Properties

Label 150.2.l.a.23.8
Level 150
Weight 2
Character 150.23
Analytic conductor 1.198
Analytic rank 0
Dimension 80
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.l (of order \(20\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{20})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 23.8
Character \(\chi\) = 150.23
Dual form 150.2.l.a.137.8

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(0.987688 + 0.156434i) q^{2}\) \(+(0.0565979 + 1.73113i) q^{3}\) \(+(0.951057 + 0.309017i) q^{4}\) \(+(1.48885 - 1.66833i) q^{5}\) \(+(-0.214907 + 1.71867i) q^{6}\) \(+(-1.08662 + 1.08662i) q^{7}\) \(+(0.891007 + 0.453990i) q^{8}\) \(+(-2.99359 + 0.195956i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(0.987688 + 0.156434i) q^{2}\) \(+(0.0565979 + 1.73113i) q^{3}\) \(+(0.951057 + 0.309017i) q^{4}\) \(+(1.48885 - 1.66833i) q^{5}\) \(+(-0.214907 + 1.71867i) q^{6}\) \(+(-1.08662 + 1.08662i) q^{7}\) \(+(0.891007 + 0.453990i) q^{8}\) \(+(-2.99359 + 0.195956i) q^{9}\) \(+(1.73150 - 1.41488i) q^{10}\) \(+(-1.61222 - 2.21903i) q^{11}\) \(+(-0.481119 + 1.66389i) q^{12}\) \(+(0.355240 + 2.24289i) q^{13}\) \(+(-1.24323 + 0.903260i) q^{14}\) \(+(2.97236 + 2.48296i) q^{15}\) \(+(0.809017 + 0.587785i) q^{16}\) \(+(2.77486 - 5.44598i) q^{17}\) \(+(-2.98739 - 0.274758i) q^{18}\) \(+(-4.05302 + 1.31690i) q^{19}\) \(+(1.93152 - 1.12660i) q^{20}\) \(+(-1.94258 - 1.81958i) q^{21}\) \(+(-1.24524 - 2.44391i) q^{22}\) \(+(-0.805034 + 5.08279i) q^{23}\) \(+(-0.735486 + 1.56814i) q^{24}\) \(+(-0.566658 - 4.96779i) q^{25}\) \(+2.27085i q^{26}\) \(+(-0.508656 - 5.17120i) q^{27}\) \(+(-1.36922 + 0.697655i) q^{28}\) \(+(2.37081 - 7.29662i) q^{29}\) \(+(2.54734 + 2.91737i) q^{30}\) \(+(-1.85692 - 5.71500i) q^{31}\) \(+(0.707107 + 0.707107i) q^{32}\) \(+(3.75017 - 2.91654i) q^{33}\) \(+(3.59264 - 4.94484i) q^{34}\) \(+(0.195030 + 3.43066i) q^{35}\) \(+(-2.90763 - 0.738706i) q^{36}\) \(+(-3.29028 + 0.521129i) q^{37}\) \(+(-4.20913 + 0.666660i) q^{38}\) \(+(-3.86263 + 0.741908i) q^{39}\) \(+(2.08398 - 0.810571i) q^{40}\) \(+(-5.36418 + 7.38316i) q^{41}\) \(+(-1.63402 - 2.10107i) q^{42}\) \(+(6.65663 + 6.65663i) q^{43}\) \(+(-0.847593 - 2.60862i) q^{44}\) \(+(-4.13009 + 5.28605i) q^{45}\) \(+(-1.59025 + 4.89427i) q^{46}\) \(+(2.15191 - 1.09645i) q^{47}\) \(+(-0.971742 + 1.43378i) q^{48}\) \(+4.63850i q^{49}\) \(+(0.217452 - 4.99527i) q^{50}\) \(+(9.58472 + 4.49541i) q^{51}\) \(+(-0.355240 + 2.24289i) q^{52}\) \(+(0.199432 + 0.391408i) q^{53}\) \(+(0.306560 - 5.18710i) q^{54}\) \(+(-6.10242 - 0.614083i) q^{55}\) \(+(-1.46150 + 0.474872i) q^{56}\) \(+(-2.50912 - 6.94175i) q^{57}\) \(+(3.48307 - 6.83591i) q^{58}\) \(+(5.86967 + 4.26457i) q^{59}\) \(+(2.05960 + 3.27994i) q^{60}\) \(+(-8.14808 + 5.91993i) q^{61}\) \(+(-0.940031 - 5.93512i) q^{62}\) \(+(3.03998 - 3.46584i) q^{63}\) \(+(0.587785 + 0.809017i) q^{64}\) \(+(4.27079 + 2.74667i) q^{65}\) \(+(4.16024 - 2.29398i) q^{66}\) \(+(5.28646 + 2.69358i) q^{67}\) \(+(4.32195 - 4.32195i) q^{68}\) \(+(-8.84451 - 1.10594i) q^{69}\) \(+(-0.344046 + 3.41894i) q^{70}\) \(+(-5.89152 - 1.91427i) q^{71}\) \(+(-2.75627 - 1.18446i) q^{72}\) \(+(10.2696 + 1.62655i) q^{73}\) \(-3.33129 q^{74}\) \(+(8.56779 - 1.26212i) q^{75}\) \(-4.26159 q^{76}\) \(+(4.16312 + 0.659373i) q^{77}\) \(+(-3.93113 + 0.128525i) q^{78}\) \(+(6.06800 + 1.97161i) q^{79}\) \(+(2.18512 - 0.474585i) q^{80}\) \(+(8.92320 - 1.17323i) q^{81}\) \(+(-6.45312 + 6.45312i) q^{82}\) \(+(-6.92579 - 3.52887i) q^{83}\) \(+(-1.28522 - 2.33081i) q^{84}\) \(+(-4.95434 - 12.7376i) q^{85}\) \(+(5.53335 + 7.61600i) q^{86}\) \(+(12.7655 + 3.69121i) q^{87}\) \(+(-0.429079 - 2.70910i) q^{88}\) \(+(-8.12567 + 5.90364i) q^{89}\) \(+(-4.90616 + 4.57489i) q^{90}\) \(+(-2.82319 - 2.05117i) q^{91}\) \(+(-2.33630 + 4.58525i) q^{92}\) \(+(9.78829 - 3.53801i) q^{93}\) \(+(2.29694 - 0.746320i) q^{94}\) \(+(-3.83730 + 8.72245i) q^{95}\) \(+(-1.18407 + 1.26411i) q^{96}\) \(+(5.51066 + 10.8153i) q^{97}\) \(+(-0.725621 + 4.58139i) q^{98}\) \(+(5.26115 + 6.32694i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut -\mathstrut 4q^{10} \) \(\mathstrut -\mathstrut 4q^{12} \) \(\mathstrut -\mathstrut 8q^{15} \) \(\mathstrut +\mathstrut 20q^{16} \) \(\mathstrut -\mathstrut 8q^{18} \) \(\mathstrut -\mathstrut 40q^{19} \) \(\mathstrut -\mathstrut 36q^{22} \) \(\mathstrut -\mathstrut 104q^{25} \) \(\mathstrut +\mathstrut 4q^{27} \) \(\mathstrut -\mathstrut 16q^{28} \) \(\mathstrut +\mathstrut 12q^{30} \) \(\mathstrut +\mathstrut 4q^{33} \) \(\mathstrut -\mathstrut 40q^{34} \) \(\mathstrut -\mathstrut 24q^{37} \) \(\mathstrut -\mathstrut 40q^{39} \) \(\mathstrut -\mathstrut 8q^{40} \) \(\mathstrut -\mathstrut 4q^{42} \) \(\mathstrut -\mathstrut 24q^{43} \) \(\mathstrut -\mathstrut 72q^{45} \) \(\mathstrut -\mathstrut 4q^{48} \) \(\mathstrut -\mathstrut 12q^{55} \) \(\mathstrut -\mathstrut 64q^{57} \) \(\mathstrut +\mathstrut 20q^{58} \) \(\mathstrut +\mathstrut 24q^{60} \) \(\mathstrut +\mathstrut 64q^{63} \) \(\mathstrut +\mathstrut 96q^{67} \) \(\mathstrut +\mathstrut 140q^{69} \) \(\mathstrut +\mathstrut 76q^{70} \) \(\mathstrut +\mathstrut 8q^{72} \) \(\mathstrut +\mathstrut 100q^{73} \) \(\mathstrut +\mathstrut 132q^{75} \) \(\mathstrut +\mathstrut 100q^{78} \) \(\mathstrut +\mathstrut 80q^{79} \) \(\mathstrut -\mathstrut 40q^{81} \) \(\mathstrut +\mathstrut 96q^{82} \) \(\mathstrut +\mathstrut 60q^{84} \) \(\mathstrut +\mathstrut 32q^{85} \) \(\mathstrut +\mathstrut 80q^{87} \) \(\mathstrut +\mathstrut 4q^{88} \) \(\mathstrut +\mathstrut 52q^{90} \) \(\mathstrut +\mathstrut 12q^{93} \) \(\mathstrut -\mathstrut 32q^{97} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.987688 + 0.156434i 0.698401 + 0.110616i
\(3\) 0.0565979 + 1.73113i 0.0326768 + 0.999466i
\(4\) 0.951057 + 0.309017i 0.475528 + 0.154508i
\(5\) 1.48885 1.66833i 0.665833 0.746100i
\(6\) −0.214907 + 1.71867i −0.0877353 + 0.701643i
\(7\) −1.08662 + 1.08662i −0.410705 + 0.410705i −0.881984 0.471279i \(-0.843792\pi\)
0.471279 + 0.881984i \(0.343792\pi\)
\(8\) 0.891007 + 0.453990i 0.315018 + 0.160510i
\(9\) −2.99359 + 0.195956i −0.997864 + 0.0653187i
\(10\) 1.73150 1.41488i 0.547549 0.447426i
\(11\) −1.61222 2.21903i −0.486102 0.669062i 0.493561 0.869711i \(-0.335695\pi\)
−0.979663 + 0.200649i \(0.935695\pi\)
\(12\) −0.481119 + 1.66389i −0.138887 + 0.480323i
\(13\) 0.355240 + 2.24289i 0.0985257 + 0.622067i 0.986699 + 0.162558i \(0.0519745\pi\)
−0.888173 + 0.459509i \(0.848025\pi\)
\(14\) −1.24323 + 0.903260i −0.332267 + 0.241406i
\(15\) 2.97236 + 2.48296i 0.767459 + 0.641098i
\(16\) 0.809017 + 0.587785i 0.202254 + 0.146946i
\(17\) 2.77486 5.44598i 0.673003 1.32084i −0.261608 0.965174i \(-0.584253\pi\)
0.934612 0.355669i \(-0.115747\pi\)
\(18\) −2.98739 0.274758i −0.704135 0.0647610i
\(19\) −4.05302 + 1.31690i −0.929826 + 0.302119i −0.734491 0.678618i \(-0.762579\pi\)
−0.195334 + 0.980737i \(0.562579\pi\)
\(20\) 1.93152 1.12660i 0.431901 0.251915i
\(21\) −1.94258 1.81958i −0.423906 0.397065i
\(22\) −1.24524 2.44391i −0.265485 0.521044i
\(23\) −0.805034 + 5.08279i −0.167861 + 1.05983i 0.749566 + 0.661930i \(0.230262\pi\)
−0.917427 + 0.397904i \(0.869738\pi\)
\(24\) −0.735486 + 1.56814i −0.150130 + 0.320095i
\(25\) −0.566658 4.96779i −0.113332 0.993557i
\(26\) 2.27085i 0.445351i
\(27\) −0.508656 5.17120i −0.0978909 0.995197i
\(28\) −1.36922 + 0.697655i −0.258759 + 0.131844i
\(29\) 2.37081 7.29662i 0.440249 1.35495i −0.447361 0.894353i \(-0.647636\pi\)
0.887611 0.460595i \(-0.152364\pi\)
\(30\) 2.54734 + 2.91737i 0.465079 + 0.532637i
\(31\) −1.85692 5.71500i −0.333512 1.02644i −0.967450 0.253061i \(-0.918563\pi\)
0.633938 0.773383i \(-0.281437\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 3.75017 2.91654i 0.652820 0.507705i
\(34\) 3.59264 4.94484i 0.616133 0.848034i
\(35\) 0.195030 + 3.43066i 0.0329660 + 0.579888i
\(36\) −2.90763 0.738706i −0.484605 0.123118i
\(37\) −3.29028 + 0.521129i −0.540919 + 0.0856731i −0.420915 0.907100i \(-0.638291\pi\)
−0.120004 + 0.992773i \(0.538291\pi\)
\(38\) −4.20913 + 0.666660i −0.682810 + 0.108147i
