0.425857 + 0.0617091i
\(265\) −18.4144 + 16.0699i −1.13119 + 0.987169i
\(266\) −7.95482 + 10.9489i −0.487741 + 0.671318i
\(267\) −7.90679 23.2861i −0.483887 1.42509i
\(268\) −1.07214 1.07214i −0.0654913 0.0654913i
\(269\) 3.72777 + 11.4729i 0.227286 + 0.699515i 0.998051 + 0.0623960i \(0.0198742\pi\)
−0.770765 + 0.637119i \(0.780126\pi\)
\(270\) 7.97961 + 8.44546i 0.485623 + 0.513975i
\(271\) 2.54786 7.84151i 0.154772 0.476338i −0.843366 0.537339i \(-0.819429\pi\)
0.998138 + 0.0610015i \(0.0194294\pi\)
\(272\) −3.50102 + 1.78386i −0.212280 + 0.108162i
\(273\) −5.36295 + 4.00542i −0.324580 + 0.242419i
\(274\) 4.53657i 0.274064i
\(275\) −18.1745 8.77755i −1.09596 0.529306i
\(276\) −2.51773 2.45225i −0.151550 0.147608i
\(277\) 1.31490 8.30193i 0.0790045 0.498815i −0.916178 0.400772i \(-0.868742\pi\)
0.995182 0.0980425i \(-0.0312581\pi\)
\(278\) 2.60519 + 5.11297i 0.156249 + 0.306656i
\(279\) −7.94190 + 26.8283i −0.475469 + 1.60617i
\(280\) 2.38191 + 3.79552i 0.142346 + 0.226826i
\(281\) 0.214763 0.0697807i 0.0128117 0.00416277i −0.302604 0.953116i \(-0.597856\pi\)
0.315416 + 0.948954i \(0.397856\pi\)
\(282\) −0.0302405 2.29505i −0.00180080 0.136668i
\(283\) −10.2206 + 20.0591i −0.607554 + 1.19239i 0.358374 + 0.933578i \(0.383331\pi\)
−0.965927 + 0.258813i \(0.916669\pi\)
\(284\) −0.442552 0.321533i −0.0262606 0.0190795i
\(285\) −25.2803 + 6.71030i −1.49747 + 0.397484i
\(286\) −6.29775 + 4.57558i −0.372394 + 0.270560i
\(287\) −0.403712 2.54894i −0.0238304 0.150459i
\(288\) −0.547212 2.94967i −0.0322448 0.173811i
\(289\) 0.917376 + 1.26266i 0.0539633 + 0.0742741i
\(290\) 12.6768 + 2.90089i 0.744406 + 0.170346i
\(291\) −18.1592 + 3.12192i −1.06451 + 0.183010i
\(292\) 6.65629 + 3.39155i 0.389530 + 0.198475i
\(293\) −7.91375 + 7.91375i −0.462326 + 0.462326i −0.899417 0.437091i \(-0.856009\pi\)
0.437091 + 0.899417i \(0.356009\pi\)
\(294\) 4.63580 + 2.28563i 0.270365 + 0.133301i
\(295\) 3.93577 9.79580i 0.229149 0.570334i
\(296\) −6.08511 1.97717i −0.353690 0.114921i
\(297\) −20.1889 5.68825i −1.17148 0.330066i
\(298\) −15.1600 2.40111i −0.878197 0.139093i
\(299\) 3.91315 0.226303
\(300\) −1.05899 + 8.59526i −0.0611406 + 0.496248i
\(301\) 18.9583 1.09274
\(302\) −22.4161 3.55036i −1.28990 0.204300i
\(303\) −19.7846 6.14143i −1.13660 0.352816i
\(304\) 6.42284 + 2.08691i 0.368375 + 0.119692i
\(305\) 0.919696 + 0.768695i 0.0526617 + 0.0440153i
\(306\) 11.1110 3.93677i 0.635176 0.225050i
\(307\) −7.00526 + 7.00526i −0.399811 + 0.399811i −0.878166 0.478355i \(-0.841233\pi\)
0.478355 + 0.878166i \(0.341233\pi\)
\(308\) −7.20759 3.67245i −0.410690 0.209257i
\(309\) −0.851315 4.95182i −0.0484296 0.281699i
\(310\) −19.1808 + 8.18552i −1.08940 + 0.464907i
\(311\) 7.14665 + 9.83652i 0.405249 + 0.557778i 0.962052 0.272867i \(-0.0879719\pi\)
−0.556802 + 0.830645i \(0.687972\pi\)
\(312\) 2.72790 + 1.92754i 0.154437 + 0.109125i
\(313\) −3.84643 24.2854i −0.217413 1.37269i −0.818958 0.573853i \(-0.805448\pi\)
0.601545 0.798839i \(-0.294552\pi\)
\(314\) 0.493346 0.358437i 0.0278411 0.0202278i
\(315\) −5.60044 12.2209i −0.315549 0.688569i
\(316\) 8.68411 + 6.30938i 0.488519 + 0.354930i
\(317\) −4.73623 + 9.29537i −0.266013 + 0.522080i −0.984917 0.173030i \(-0.944644\pi\)
0.718904 + 0.695110i \(0.244644\pi\)
\(318\) −18.9298 + 0.249427i −1.06153 + 0.0139872i
\(319\) −22.3271 + 7.25450i −1.25008 + 0.406174i
\(320\) 1.43401 1.71570i 0.0801634 0.0959106i
\(321\) 22.5461 11.8645i 1.25840 0.662215i
\(322\) 1.84610 + 3.62317i 0.102879 + 0.201911i
\(323\) −4.15113 + 26.2092i −0.230975 + 1.45832i
\(324\) 0.474104 + 8.98750i 0.0263391 + 0.499306i