\(39\) −3.86263 + 0.741908i −0.618515 + 0.118800i
\(40\) 2.08398 0.810571i 0.329506 0.128162i
\(41\) −5.36418 + 7.38316i −0.837744 + 1.15306i 0.148687 + 0.988884i \(0.452495\pi\)
−0.986432 + 0.164172i \(0.947505\pi\)
\(42\) −1.63402 2.10107i −0.252135 0.324201i
\(43\) 6.65663 + 6.65663i 1.01513 + 1.01513i 0.999884 + 0.0152431i \(0.00485222\pi\)
0.0152431 + 0.999884i \(0.495148\pi\)
\(44\) −0.847593 2.60862i −0.127779 0.393265i
\(45\) −4.13009 + 5.28605i −0.615677 + 0.787998i
\(46\) −1.59025 + 4.89427i −0.234469 + 0.721621i
\(47\) 2.15191 1.09645i 0.313888 0.159934i −0.289948 0.957042i \(-0.593638\pi\)
0.603836 + 0.797108i \(0.293638\pi\)
\(48\) −0.971742 + 1.43378i −0.140259 + 0.206948i
\(49\) 4.63850i 0.662643i
\(50\) 0.217452 4.99527i 0.0307523 0.706438i
\(51\) 9.58472 + 4.49541i 1.34213 + 0.629483i
\(52\) −0.355240 + 2.24289i −0.0492629 + 0.311033i
\(53\) 0.199432 + 0.391408i 0.0273941 + 0.0537640i 0.904298 0.426902i \(-0.140395\pi\)
−0.876904 + 0.480666i \(0.840395\pi\)
\(54\) 0.306560 5.18710i 0.0417175 0.705875i
\(55\) −6.10242 0.614083i −0.822850 0.0828029i
\(56\) −1.46150 + 0.474872i −0.195302 + 0.0634574i
\(57\) −2.50912 6.94175i −0.332341 0.919457i
\(58\) 3.48307 6.83591i 0.457349 0.897599i
\(59\) 5.86967 + 4.26457i 0.764166 + 0.555199i 0.900185 0.435507i \(-0.143431\pi\)
−0.136019 + 0.990706i \(0.543431\pi\)
\(60\) 2.05960 + 3.27994i 0.265894 + 0.423439i
\(61\) −8.14808 + 5.91993i −1.04326 + 0.757969i −0.970918 0.239411i \(-0.923046\pi\)
−0.0723370 + 0.997380i \(0.523046\pi\)
\(62\) −0.940031 5.93512i −0.119384 0.753761i
\(63\) 3.03998 3.46584i 0.383001 0.436655i
\(64\) 0.587785 + 0.809017i 0.0734732 + 0.101127i
\(65\) 4.27079 + 2.74667i 0.529726 + 0.340683i
\(66\) 4.16024 2.29398i 0.512090 0.282369i
\(67\) 5.28646 + 2.69358i 0.645843 + 0.329074i 0.746047 0.665893i \(-0.231949\pi\)
−0.100204 + 0.994967i \(0.531949\pi\)
\(68\) 4.32195 4.32195i 0.524114 0.524114i
\(69\) −8.84451 1.10594i −1.06475 0.133140i
\(70\) −0.344046 + 3.41894i −0.0411213 + 0.408641i
\(71\) −5.89152 1.91427i −0.699195 0.227182i −0.0622154 0.998063i \(-0.519817\pi\)
−0.636980 + 0.770880i \(0.719817\pi\)
\(72\) −2.75627 1.18446i −0.324830 0.139591i
\(73\) 10.2696 + 1.62655i 1.20197 + 0.190373i 0.725126 0.688616i \(-0.241782\pi\)
0.476841 + 0.878989i \(0.341782\pi\)
\(74\) −3.33129 −0.387255
\(75\) 8.56779 1.26212i 0.989323 0.145737i
\(76\) −4.26159 −0.488838
\(77\) 4.16312 + 0.659373i 0.474431 + 0.0751425i
\(78\) −3.93113 + 0.128525i −0.445113 + 0.0145526i
\(79\) 6.06800 + 1.97161i 0.682703 + 0.221824i 0.629778 0.776775i \(-0.283146\pi\)
0.0529246 + 0.998599i \(0.483146\pi\)
\(80\) 2.18512 0.474585i 0.244304 0.0530602i
\(81\) 8.92320 1.17323i 0.991467 0.130358i
\(82\) −6.45312 + 6.45312i −0.712628 + 0.712628i
\(83\) −6.92579 3.52887i −0.760204 0.387343i 0.0305056 0.999535i \(-0.490288\pi\)
−0.790710 + 0.612191i \(0.790288\pi\)
\(84\) −1.28522 2.33081i −0.140229 0.254313i
\(85\) −4.95434 12.7376i −0.537374 1.38159i
\(86\) 5.53335 + 7.61600i 0.596677 + 0.821255i
\(87\) 12.7655 + 3.69121i 1.36861 + 0.395739i
\(88\) −0.429079 2.70910i −0.0457400 0.288791i
\(89\) −8.12567 + 5.90364i −0.861319 + 0.625785i −0.928243 0.371973i \(-0.878681\pi\)
0.0669245 + 0.997758i \(0.478681\pi\)
\(90\) −4.90616 + 4.57489i −0.517155 + 0.482235i
\(91\) −2.82319 2.05117i −0.295951 0.215021i
\(92\) −2.33630 + 4.58525i −0.243576 + 0.478045i
\(93\) 9.78829 3.53801i 1.01500 0.366875i
\(94\) 2.29694 0.746320i 0.236911 0.0769770i
\(95\) −3.83730 + 8.72245i −0.393698 + 0.894904i
\(96\) −1.18407 + 1.26411i −0.120849 + 0.129018i
\(97\) 5.51066 + 10.8153i 0.559523 + 1.09813i 0.981490 + 0.191514i \(0.0613398\pi\)
−0.421967 + 0.906611i \(0.638660\pi\)
\(98\) −0.725621 + 4.58139i −0.0732988 + 0.462791i
\(99\) 5.26115 + 6.32694i 0.528766 + 0.635881i
\(100\) 0.996207 4.89975i 0.0996207 0.489975i
\(101\) 3.53757i 0.352002i −0.984390 0.176001i \(-0.943684\pi\)
0.984390 0.176001i \(-0.0563161\pi\)
\(102\) 8.76348 + 5.93944i 0.867714 + 0.588093i
\(103\) −14.6853 + 7.48254i −1.44699 + 0.737277i −0.988471 0.151409i \(-0.951619\pi\)