\(325\) −5.83257 7.67819i −0.323533 0.425910i
\(326\) 23.7082i 1.31307i
\(327\) 12.9826 + 17.3827i 0.717939 + 0.961266i
\(328\) −1.14744 + 0.584649i −0.0633567 + 0.0322818i
\(329\) −0.820621 + 2.52561i −0.0452423 + 0.139242i
\(330\) −6.32530 14.2970i −0.348196 0.787026i
\(331\) 5.72324 + 17.6143i 0.314578 + 0.968170i 0.975928 + 0.218093i \(0.0699837\pi\)
−0.661350 + 0.750077i \(0.730016\pi\)
\(332\) 2.38558 + 2.38558i 0.130926 + 0.130926i
\(333\) 17.3263 + 8.26060i 0.949478 + 0.452678i
\(334\) −2.00103 + 2.75418i −0.109492 + 0.150702i
\(335\) −0.756293 + 3.30497i −0.0413207 + 0.180570i
\(336\) −0.497765 + 3.43510i −0.0271553 + 0.187400i
\(337\) 11.7295 1.85777i 0.638947 0.101199i 0.171448 0.985193i \(-0.445155\pi\)
0.467498 + 0.883994i \(0.345155\pi\)
\(338\) 9.16679 1.45188i 0.498608 0.0789717i
\(339\) −3.61768 + 24.9658i −0.196485 + 1.35595i
\(340\) 7.53992 + 4.51064i 0.408910 + 0.244624i
\(341\) 22.1284 30.4571i 1.19832 1.64934i
\(342\) −18.2880 8.71907i −0.988901 0.471473i
\(343\) −14.1477 14.1477i −0.763903 0.763903i
\(344\) −2.92342 8.99736i −0.157620 0.485105i
\(345\) −1.65199 + 7.68332i −0.0889402 + 0.413656i
\(346\) 0.401998 1.23722i 0.0216115 0.0665135i
\(347\) −6.98295 + 3.55799i −0.374864 + 0.191003i −0.631264 0.775568i \(-0.717464\pi\)
0.256400 + 0.966571i \(0.417464\pi\)
\(348\) 6.02774 + 8.07068i 0.323121 + 0.432634i
\(349\) 9.37804i 0.501995i 0.967988 + 0.250997i \(0.0807586\pi\)
−0.967988 + 0.250997i \(0.919241\pi\)
\(350\) 4.35759 9.02268i 0.232923 0.482282i
\(351\) −7.36006 6.80006i −0.392851 0.362961i
\(352\) −0.631467 + 3.98692i −0.0336573 + 0.212504i
\(353\) −6.61368 12.9801i −0.352010 0.690859i 0.645317 0.763915i \(-0.276725\pi\)
−0.997328 + 0.0730551i \(0.976725\pi\)
\(354\) 7.23652 3.80811i 0.384616 0.202399i
\(355\) −0.0829681 + 1.22037i −0.00440349 + 0.0647703i
\(356\) 13.5032 4.38746i 0.715669 0.232535i
\(357\) −13.6373 + 0.179690i −0.721761 + 0.00951021i
\(358\) 10.4875 20.5829i 0.554283 1.08784i
\(359\) 9.55110 + 6.93928i 0.504088 + 0.366241i 0.810576 0.585633i \(-0.199154\pi\)
−0.306488 + 0.951874i \(0.599154\pi\)
\(360\) −4.93627 + 4.54239i −0.260164 + 0.239405i
\(361\) 21.5264 15.6398i 1.13297 0.823148i
\(362\) 2.53804 + 16.0246i 0.133397 + 0.842233i
\(363\) 7.48907 + 5.29179i 0.393074 + 0.277747i
\(364\) −2.27153 3.12650i −0.119061 0.163873i
\(365\) −1.48804 16.6382i −0.0778875 0.870883i
\(366\) 0.157313 + 0.915037i 0.00822287 + 0.0478297i
\(367\) −2.40607 1.22595i −0.125596 0.0639943i 0.390064 0.920788i \(-0.372453\pi\)
−0.515659 + 0.856794i \(0.672453\pi\)
\(368\) 1.43483 1.43483i 0.0747959 0.0747959i
\(369\) 3.64158 1.29025i 0.189573 0.0671679i
\(370\) 3.48797 + 13.8753i 0.181331 + 0.721340i
\(371\) 20.8315 + 6.76857i 1.08152 + 0.351407i
\(372\) −15.4276 4.78894i −0.799882 0.248295i
\(373\) −21.1854 3.35543i −1.09694 0.173738i −0.418370 0.908277i \(-0.637398\pi\)
−0.678566 + 0.734539i \(0.737398\pi\)
\(374\) −15.8610 −0.820154
\(375\) 17.5381 8.21057i 0.905666 0.423992i
\(376\) 1.32516 0.0683401
\(377\) −11.0774 1.75448i −0.570514 0.0903605i
\(378\) 2.82391 10.0227i 0.145246 0.515512i
\(379\) −10.0630 3.26966i −0.516901 0.167951i 0.0389376 0.999242i \(-0.487603\pi\)
−0.555838 + 0.831290i \(0.687603\pi\)
\(380\) −3.68156 14.6454i −0.188860 0.751291i
\(381\) −5.68896 2.80488i −0.291454 0.143698i
\(382\) 3.94052 3.94052i 0.201614 0.201614i
\(383\) −0.124163 0.0632642i −0.00634444 0.00323265i 0.450815 0.892617i \(-0.351133\pi\)
−0.457160 + 0.889385i \(0.651133\pi\)
\(384\) 1.70701 0.293468i 0.0871104 0.0149760i
\(385\) 1.61128 + 18.0162i 0.0821187 + 0.918192i
\(386\) −5.08842 7.00360i −0.258994 0.356474i
\(387\) 5.17684 + 27.9050i 0.263153 + 1.41849i
\(388\) −1.66415 10.5070i −0.0844846 0.533415i
\(389\) −28.0002 + 20.3434i −1.41967 + 1.03145i −0.427842 + 0.903854i \(0.640726\pi\)
−0.991826 + 0.127596i \(0.959274\pi\)
\(390\) 0.408390 7.45770i 0.0206796 0.377635i
\(391\) 6.45042 + 4.68650i 0.326212 + 0.237007i
\(392\) −1.35476 + 2.65886i −0.0684255 + 0.134293i
\(393\) 0.0563759 + 4.27855i 0.00284379 + 0.215824i
\(394\) 16.8632 5.47918i 0.849555 0.276037i
\(395\) 1.62807 23.9470i 0.0819170 1.20490i
\(396\) 3.43740 11.6118i 0.172736 0.583513i
\(397\) 13.8341 + 27.1510i 0.694315 + 1.36267i 0.921331 + 0.388778i \(0.127103\pi\)
−0.227017 + 0.973891i \(0.572897\pi\)
\(398\) 1.62057 10.2319i 0.0812318 0.512877i
\(399\) 16.7921 + 16.3553i 0.840656 + 0.818790i
\(400\) −4.95399 0.676734i −0.247700 0.0338367i
\(401\) 0.718503i 0.0358803i 0.999839 + 0.0179402i \(0.00571084\pi\)
−0.999839 + 0.0179402i \(0.994289\pi\)
\(402\) −2.10411 + 1.57150i −0.104944 + 0.0783791i
\(403\) 16.0252 8.16524i 0.798272 0.406740i
\(404\) 3.69594 11.3749i 0.183880 0.565925i
\(405\) 16.4588 11.5805i 0.817846 0.575438i
\(406\) −3.60148 11.0842i −0.178738 0.550100i
\(407\) −18.2627 18.2627i −0.905248 0.905248i
\(408\) 2.18818 + 6.44435i 0.108331 + 0.319043i
\(409\) 1.73765 2.39167i 0.0859211 0.118260i −0.763893 0.645343i \(-0.776714\pi\)
0.849814 + 0.527083i \(0.176714\pi\)
\(410\) 2.47117 + 1.47834i 0.122042 + 0.0730099i
\(411\) 7.77635 + 1.12684i 0.383579 + 0.0555828i
\(412\) 2.86516 0.453797i 0.141156 0.0223570i
\(413\) −9.34463 + 1.48004i −0.459819 + 0.0728282i
\(414\) −4.82889 + 3.70665i −0.237327 + 0.182172i
\(415\) 1.68280 7.35377i 0.0826053 0.360982i
\(416\) −1.13352 + 1.56015i −0.0555753 + 0.0764928i
\(417\) 9.41149 3.19567i 0.460883 0.156493i
\(418\) 19.2763 + 19.2763i 0.942835 + 0.942835i
\(419\) 0.976706 + 3.00599i 0.0477152 + 0.146852i 0.972075 0.234668i \(-0.0754005\pi\)
−0.924360 + 0.381521i \(0.875400\pi\)
\(420\) 7.09772 3.14018i 0.346333 0.153225i
\(421\) −3.57566 + 11.0047i −0.174267 + 0.536338i −0.999599 0.0283089i \(-0.990988\pi\)
0.825332 + 0.564647i \(0.190988\pi\)
\(422\) 19.6694 10.0220i 0.957489 0.487865i
\(423\) −3.94157 0.518230i −0.191646 0.0251972i
\(424\) 10.9301i 0.530812i
\(425\) −0.418753 19.6420i −0.0203125 0.952775i
\(426\) −0.661080 + 0.678734i −0.0320294 + 0.0328848i
\(427\) 0.168045 1.06100i 0.00813228 0.0513452i
\(428\) 6.67790 + 13.1061i 0.322789 + 0.633508i
\(429\) 6.27893 + 11.9318i 0.303149 + 0.576073i
\(430\) −13.5662 + 16.2312i −0.654223 + 0.782737i
\(431\) −24.8006 + 8.05821i −1.19460 + 0.388150i −0.837773 0.546019i \(-0.816143\pi\)
−0.356831 + 0.934169i \(0.616143\pi\)
\(432\) −5.19209 + 0.205335i −0.249805 + 0.00987916i
\(433\) 6.52479 12.8056i 0.313561 0.615399i −0.679409 0.733759i \(-0.737764\pi\)
0.992971 + 0.118361i \(0.0377639\pi\)
\(434\) 15.1203 + 10.9856i 0.725799 + 0.527324i
\(435\) 8.12133 21.0093i 0.389388 1.00732i
\(436\) −10.1338 + 7.36263i −0.485321 + 0.352606i
\(437\) −2.14373 13.5350i −0.102548 0.647466i
\(438\) 7.46697 10.5674i 0.356785 0.504932i
\(439\) 2.49050 + 3.42787i 0.118865 + 0.163604i 0.864303 0.502971i \(-0.167760\pi\)
−0.745438 + 0.666575i \(0.767760\pi\)
\(440\) 8.30180 3.54284i 0.395773 0.168898i
\(441\) 5.06939 7.37871i 0.241399 0.351367i
\(442\) −6.75156 3.44009i −0.321139 0.163628i
\(443\) 18.5118 18.5118i 0.879523 0.879523i −0.113962 0.993485i \(-0.536354\pi\)
0.993485 + 0.113962i \(0.0363542\pi\)
\(444\) −4.90064 + 9.93967i −0.232574 + 0.471716i
\(445\) −24.3597 20.3602i −1.15476 0.965165i
\(446\) 14.2556 + 4.63193i 0.675022 + 0.219328i
\(447\) −7.88146 + 25.3901i −0.372780 + 1.20091i