−0.458516 + 0.888686i \(0.651619\pi\)
\(104\) −0.701732 + 2.15971i −0.0688105 + 0.211777i
\(105\) −5.92787 + 0.531789i −0.578501 + 0.0518973i
\(106\) 0.135747 + 0.417787i 0.0131849 + 0.0405791i
\(107\) 1.32720 + 1.32720i 0.128305 + 0.128305i 0.768343 0.640038i \(-0.221081\pi\)
−0.640038 + 0.768343i \(0.721081\pi\)
\(108\) 1.11423 5.07528i 0.107217 0.488369i
\(109\) 10.6696 14.6855i 1.02196 1.40661i 0.111147 0.993804i \(-0.464548\pi\)
0.910818 0.412809i \(-0.135452\pi\)
\(110\) −5.93122 1.56115i −0.565520 0.148850i
\(111\) −1.08836 5.66640i −0.103303 0.537830i
\(112\) −1.51780 + 0.240395i −0.143418 + 0.0227152i
\(113\) −6.54968 + 1.03737i −0.616142 + 0.0975873i −0.456701 0.889620i \(-0.650969\pi\)
−0.159441 + 0.987207i \(0.550969\pi\)
\(114\) −1.39230 7.24880i −0.130401 0.678912i
\(115\) 7.28120 + 8.91056i 0.678975 + 0.830914i
\(116\) 4.50956 6.20687i 0.418702 0.576294i
\(117\) −1.50295 6.64470i −0.138948 0.614303i
\(118\) 5.13028 + 5.13028i 0.472281 + 0.472281i
\(119\) 2.90249 + 8.93296i 0.266071 + 0.818883i
\(120\) 1.52115 + 3.56176i 0.138861 + 0.325142i
\(121\) 1.07435 3.30652i 0.0976685 0.300593i
\(122\) −8.97385 + 4.57240i −0.812454 + 0.413966i
\(123\) −13.0848 8.86820i −1.17982 0.799619i
\(124\) 6.00911i 0.539634i
\(125\) −9.13158 6.45091i −0.816753 0.576987i
\(126\) 3.54473 2.94761i 0.315789 0.262594i
\(127\) 1.37095 8.65582i 0.121652 0.768080i −0.849142 0.528165i \(-0.822880\pi\)
0.970794 0.239915i \(-0.0771197\pi\)
\(128\) 0.453990 + 0.891007i 0.0401275 + 0.0787546i
\(129\) −11.1467 + 11.9002i −0.981414 + 1.04776i
\(130\) 3.78853 + 3.38096i 0.332276 + 0.296529i
\(131\) 11.0161 3.57935i 0.962481 0.312729i 0.214704 0.976679i \(-0.431121\pi\)
0.747777 + 0.663950i \(0.231121\pi\)
\(132\) 4.46788 1.61493i 0.388879 0.140562i
\(133\) 2.97312 5.83508i 0.257802 0.505966i
\(134\) 4.80000 + 3.48741i 0.414657 + 0.301266i
\(135\) −9.38458 6.85052i −0.807696 0.589599i
\(136\) 4.94484 3.59264i 0.424017 0.308066i
\(137\) 1.14803 + 7.24839i 0.0980830 + 0.619272i 0.986940 + 0.161087i \(0.0515001\pi\)
−0.888857 + 0.458184i \(0.848500\pi\)
\(138\) −8.56261 2.47591i −0.728898 0.210763i
\(139\) −5.12432 7.05302i −0.434639 0.598230i 0.534371 0.845250i \(-0.320549\pi\)
−0.969010 + 0.247020i \(0.920549\pi\)
\(140\) −0.874649 + 3.32302i −0.0739214 + 0.280847i
\(141\) 2.01989 + 3.66317i 0.170105 + 0.308494i
\(142\) −5.51953 2.81234i −0.463189 0.236007i
\(143\) 4.40432 4.40432i 0.368308 0.368308i
\(144\) −2.53705 1.60106i −0.211421 0.133422i
\(145\) −8.64339 14.8189i −0.717794 1.23064i
\(146\) 9.88873 + 3.21304i 0.818397 + 0.265913i
\(147\) −8.02983 + 0.262529i −0.662289 + 0.0216531i
\(148\) −3.29028 0.521129i −0.270459 0.0428366i
\(149\) 0.907025 0.0743064 0.0371532 0.999310i \(-0.488171\pi\)
0.0371532 + 0.999310i \(0.488171\pi\)
\(150\) 8.65975 + 0.0937144i 0.707065 + 0.00765175i
\(151\) −7.07775 −0.575979 −0.287989 0.957634i \(-0.592987\pi\)
−0.287989 + 0.957634i \(0.592987\pi\)
\(152\) −4.20913 0.666660i −0.341405 0.0540733i
\(153\) −7.23964 + 16.8468i −0.585290 + 1.36198i
\(154\) 4.00871 + 1.30251i 0.323031 + 0.104959i
\(155\) −12.2992 5.41082i −0.987894 0.434608i
\(156\) −3.90284 0.488021i −0.312477 0.0390730i
\(157\) −3.09020 + 3.09020i −0.246625 + 0.246625i −0.819584 0.572959i \(-0.805795\pi\)
0.572959 + 0.819584i \(0.305795\pi\)
\(158\) 5.68486 + 2.89658i 0.452263 + 0.230440i
\(159\) −0.666289 + 0.367395i −0.0528401 + 0.0291363i
\(160\) 2.23246 0.126913i 0.176492 0.0100334i
\(161\) −4.64830 6.39784i −0.366338 0.504221i
\(162\) 8.99688 + 0.237114i 0.706861 + 0.0186295i
\(163\) −1.19195 7.52570i −0.0933610 0.589458i −0.989370 0.145422i \(-0.953546\pi\)
0.896009 0.444036i \(-0.146454\pi\)
\(164\) −7.38316 + 5.36418i −0.576528 + 0.418872i
\(165\) 0.717671 10.5988i 0.0558706 0.825116i
\(166\) −6.28849 4.56885i −0.488081 0.354612i
\(167\) −7.13033 + 13.9941i −0.551761 + 1.08289i 0.431741 + 0.901998i \(0.357899\pi\)
−0.983502 + 0.180895i \(0.942101\pi\)
\(168\) −0.904781 2.50317i −0.0698053 0.193124i
\(169\) 7.45935 2.42369i 0.573797 0.186438i