\(448\) −1.97930 0.313490i −0.0935130 0.0148110i
\(449\) −36.0779 −1.70262 −0.851311 0.524662i \(-0.824192\pi\)
−0.851311 + 0.524662i \(0.824192\pi\)
\(450\) 14.4705 + 3.95023i 0.682146 + 0.186216i
\(451\) −5.19836 −0.244781
\(452\) −14.3852 2.27840i −0.676624 0.107167i
\(453\) −11.6538 + 37.5426i −0.547542 + 1.76391i
\(454\) −3.63578 1.18134i −0.170635 0.0554428i
\(455\) −3.22166 + 8.01843i −0.151034 + 0.375910i
\(456\) 5.17263 10.4913i 0.242231 0.491301i
\(457\) 12.7889 12.7889i 0.598241 0.598241i −0.341604 0.939844i \(-0.610970\pi\)
0.939844 + 0.341604i \(0.110970\pi\)
\(458\) −20.0649 10.2236i −0.937570 0.477716i
\(459\) −3.98834 20.0238i −0.186160 0.934632i
\(460\) −4.42302 1.01214i −0.206224 0.0471913i
\(461\) −10.1363 13.9514i −0.472092 0.649779i 0.504869 0.863196i \(-0.331541\pi\)
−0.976961 + 0.213417i \(0.931541\pi\)
\(462\) −8.08541 + 11.4427i −0.376167 + 0.532361i
\(463\) −0.946894 5.97845i −0.0440059 0.277842i 0.955867 0.293800i \(-0.0949201\pi\)
−0.999873 + 0.0159582i \(0.994920\pi\)
\(464\) −4.70506 + 3.41843i −0.218427 + 0.158696i
\(465\) 9.26688 + 34.9119i 0.429741 + 1.61900i
\(466\) 13.9091 + 10.1055i 0.644325 + 0.468130i
\(467\) 0.901038 1.76839i 0.0416951 0.0818311i −0.869219 0.494427i \(-0.835378\pi\)
0.910914 + 0.412596i \(0.135378\pi\)
\(468\) 3.98166 4.19724i 0.184053 0.194017i
\(469\) 2.88977 0.938944i 0.133437 0.0433564i
\(470\) −1.57508 2.50986i −0.0726532 0.115771i
\(471\) −0.491872 0.934700i −0.0226643 0.0430687i
\(472\) 2.14337 + 4.20661i 0.0986568 + 0.193625i
\(473\) 5.97392 37.7178i 0.274681 1.73427i
\(474\) 12.9722 13.3187i 0.595835 0.611747i
\(475\) −23.3624 + 24.3803i −1.07194 + 1.11864i
\(476\) 7.87416i 0.360912i
\(477\) −4.27442 + 32.5105i −0.195712 + 1.48855i
\(478\) −3.05839 + 1.55833i −0.139887 + 0.0712762i
\(479\) 10.9260 33.6268i 0.499222 1.53645i −0.311051 0.950393i \(-0.600681\pi\)
0.810273 0.586053i \(-0.199319\pi\)
\(480\) −2.58477 2.88426i −0.117978 0.131648i
\(481\) −3.81289 11.7349i −0.173853 0.535064i
\(482\) −6.05568 6.05568i −0.275829 0.275829i
\(483\) 6.66920 2.26453i 0.303459 0.103039i
\(484\) −3.11192 + 4.28319i −0.141451 + 0.194690i
\(485\) −17.9224 + 15.6405i −0.813812 + 0.710200i
\(486\) 15.5237 + 1.41972i 0.704168 + 0.0643998i
\(487\) 24.6253 3.90026i 1.11588 0.176738i 0.428855 0.903373i \(-0.358917\pi\)
0.687023 + 0.726636i \(0.258917\pi\)
\(488\) −0.529448 + 0.0838563i −0.0239670 + 0.00379599i
\(489\) 40.6393 + 5.88886i 1.83777 + 0.266303i
\(490\) 6.64614 0.594399i 0.300242 0.0268522i
\(491\) −3.22682 + 4.44133i −0.145624 + 0.200434i −0.875598 0.483041i \(-0.839532\pi\)
0.729974 + 0.683475i \(0.239532\pi\)
\(492\) 0.717163 + 2.11210i 0.0323322 + 0.0952208i
\(493\) −16.1587 16.1587i −0.727750 0.727750i
\(494\) 4.02451 + 12.3862i 0.181071 + 0.557280i
\(495\) −26.0784 + 7.29126i −1.17214 + 0.327718i
\(496\) 2.88201 8.86991i 0.129406 0.398271i
\(497\) 0.976739 0.497673i 0.0438127 0.0223237i
\(498\) 4.68178 3.49668i 0.209796 0.156690i
\(499\) 0.383555i 0.0171703i −0.999963 0.00858514i \(-0.997267\pi\)
0.999963 0.00858514i \(-0.00273277\pi\)
\(500\) 4.60656 + 10.1872i 0.206012 + 0.455587i
\(501\) 4.22404 + 4.11417i 0.188716 + 0.183808i
\(502\) 1.86818 11.7952i 0.0833810 0.526447i
\(503\) 3.58816 + 7.04217i 0.159988 + 0.313995i 0.957060 0.289890i \(-0.0936187\pi\)
−0.797072 + 0.603885i \(0.793619\pi\)
\(504\) 5.76463 + 1.70649i 0.256777 + 0.0760129i
\(505\) −25.9371 + 6.52009i −1.15419 + 0.290140i
\(506\) 7.79006 2.53115i 0.346311 0.112523i
\(507\) −0.211796 16.0739i −0.00940619 0.713866i
\(508\) 1.66253 3.26290i 0.0737630 0.144768i
\(509\) 20.5303 + 14.9162i 0.909990 + 0.661147i 0.941012 0.338372i \(-0.109876\pi\)
−0.0310220 + 0.999519i \(0.509876\pi\)
\(510\) 9.60475 11.8041i 0.425305 0.522696i
\(511\) −12.1116 + 8.79956i −0.535784 + 0.389270i
\(512\) 0.156434 + 0.987688i 0.00691349 + 0.0436501i
\(513\) −19.4883 + 29.1826i −0.860430 + 1.28844i
\(514\) 1.74029 + 2.39531i 0.0767611 + 0.105653i
\(515\) −4.26501 4.88724i −0.187939 0.215357i
\(516\) −16.1490 + 2.77632i −0.710918 + 0.122221i
\(517\) 4.76616 + 2.42848i 0.209615 + 0.106804i
\(518\) 9.06647 9.06647i 0.398358 0.398358i
\(519\) −2.02093 0.996397i −0.0887090 0.0437370i
\(520\) 4.30223 + 0.292492i 0.188665 + 0.0128266i
\(521\) −19.7375 6.41311i −0.864716 0.280963i −0.157119 0.987580i \(-0.550221\pi\)
−0.707597 + 0.706616i \(0.750221\pi\)
\(522\) 15.3316 8.32777i 0.671045 0.364496i
\(523\) 17.5234 + 2.77544i 0.766246 + 0.121361i 0.527309 0.849674i \(-0.323201\pi\)
0.238937 + 0.971035i \(0.423201\pi\)
\(524\) −2.47044 −0.107922
\(525\) −14.3838 9.71069i −0.627761 0.423809i
\(526\) 22.7216 0.990710
\(527\) 36.1948 + 5.73269i 1.57667 + 0.249720i
\(528\) 6.67733 + 2.07274i 0.290593 + 0.0902043i
\(529\) 17.9583 + 5.83501i 0.780797 + 0.253696i
\(530\) −20.7016 + 12.9914i −0.899220 + 0.564313i
\(531\) −4.73018 13.3504i −0.205272 0.579356i
\(532\) −9.56966 + 9.56966i −0.414898 + 0.414898i
\(533\) −2.21278 1.12747i −0.0958463 0.0488361i
\(534\) −4.16669 24.2363i −0.180311 1.04881i
\(535\) 16.8857 28.2258i 0.730032 1.22031i
\(536\) −0.891220 1.22666i −0.0384948 0.0529836i
\(537\) −32.6772 23.0897i −1.41012 0.996396i
\(538\) 1.88712 + 11.9148i 0.0813595 + 0.513684i
\(539\) −9.74519 + 7.08029i −0.419755 + 0.304970i
\(540\) 6.56020 + 9.58977i 0.282306 + 0.412678i
\(541\) 10.0053 + 7.26924i 0.430160 + 0.312529i 0.781713 0.623639i \(-0.214346\pi\)
−0.351553 + 0.936168i \(0.614346\pi\)
\(542\) 3.74318 7.34640i 0.160783 0.315555i
\(543\) 28.0989 0.370243i 1.20584 0.0158886i
\(544\) −3.73697 + 1.21422i −0.160221 + 0.0520591i
\(545\) 25.9898 + 10.4422i 1.11328 + 0.447296i
\(546\) −5.92351 + 3.11716i −0.253503 + 0.133402i
\(547\) −12.0831 23.7144i −0.516636 1.01396i −0.991030 0.133643i \(-0.957333\pi\)
0.474393 0.880313i \(-0.342667\pi\)
\(548\) −0.709676 + 4.48072i −0.0303159 + 0.191407i
\(549\) 1.60758 0.0423717i 0.0686100 0.00180838i
\(550\) −16.5776 11.5126i −0.706872 0.490899i
\(551\) 39.2761i 1.67322i
\(552\) −2.10312 2.81592i −0.0895147 0.119853i
\(553\) −19.1664 + 9.76575i −0.815036 + 0.415282i
\(554\) 2.59742 7.99403i 0.110354 0.339634i
\(555\) 24.6506 2.53242i 1.04636 0.107495i
\(556\) 1.77327 + 5.45757i 0.0752034 + 0.231452i
\(557\) 28.3195 + 28.3195i 1.19993 + 1.19993i 0.974186 + 0.225748i \(0.0724825\pi\)
0.225748 + 0.974186i \(0.427517\pi\)
\(558\) −12.0410 + 25.2556i −0.509736 + 1.06915i
\(559\) 10.7235 14.7597i 0.453556 0.624267i
\(560\) 1.75883 + 4.12140i 0.0743243 + 0.174161i
\(561\) −3.93971 + 27.1881i −0.166335 + 1.14788i
\(562\) 0.223035 0.0353253i 0.00940816 0.00149011i
\(563\) −8.73181 + 1.38298i −0.368002 + 0.0582858i −0.337697 0.941255i \(-0.609648\pi\)
−0.0303051 + 0.999541i \(0.509648\pi\)
\(564\) 0.329157 2.27153i 0.0138600 0.0956485i
\(565\) 12.7829 + 29.9537i 0.537782 + 1.26016i
\(566\) −13.2327 + 18.2133i −0.556214 + 0.765563i
\(567\) −16.4790 7.33014i −0.692051 0.307837i
\(568\) −0.386804 0.386804i −0.0162300 0.0162300i
\(569\) 7.02196 + 21.6114i 0.294376 + 0.905996i 0.983430 + 0.181286i \(0.0580261\pi\)
−0.689054 + 0.724710i \(0.741974\pi\)
\(570\) −26.0188 + 2.67298i −1.08981 + 0.111959i
\(571\) −8.54837 + 26.3092i −0.357738 + 1.10101i 0.596666 + 0.802489i \(0.296492\pi\)
−0.954405 + 0.298516i \(0.903508\pi\)