\(170\) −2.90074 13.3558i −0.222477 1.02435i
\(171\) 11.8750 4.73649i 0.908106 0.362209i
\(172\) 4.27382 + 8.38785i 0.325876 + 0.639567i
\(173\) 2.95227 18.6399i 0.224457 1.41717i −0.575840 0.817562i \(-0.695325\pi\)
0.800297 0.599603i \(-0.204675\pi\)
\(174\) 12.0309 + 5.64273i 0.912064 + 0.427774i
\(175\) 6.01385 + 4.78237i 0.454605 + 0.361513i
\(176\) 2.74287i 0.206751i
\(177\) −7.05029 + 10.4025i −0.529932 + 0.781900i
\(178\) −8.94916 + 4.55982i −0.670768 + 0.341773i
\(179\) 8.00048 24.6229i 0.597984 1.84040i 0.0587089 0.998275i \(-0.481302\pi\)
0.539275 0.842130i \(-0.318698\pi\)
\(180\) −5.56143 + 3.75107i −0.414524 + 0.279588i
\(181\) −2.63278 8.10287i −0.195693 0.602282i −0.999968 0.00802385i \(-0.997446\pi\)
0.804275 0.594258i \(-0.202554\pi\)
\(182\) −2.46756 2.46756i −0.182908 0.182908i
\(183\) −10.7093 13.7703i −0.791655 1.01793i
\(184\) −3.02483 + 4.16332i −0.222993 + 0.306924i
\(185\) −4.02931 + 6.26516i −0.296241 + 0.460624i
\(186\) 10.2212 1.96323i 0.749458 0.143951i
\(187\) −16.5585 + 2.62260i −1.21087 + 0.191784i
\(188\) 2.38541 0.377811i 0.173974 0.0275547i
\(189\) 6.17186 + 5.06642i 0.448937 + 0.368528i
\(190\) −5.15454 + 8.01477i −0.373950 + 0.581453i
\(191\) 5.15251 7.09182i 0.372822 0.513146i −0.580843 0.814016i \(-0.697277\pi\)
0.953665 + 0.300870i \(0.0972769\pi\)
\(192\) −1.36724 + 1.06332i −0.0986723 + 0.0767384i
\(193\) 16.8199 + 16.8199i 1.21072 + 1.21072i 0.970790 + 0.239930i \(0.0771245\pi\)
0.239930 + 0.970790i \(0.422875\pi\)
\(194\) 3.75093 + 11.5442i 0.269301 + 0.828824i
\(195\) −4.51312 + 7.54873i −0.323191 + 0.540576i
\(196\) −1.43338 + 4.41148i −0.102384 + 0.315105i
\(197\) 6.24937 3.18421i 0.445249 0.226866i −0.216966 0.976179i \(-0.569616\pi\)
0.662216 + 0.749313i \(0.269616\pi\)
\(198\) 4.20663 + 7.07207i 0.298952 + 0.502590i
\(199\) 18.4867i 1.31048i 0.755419 + 0.655242i \(0.227433\pi\)
−0.755419 + 0.655242i \(0.772567\pi\)
\(200\) 1.75043 4.68359i 0.123774 0.331180i
\(201\) −4.36373 + 9.30397i −0.307794 + 0.656252i
\(202\) 0.553398 3.49402i 0.0389370 0.245838i
\(203\) 5.35249 + 10.5049i 0.375671 + 0.737296i
\(204\) 7.72646 + 7.23723i 0.540960 + 0.506707i
\(205\) 4.33110 + 19.9416i 0.302497 + 1.39278i
\(206\) −15.6750 + 5.09313i −1.09213 + 0.354855i
\(207\) 1.41394 15.3735i 0.0982757 1.06854i
\(208\) −1.03095 + 2.02334i −0.0714832 + 0.140294i
\(209\) 9.45659 + 6.87061i 0.654126 + 0.475250i
\(210\) −5.93808 0.402082i −0.409767 0.0277463i
\(211\) 12.6782 9.21124i 0.872802 0.634128i −0.0585355 0.998285i \(-0.518643\pi\)
0.931337 + 0.364158i \(0.118643\pi\)
\(212\) 0.0687197 + 0.433879i 0.00471969 + 0.0297989i
\(213\) 2.98040 10.3073i 0.204214 0.706246i
\(214\) 1.10324 + 1.51848i 0.0754158 + 0.103801i
\(215\) 21.0162 1.19475i 1.43329 0.0814811i
\(216\) 1.89446 4.83849i 0.128902 0.329218i
\(217\) 8.22782 + 4.19228i 0.558541 + 0.284591i
\(218\) 12.8356 12.8356i 0.869335 0.869335i
\(219\) −2.23452 + 17.8701i −0.150995 + 1.20755i
\(220\) −5.61398 2.46978i −0.378495 0.166512i
\(221\) 13.2005 + 4.28910i 0.887961 + 0.288516i
\(222\) −0.188544 5.76689i −0.0126543 0.387048i
\(223\) −24.2212 3.83626i −1.62197 0.256895i −0.721695 0.692211i \(-0.756637\pi\)
−0.900278 + 0.435316i \(0.856637\pi\)
\(224\) −1.53672 −0.102676
\(225\) 2.66981 + 14.7605i 0.177987 + 0.984033i
\(226\) −6.63132 −0.441109
\(227\) −21.5518 3.41347i −1.43044 0.226560i −0.607335 0.794446i \(-0.707761\pi\)
−0.823107 + 0.567886i \(0.807761\pi\)
\(228\) −0.241197 7.37736i −0.0159737 0.488577i
\(229\) 14.1502 + 4.59767i 0.935070 + 0.303823i 0.736634 0.676291i \(-0.236414\pi\)
0.198436 + 0.980114i \(0.436414\pi\)
\(230\) 5.79763 + 9.93989i 0.382285 + 0.655417i
\(231\) −0.905834 + 7.24420i −0.0595995 + 0.476633i
\(232\) 5.42501 5.42501i 0.356169 0.356169i
\(233\) −8.91074 4.54025i −0.583762 0.297442i 0.137059 0.990563i \(-0.456235\pi\)
−0.720821 + 0.693121i \(0.756235\pi\)
\(234\) −0.444988 6.79801i −0.0290897 0.444400i
\(235\) 1.37462 5.22255i 0.0896704 0.340681i
\(236\) 4.26457 + 5.86967i 0.277600 + 0.382083i
\(237\) −3.06967 + 10.6161i −0.199397 + 0.689587i