\(572\) −6.93599 + 3.53406i −0.290008 + 0.147767i
\(573\) −5.77584 7.73341i −0.241289 0.323068i
\(574\) 2.58071i 0.107717i
\(575\) 3.34018 + 9.58022i 0.139295 + 0.399523i
\(576\) −0.0790447 2.99896i −0.00329353 0.124957i
\(577\) 1.72432 10.8869i 0.0717842 0.453228i −0.925448 0.378875i \(-0.876311\pi\)
0.997232 0.0743526i \(-0.0236890\pi\)
\(578\) 0.708558 + 1.39062i 0.0294721 + 0.0578423i
\(579\) −13.2691 + 6.98268i −0.551446 + 0.290190i
\(580\) 12.0669 + 4.84826i 0.501051 + 0.201313i
\(581\) −6.42992 + 2.08921i −0.266758 + 0.0866750i
\(582\) −18.4240 + 0.242762i −0.763699 + 0.0100628i
\(583\) 20.0303 39.3117i 0.829572 1.62813i
\(584\) 6.04378 + 4.39106i 0.250093 + 0.181704i
\(585\) −12.6822 2.55246i −0.524343 0.105531i
\(586\) −9.05430 + 6.57833i −0.374030 + 0.271749i
\(587\) −3.29168 20.7828i −0.135862 0.857800i −0.957635 0.287985i \(-0.907015\pi\)
0.821773 0.569815i \(-0.192985\pi\)
\(588\) 4.22117 + 2.98269i 0.174078 + 0.123004i
\(589\) −37.0213 50.9555i −1.52544 2.09958i
\(590\) 5.41972 9.05951i 0.223126 0.372974i
\(591\) −5.20348 30.2669i −0.214043 1.24502i
\(592\) −5.70089 2.90475i −0.234305 0.119385i
\(593\) 10.8276 10.8276i 0.444635 0.444635i −0.448931 0.893566i \(-0.648195\pi\)
0.893566 + 0.448931i \(0.148195\pi\)
\(594\) −19.0505 8.77645i −0.781650 0.360102i
\(595\) −14.9137 + 9.35920i −0.611401 + 0.383690i
\(596\) −14.5978 4.74310i −0.597948 0.194285i
\(597\) −17.1364 5.31939i −0.701346 0.217708i
\(598\) 3.86497 + 0.612151i 0.158050 + 0.0250327i
\(599\) 20.9614 0.856459 0.428230 0.903670i \(-0.359137\pi\)
0.428230 + 0.903670i \(0.359137\pi\)
\(600\) −2.39054 + 8.32378i −0.0975935 + 0.339817i
\(601\) −24.3199 −0.992029 −0.496015 0.868314i \(-0.665204\pi\)
−0.496015 + 0.868314i \(0.665204\pi\)
\(602\) 18.7249 + 2.96573i 0.763170 + 0.120874i
\(603\) 2.17114 + 3.99710i 0.0884156 + 0.162775i
\(604\) −21.5847 7.01330i −0.878270 0.285367i
\(605\) 11.8112 + 0.802997i 0.480192 + 0.0326465i
\(606\) −18.5803 9.16081i −0.754773 0.372133i
\(607\) −12.8780 + 12.8780i −0.522702 + 0.522702i −0.918386 0.395685i \(-0.870507\pi\)
0.395685 + 0.918386i \(0.370507\pi\)
\(608\) 6.01730 + 3.06597i 0.244034 + 0.124341i
\(609\) −19.8945 + 3.42026i −0.806168 + 0.138596i
\(610\) 0.788123 + 0.903103i 0.0319102 + 0.0365656i
\(611\) 1.50210 + 2.06746i 0.0607683 + 0.0836404i
\(612\) 11.5901 2.15015i 0.468502 0.0869147i
\(613\) 1.91504 + 12.0911i 0.0773477 + 0.488354i 0.995704 + 0.0925984i \(0.0295173\pi\)
−0.918356 + 0.395756i \(0.870483\pi\)
\(614\) −8.01488 + 5.82315i −0.323454 + 0.235003i
\(615\) 3.14790 3.86874i 0.126936 0.156003i
\(616\) −6.54435 4.75475i −0.263679 0.191574i
\(617\) −11.6432 + 22.8510i −0.468737 + 0.919948i 0.528728 + 0.848791i \(0.322669\pi\)
−0.997465 + 0.0711569i \(0.977331\pi\)
\(618\) −0.0661986 5.02403i −0.00266290 0.202096i
\(619\) −28.2577 + 9.18149i −1.13577 + 0.369035i −0.815767 0.578380i \(-0.803685\pi\)
−0.320006 + 0.947415i \(0.603685\pi\)
\(620\) −20.2252 + 5.08421i −0.812262 + 0.204187i
\(621\) 5.15431 + 9.19813i 0.206835 + 0.369108i
\(622\) 5.51989 + 10.8334i 0.221328 + 0.434380i
\(623\) −4.45096 + 28.1023i −0.178324 + 1.12589i
\(624\) 2.39278 + 2.33054i 0.0957878 + 0.0932964i
\(625\) 13.8193 20.8333i 0.552772 0.833333i
\(626\) 24.5881i 0.982739i
\(627\) 37.8305 28.2544i 1.51080 1.12837i
\(628\) 0.543344 0.276848i 0.0216818 0.0110474i
\(629\) 7.76887 23.9101i 0.309765 0.953359i
\(630\) −3.61973 12.9465i −0.144213 0.515802i
\(631\) −0.858936 2.64353i −0.0341937 0.105237i 0.932503 0.361162i \(-0.117620\pi\)
−0.966697 + 0.255925i \(0.917620\pi\)
\(632\) 7.59019 + 7.59019i 0.301922 + 0.301922i
\(633\) −12.2936 36.2055i −0.488626 1.43904i
\(634\) −6.13203 + 8.44002i −0.243534 + 0.335196i
\(635\) −8.15602 + 0.729435i −0.323662 + 0.0289468i
\(636\) −18.7358 2.71492i −0.742922 0.107654i
\(637\) −5.68387 + 0.900236i −0.225203 + 0.0356687i
\(638\) −23.1870 + 3.67247i −0.917984 + 0.145394i
\(639\) 0.999245 + 1.30178i 0.0395295 + 0.0514976i
\(640\) 1.68475 1.47025i 0.0665954 0.0581167i
\(641\) −18.3443 + 25.2487i −0.724554 + 0.997264i 0.274806 + 0.961500i \(0.411386\pi\)
−0.999360 + 0.0357639i \(0.988614\pi\)
\(642\) 24.1246 8.19149i 0.952120 0.323292i
\(643\) 23.9422 + 23.9422i 0.944188 + 0.944188i 0.998523 0.0543345i \(-0.0173037\pi\)
−0.0543345 + 0.998523i \(0.517304\pi\)
\(644\) 1.25658 + 3.86736i 0.0495162 + 0.152395i
\(645\) 24.4529 + 27.2862i 0.962833 + 1.07439i
\(646\) −8.20005 + 25.2372i −0.322627 + 0.992942i
\(647\) 0.500806 0.255174i 0.0196887 0.0100319i −0.444118 0.895968i \(-0.646483\pi\)
0.463807 + 0.885936i \(0.346483\pi\)
\(648\) −0.937689 + 8.95102i −0.0368359 + 0.351629i
\(649\) 19.0576i 0.748078i
\(650\) −4.55963 8.49608i −0.178843 0.333244i
\(651\) 22.5866 23.1898i 0.885239 0.908879i
\(652\) −3.70877 + 23.4163i −0.145247 + 0.917052i
\(653\) 10.9835 + 21.5563i 0.429816 + 0.843562i 0.999761 + 0.0218786i \(0.00696474\pi\)
−0.569944 + 0.821683i \(0.693035\pi\)
\(654\) 10.1035 + 19.1996i 0.395078 + 0.750764i
\(655\) 2.93635 + 4.67901i 0.114733 + 0.182824i
\(656\) −1.22477 + 0.397952i −0.0478193 + 0.0155374i
\(657\) −16.2594 15.4243i −0.634341 0.601760i
\(658\) −1.20561 + 2.36614i −0.0469996 + 0.0922419i
\(659\) −4.30697 3.12920i −0.167776 0.121896i 0.500729 0.865604i \(-0.333065\pi\)
−0.668505 + 0.743708i \(0.733065\pi\)
\(660\) −4.01087 15.1105i −0.156123 0.588176i
\(661\) −10.9702 + 7.97029i −0.426690 + 0.310008i −0.780324 0.625376i \(-0.784946\pi\)
0.353634 + 0.935384i \(0.384946\pi\)
\(662\) 2.89729 + 18.2928i 0.112606 + 0.710969i
\(663\) −7.57384 + 10.7187i −0.294144 + 0.416279i
\(664\) 1.98302 + 2.72939i 0.0769561 + 0.105921i
\(665\) 29.4994 + 6.75049i 1.14394 + 0.261773i
\(666\) 15.8208 + 10.8693i 0.613043 + 0.421178i
\(667\) 10.5149 + 5.35761i 0.407138 + 0.207447i
\(668\) −2.40724 + 2.40724i −0.0931391 + 0.0931391i
\(669\) 11.4807 23.2857i 0.443871 0.900276i
\(670\) −1.26399 + 3.14597i −0.0488323 + 0.121540i
\(671\) −2.05791 0.668657i −0.0794449 0.0258132i
\(672\) −1.02900 + 3.31494i −0.0396947 + 0.127877i
\(673\) 48.7489 + 7.72106i 1.87913 + 0.297625i 0.987800 0.155727i \(-0.0497721\pi\)
0.891331 + 0.453353i \(0.149772\pi\)
\(674\) 11.8757 0.457435
\(675\) 10.3656 23.8234i 0.398972 0.916963i
\(676\) 9.28106 0.356964
\(677\) −3.02000 0.478321i −0.116068 0.0183834i 0.0981301 0.995174i \(-0.468714\pi\)
−0.214198 + 0.976790i \(0.568714\pi\)
\(678\) −7.47865 + 24.0925i −0.287216 + 0.925266i
\(679\) 20.2749 + 6.58771i 0.778078 + 0.252813i
\(680\) 6.74147 + 5.63461i 0.258524 + 0.216078i
\(681\) −2.92807 + 5.93883i −0.112204 + 0.227576i
\(682\) 26.6205 26.6205i 1.01935 1.01935i
\(683\) −31.2546 15.9250i −1.19592 0.609353i −0.261391 0.965233i \(-0.584181\pi\)
−0.934532 + 0.355880i \(0.884181\pi\)
\(684\) −16.6989 11.4726i −0.638497 0.438666i
\(685\) 9.33000 3.98163i 0.356481 0.152130i
\(686\) −11.7603 16.1867i −0.449011 0.618011i
\(687\) −22.5086 + 31.8547i −0.858757 + 1.21533i
\(688\) −1.47993 9.34391i −0.0564218 0.356233i
\(689\) 17.0526 12.3894i 0.649652 0.472000i
\(690\) −2.83359 + 7.33030i −0.107873 + 0.279060i
\(691\) −2.34860 1.70636i −0.0893451 0.0649130i 0.542216 0.840239i \(-0.317585\pi\)
−0.631561 + 0.775326i \(0.717585\pi\)
\(692\) 0.590593 1.15910i 0.0224510 0.0440625i
\(693\) 17.6061 + 16.7018i 0.668800 + 0.634450i