\(238\) 1.46934 + 9.27703i 0.0952429 + 0.601340i
\(239\) 5.42628 3.94243i 0.350997 0.255014i −0.398290 0.917260i \(-0.630396\pi\)
0.749287 + 0.662245i \(0.230396\pi\)
\(240\) 0.945240 + 3.75587i 0.0610150 + 0.242440i
\(241\) 7.73169 + 5.61740i 0.498042 + 0.361849i 0.808269 0.588814i \(-0.200405\pi\)
−0.310227 + 0.950663i \(0.600405\pi\)
\(242\) 1.57838 3.09774i 0.101462 0.199131i
\(243\) 2.53604 + 15.3808i 0.162687 + 0.986678i
\(244\) −9.57865 + 3.11229i −0.613210 + 0.199244i
\(245\) 7.73856 + 6.90603i 0.494398 + 0.441210i
\(246\) −11.5364 10.8059i −0.735534 0.688961i
\(247\) −4.39347 8.62267i −0.279550 0.548647i
\(248\) 0.940031 5.93512i 0.0596920 0.376881i
\(249\) 5.71693 12.1891i 0.362295 0.772455i
\(250\) −8.01001 7.79998i −0.506598 0.493314i
\(251\) 14.1774i 0.894872i −0.894316 0.447436i \(-0.852337\pi\)
0.894316 0.447436i \(-0.147663\pi\)
\(252\) 3.96219 2.35680i 0.249595 0.148465i
\(253\) 12.5767 6.40816i 0.790692 0.402878i
\(254\) 2.70814 8.33479i 0.169924 0.522971i
\(255\) 21.7700 9.29751i 1.36329 0.582233i
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 13.7580 + 13.7580i 0.858198 + 0.858198i 0.991126 0.132928i \(-0.0424378\pi\)
−0.132928 + 0.991126i \(0.542438\pi\)
\(258\) −12.8711 + 10.0100i −0.801319 + 0.623194i
\(259\) 3.00902 4.14157i 0.186972 0.257344i
\(260\) 3.21299 + 3.93199i 0.199261 + 0.243852i
\(261\) −5.66744 + 22.3077i −0.350806 + 1.38081i
\(262\) 11.4404 1.81198i 0.706791 0.111945i
\(263\) 11.7698 1.86416i 0.725759 0.114949i 0.217386 0.976086i \(-0.430247\pi\)
0.508373 + 0.861137i \(0.330247\pi\)
\(264\) 4.66550 0.896119i 0.287142 0.0551523i
\(265\) 0.949923 + 0.250028i 0.0583533 + 0.0153591i
\(266\) 3.84933 5.29814i 0.236017 0.324850i
\(267\) −10.6798 13.7324i −0.653596 0.840410i
\(268\) 4.19536 + 4.19536i 0.256272 + 0.256272i
\(269\) −4.78303 14.7206i −0.291626 0.897534i −0.984334 0.176315i \(-0.943582\pi\)
0.692707 0.721219i \(-0.256418\pi\)
\(270\) −8.19738 8.23425i −0.498877 0.501121i
\(271\) −1.58590 + 4.88090i −0.0963366 + 0.296494i −0.987600 0.156993i \(-0.949820\pi\)
0.891263 + 0.453487i \(0.149820\pi\)
\(272\) 5.44598 2.77486i 0.330211 0.168251i
\(273\) 3.39104 5.00339i 0.205235 0.302819i
\(274\) 7.33874i 0.443350i
\(275\) −10.1101 + 9.26658i −0.609660 + 0.558796i
\(276\) −8.06987 3.78491i −0.485749 0.227825i
\(277\) −0.610374 + 3.85375i −0.0366738 + 0.231549i −0.999216 0.0395814i \(-0.987398\pi\)
0.962543 + 0.271131i \(0.0873976\pi\)
\(278\) −3.95790 7.76781i −0.237379 0.465882i
\(279\) 6.67874 + 16.7445i 0.399846 + 1.00247i
\(280\) −1.38372 + 3.14529i −0.0826929 + 0.187967i
\(281\) −2.23510 + 0.726229i −0.133335 + 0.0433232i −0.374924 0.927055i \(-0.622331\pi\)
0.241589 + 0.970379i \(0.422331\pi\)
\(282\) 1.42198 + 3.93405i 0.0846774 + 0.234269i
\(283\) 1.55470 3.05128i 0.0924175 0.181380i −0.840170 0.542322i \(-0.817545\pi\)
0.932588 + 0.360943i \(0.117545\pi\)
\(284\) −5.01163 3.64116i −0.297386 0.216063i
\(285\) −15.3168 6.14917i −0.907291 0.364245i
\(286\) 5.03908 3.66111i 0.297967 0.216486i
\(287\) −2.19387 13.8516i −0.129500 0.817631i
\(288\) −2.25535 1.97823i −0.132898 0.116568i
\(289\) −11.9665 16.4704i −0.703909 0.968848i
\(290\) −6.21879 15.9885i −0.365180 0.938880i
\(291\) −18.4107 + 10.1518i −1.07926 + 0.595107i
\(292\) 9.26435 + 4.72042i 0.542155 + 0.276242i
\(293\) −13.9865 + 13.9865i −0.817101 + 0.817101i −0.985687 0.168586i \(-0.946080\pi\)
0.168586 + 0.985687i \(0.446080\pi\)
\(294\) −7.97204 0.996845i −0.464939 0.0581372i
\(295\) 15.8538 3.44326i 0.923042 0.200474i
\(296\) −3.16825 1.02943i −0.184151 0.0598342i
\(297\) −10.6550 + 9.46581i −0.618263 + 0.549262i
\(298\) 0.895858 + 0.141890i 0.0518957 + 0.00821947i
\(299\) −11.6861 −0.675827
\(300\) 8.53847 + 1.44724i 0.492969 + 0.0835566i
\(301\) −14.4665 −0.833835
\(302\) −6.99061 1.10720i −0.402264 0.0637124i
\(303\) 6.12398 0.200219i 0.351814 0.0115023i
\(304\) −4.05302 1.31690i −0.232456 0.0755297i
\(305\) −2.25486 + 22.4076i −0.129113 + 1.28305i
\(306\) −9.78593 + 15.5069i −0.559424 + 0.886468i
\(307\) −0.108217 + 0.108217i −0.00617628 + 0.00617628i −0.710188 0.704012i \(-0.751390\pi\)
0.704012 + 0.710188i \(0.251390\pi\)
\(308\) 3.75560 + 1.91357i 0.213995 + 0.109036i
\(309\) −13.7844 24.9986i −0.784166 1.42212i
\(310\) −11.3013 7.26822i −0.641872 0.412807i
\(311\) −9.64088 13.2695i −0.546684 0.752446i 0.442874 0.896584i \(-0.353959\pi\)
−0.989558 + 0.144138i \(0.953959\pi\)
\(312\) −3.77844 1.09255i −0.213912 0.0618535i
\(313\) −3.64820 23.0338i −0.206208 1.30195i −0.845911 0.533325i \(-0.820942\pi\)
0.639702 0.768623i \(-0.279058\pi\)
\(314\) −3.53557 + 2.56874i −0.199523 + 0.144962i
\(315\) −1.25610 10.2318i −0.0707732 0.576496i
\(316\) 5.16175 + 3.75023i 0.290371 + 0.210967i
\(317\) −3.25049 + 6.37945i −0.182566 + 0.358305i −0.964093 0.265566i \(-0.914441\pi\)
0.781527 + 0.623872i \(0.214441\pi\)
\(318\) −0.715559 + 0.258641i −0.0401266 + 0.0145039i
\(319\) −20.0137 + 6.50283i −1.12055 + 0.364089i
\(320\) 2.22483 + 0.223884i 0.124372 + 0.0125155i
\(321\) −2.22243 + 2.37266i −0.124044 + 0.132429i
\(322\) −3.59023 7.04623i −0.200076 0.392671i
\(323\) −4.07474 + 25.7269i −0.226724 + 1.43148i
\(324\) 8.84902 + 1.64162i 0.491612 + 0.0912009i
\(325\) 10.9409 3.03571i 0.606893 0.168391i
\(326\) 7.61951i 0.422005i
\(327\) 26.0263 + 17.6393i 1.43926 + 0.975455i
\(328\) −8.13141 + 4.14316i −0.448982 + 0.228768i
\(329\) −1.14688 + 3.52974i −0.0632297 + 0.194601i
\(330\) 2.36685 10.3561i 0.130291 0.570082i
\(331\) 5.06152 + 15.5778i 0.278206 + 0.856231i 0.988353 + 0.152177i \(0.0486285\pi\)
−0.710147 + 0.704054i \(0.751371\pi\)
\(332\) −5.49634 5.49634i −0.301651 0.301651i
\(333\) 9.74764 2.20480i 0.534168 0.120822i
\(334\) −9.23170 + 12.7063i −0.505136 + 0.695260i
\(335\) 12.3645 4.80922i 0.675546 0.262756i
\(336\) −0.502059 2.61389i −0.0273896 0.142600i
\(337\) 9.30661 1.47402i 0.506963 0.0802951i 0.102287 0.994755i \(-0.467384\pi\)
0.404677 + 0.914460i \(0.367384\pi\)
\(338\) 7.74667 1.22695i 0.421363 0.0667374i
\(339\) −2.16651 11.2796i −0.117669 0.612624i
\(340\) −0.775714 13.6452i −0.0420690 0.740014i
\(341\) −9.68798 + 13.3344i −0.524634 + 0.722096i
\(342\) 12.4698 2.82051i 0.674288 0.152516i
\(343\) −12.6467 12.6467i −0.682856 0.682856i
\(344\) 2.90906 + 8.95315i 0.156846 + 0.482722i
\(345\) −15.0132 + 13.1090i −0.808284 + 0.705764i
\(346\) 5.83185 17.9486i 0.313522 0.964922i
\(347\) 21.2743 10.8398i 1.14207 0.581912i 0.222533 0.974925i \(-0.428567\pi\)
0.919533 + 0.393013i \(0.128567\pi\)
\(348\) 11.0001 + 7.45532i 0.589668 + 0.399647i
\(349\) 21.3598i 1.14336i −0.820476 0.571681i \(-0.806292\pi\)
0.820476 0.571681i \(-0.193708\pi\)
\(350\) 5.19169 + 5.66426i 0.277507 + 0.302768i
\(351\) 11.4178 2.97788i 0.609435 0.158947i
\(352\) 0.429079 2.70910i 0.0228700 0.144395i
\(353\) 5.39943 + 10.5970i 0.287383 + 0.564020i 0.988891 0.148641i \(-0.0474898\pi\)
−0.701509 + 0.712661i \(0.747490\pi\)
\(354\) −8.59080 + 9.17152i −0.456596 + 0.487461i
\(355\) −11.9652 + 6.97895i −0.635048 + 0.370404i
\(356\) −9.55229 + 3.10373i −0.506271 + 0.164497i
\(357\) −15.2998 + 5.53017i −0.809751 + 0.292687i
\(358\) 11.7539 23.0682i 0.621211 1.21919i
\(359\) −25.6736 18.6530i −1.35500 0.984467i −0.998745 0.0500792i \(-0.984053\pi\)
−0.356257 0.934388i \(-0.615947\pi\)
\(360\) −6.07975 + 2.83489i −0.320431 + 0.149412i
\(361\) −0.678618 + 0.493045i −0.0357167 + 0.0259497i
\(362\) −1.33280 8.41497i −0.0700504 0.442281i
\(363\) 5.78481 + 1.67270i 0.303624 + 0.0877939i
\(364\) −2.05117 2.82319i −0.107510 0.147975i
\(365\) 18.0035 14.7114i 0.942347 0.770032i
\(366\) −8.42331 15.2761i −0.440293 0.798493i
\(367\) −7.10027 3.61777i −0.370631 0.188846i 0.258747 0.965945i \(-0.416690\pi\)
−0.629378 + 0.777099i \(0.716690\pi\)
\(368\) −3.63887 + 3.63887i −0.189689 + 0.189689i
\(369\) 14.6114 23.1533i 0.760639 1.20531i
\(370\) −4.95979 + 5.55770i −0.257847 + 0.288931i
\(371\) −0.642021 0.208605i −0.0333320 0.0108302i
\(372\) 10.4025 0.340103i 0.539345 0.0176335i
\(373\) 6.60991 + 1.04691i 0.342248 + 0.0542068i 0.325193 0.945648i \(-0.394571\pi\)
0.0170555 + 0.999855i \(0.494571\pi\)