\(694\) −7.45357 + 2.42181i −0.282934 + 0.0919307i
\(695\) 8.22893 9.84542i 0.312141 0.373458i
\(696\) 4.69100 + 8.91427i 0.177812 + 0.337894i
\(697\) −2.29725 4.50861i −0.0870146 0.170776i
\(698\) −1.46705 + 9.26258i −0.0555286 + 0.350594i
\(699\) 20.7773 21.3321i 0.785868 0.806854i
\(700\) 5.71540 8.22992i 0.216022 0.311062i
\(701\) 5.87338i 0.221834i −0.993830 0.110917i \(-0.964621\pi\)
0.993830 0.110917i \(-0.0353788\pi\)
\(702\) −6.20568 7.86771i −0.234218 0.296948i
\(703\) −38.5003 + 19.6169i −1.45206 + 0.739864i
\(704\) −1.24738 + 3.83905i −0.0470126 + 0.144690i
\(705\) −4.69351 + 2.07650i −0.176768 + 0.0782056i
\(706\) −4.50172 13.8549i −0.169424 0.521435i
\(707\) 16.9480 + 16.9480i 0.637396 + 0.637396i
\(708\) 7.74314 2.62918i 0.291005 0.0988107i
\(709\) 10.1538 13.9755i 0.381335 0.524862i −0.574603 0.818432i \(-0.694843\pi\)
0.955938 + 0.293570i \(0.0948434\pi\)
\(710\) −0.272854 + 1.19236i −0.0102400 + 0.0447486i
\(711\) −19.6080 25.5446i −0.735357 0.957996i
\(712\) 14.0233 2.22107i 0.525546 0.0832383i
\(713\) −18.6917 + 2.96048i −0.700011 + 0.110871i
\(714\) −13.4975 1.95586i −0.505130 0.0731962i
\(715\) 14.9376 + 8.93620i 0.558635 + 0.334195i
\(716\) 13.5783 18.6889i 0.507444 0.698437i
\(717\) 1.91153 + 5.62960i 0.0713874 + 0.210241i
\(718\) 8.34797 + 8.34797i 0.311544 + 0.311544i
\(719\) −12.3239 37.9289i −0.459602 1.41451i −0.865646 0.500656i \(-0.833092\pi\)
0.406044 0.913854i \(-0.366908\pi\)
\(720\) −5.58608 + 3.71426i −0.208181 + 0.138422i
\(721\) −1.79640 + 5.52874i −0.0669013 + 0.205901i
\(722\) 23.7079 12.0798i 0.882318 0.449563i
\(723\) −11.8845 + 8.87617i −0.441989 + 0.330108i
\(724\) 16.2243i 0.602972i
\(725\) −5.16007 28.6174i −0.191640 1.06282i
\(726\) 6.56905 + 6.39818i 0.243800 + 0.237459i
\(727\) 3.26644 20.6235i 0.121146 0.764883i −0.850068 0.526673i \(-0.823439\pi\)
0.971214 0.238210i \(-0.0765608\pi\)
\(728\) −1.75448 3.44335i −0.0650252 0.127619i
\(729\) 6.28953 26.2572i 0.232945 0.972490i
\(730\) 1.13307 16.6661i 0.0419367 0.616841i
\(731\) 35.3532 11.4869i 1.30758 0.424860i
\(732\) 0.0122327 + 0.928380i 0.000452134 + 0.0343139i
\(733\) 4.26895 8.37829i 0.157677 0.309459i −0.798630 0.601822i \(-0.794442\pi\)
0.956307 + 0.292363i \(0.0944416\pi\)
\(734\) −2.18467 1.58725i −0.0806375 0.0585866i
\(735\) 0.631945 11.5401i 0.0233097 0.425663i
\(736\) 1.64163 1.19271i 0.0605112 0.0439639i
\(737\) −0.957451 6.04511i −0.0352682 0.222674i
\(738\) 3.79859 0.704700i 0.139828 0.0259404i
\(739\) 0.0758416 + 0.104387i 0.00278988 + 0.00383994i 0.810410 0.585864i \(-0.199245\pi\)
−0.807620 + 0.589704i \(0.799245\pi\)
\(740\) 1.27446 + 14.2501i 0.0468500 + 0.523843i
\(741\) 22.2314 3.82201i 0.816689 0.140405i
\(742\) 19.5162 + 9.94400i 0.716462 + 0.365056i
\(743\) −7.88637 + 7.88637i −0.289323 + 0.289323i −0.836812 0.547490i \(-0.815584\pi\)
0.547490 + 0.836812i \(0.315584\pi\)
\(744\) −14.4885 7.14338i −0.531173 0.261889i
\(745\) 8.36741 + 33.2858i 0.306558 + 1.21950i
\(746\) −20.3996 6.62824i −0.746883 0.242677i
\(747\) −4.83092 8.89381i −0.176754 0.325407i
\(748\) −15.6658 2.48121i −0.572797 0.0907221i
\(749\) −29.4771 −1.07707
\(750\) 18.6066 5.36592i 0.679418 0.195936i
\(751\) 24.5205 0.894768 0.447384 0.894342i \(-0.352356\pi\)
0.447384 + 0.894342i \(0.352356\pi\)
\(752\) 1.30885 + 0.207301i 0.0477288 + 0.00755950i
\(753\) −19.7547 6.13215i −0.719902 0.223468i
\(754\) −10.6665 3.46577i −0.388452 0.126216i
\(755\) 12.3723 + 49.2175i 0.450275 + 1.79121i
\(756\) 4.35704 9.45755i 0.158464 0.343968i
\(757\) 13.4521 13.4521i 0.488924 0.488924i −0.419042 0.907967i \(-0.637634\pi\)
0.907967 + 0.419042i \(0.137634\pi\)
\(758\) −9.42760