\(374\) −16.7649 −0.866890
\(375\) 10.6505 16.1730i 0.549990 0.835171i
\(376\) 2.41514 0.124551
\(377\) 17.2077 + 2.72544i 0.886244 + 0.140367i
\(378\) 5.30331 + 5.96954i 0.272773 + 0.307040i
\(379\) −2.68053 0.870958i −0.137690 0.0447381i 0.239361 0.970931i \(-0.423062\pi\)
−0.377051 + 0.926192i \(0.623062\pi\)
\(380\) −6.34487 + 7.10975i −0.325485 + 0.364722i
\(381\) 15.0619 + 1.88338i 0.771645 + 0.0964886i
\(382\) 6.19848 6.19848i 0.317142 0.317142i
\(383\) −4.98907 2.54206i −0.254930 0.129893i 0.321856 0.946789i \(-0.395693\pi\)
−0.576786 + 0.816895i \(0.695693\pi\)
\(384\) −1.51675 + 0.836344i −0.0774013 + 0.0426795i
\(385\) 7.29830 5.96375i 0.371956 0.303941i
\(386\) 13.9816 + 19.2440i 0.711643 + 0.979493i
\(387\) −21.2317 18.6228i −1.07927 0.946652i
\(388\) 1.89884 + 11.9888i 0.0963992 + 0.608641i
\(389\) −4.72410 + 3.43226i −0.239521 + 0.174022i −0.701070 0.713092i \(-0.747294\pi\)
0.461549 + 0.887115i \(0.347294\pi\)
\(390\) −5.63844 + 6.74978i −0.285513 + 0.341789i
\(391\) 25.4469 + 18.4882i 1.28690 + 0.934991i
\(392\) −2.10584 + 4.13293i −0.106361 + 0.208745i
\(393\) 6.81979 + 18.8677i 0.344013 + 0.951748i
\(394\) 6.67055 2.16739i 0.336058 0.109192i
\(395\) 12.3236 7.18800i 0.620069 0.361667i
\(396\) 3.04852 + 7.64306i 0.153194 + 0.384078i
\(397\) −2.73792 5.37347i −0.137412 0.269687i 0.812038 0.583605i \(-0.198358\pi\)
−0.949450 + 0.313918i \(0.898358\pi\)
\(398\) −2.89195 + 18.2591i −0.144960 + 0.915244i
\(399\) 10.2695 + 4.81659i 0.514120 + 0.241131i
\(400\) 2.46156 4.35210i 0.123078 0.217605i
\(401\) 21.8156i 1.08942i 0.838626 + 0.544708i \(0.183360\pi\)
−0.838626 + 0.544708i \(0.816640\pi\)
\(402\) −5.76547 + 8.50679i −0.287555 + 0.424280i
\(403\) 12.1585 6.19506i 0.605658 0.308598i
\(404\) 1.09317 3.36443i 0.0543872 0.167387i
\(405\) 11.3280 16.6336i 0.562891 0.826531i
\(406\) 3.64327 + 11.2128i 0.180812 + 0.556484i
\(407\) 6.46105 + 6.46105i 0.320262 + 0.320262i
\(408\) 6.49918 + 8.35681i 0.321757 + 0.413724i
\(409\) −10.2656 + 14.1294i −0.507603 + 0.698656i −0.983513 0.180838i \(-0.942119\pi\)
0.475910 + 0.879494i \(0.342119\pi\)
\(410\) 1.15822 + 20.3737i 0.0572004 + 1.00618i
\(411\) −12.4829 + 2.39763i −0.615736 + 0.118266i
\(412\) −16.2788 + 2.57831i −0.801999 + 0.127024i
\(413\) −11.0121 + 1.74414i −0.541870 + 0.0858237i
\(414\) 3.80149 14.9631i 0.186833 0.735395i
\(415\) −16.1988 + 6.30056i −0.795166 + 0.309282i
\(416\) −1.33477 + 1.83716i −0.0654427 + 0.0900741i
\(417\) 11.9196 9.27003i 0.583708 0.453955i
\(418\) 8.26536 + 8.26536i 0.404272 + 0.404272i
\(419\) 2.70937 + 8.33859i 0.132361 + 0.407367i 0.995170 0.0981637i \(-0.0312969\pi\)
−0.862809 + 0.505530i \(0.831297\pi\)
\(420\) −5.80207 1.32605i −0.283112 0.0647047i
\(421\) −10.5794 + 32.5601i −0.515610 + 1.58688i 0.266560 + 0.963818i \(0.414113\pi\)
−0.782170 + 0.623065i \(0.785887\pi\)
\(422\) 13.9630 7.11453i 0.679710 0.346330i
\(423\) −6.22708 + 3.70401i −0.302771 + 0.180095i
\(424\) 0.439287i 0.0213337i
\(425\) −28.6269 10.6989i −1.38861 0.518974i
\(426\) 4.55612 9.71418i 0.220745 0.470653i
\(427\) 2.42116 15.2866i 0.117168 0.739772i
\(428\) 0.852113 + 1.67237i 0.0411884 + 0.0808369i
\(429\) 7.87370 + 7.37515i 0.380146 + 0.356076i
\(430\) 20.9443 + 2.10762i 1.01003 + 0.101638i
\(431\) −2.50367 + 0.813491i −0.120597 + 0.0391845i −0.368694 0.929551i \(-0.620195\pi\)
0.248097 + 0.968735i \(0.420195\pi\)
\(432\) 2.62804 4.48257i 0.126442 0.215668i
\(433\) −17.1431 + 33.6451i −0.823843 + 1.61688i −0.0373338 + 0.999303i \(0.511886\pi\)
−0.786509 + 0.617579i \(0.788114\pi\)
\(434\) 7.47070 + 5.42778i 0.358605 + 0.260542i
\(435\) 25.1641 15.8015i 1.20653 0.757624i
\(436\) 14.6855 10.6696i 0.703307 0.510982i
\(437\) −3.43073 21.6608i −0.164114 1.03618i
\(438\) −5.00250 + 17.3005i −0.239029 + 0.826649i
\(439\) 1.73789 + 2.39200i 0.0829451 + 0.114164i 0.848473 0.529238i \(-0.177522\pi\)
−0.765528 + 0.643402i \(0.777522\pi\)
\(440\) −5.15851 3.31759i −0.245922 0.158160i
\(441\) −0.908943 13.8858i −0.0432830 0.661228i
\(442\) 12.3670 + 6.30131i 0.588239 + 0.299723i
\(443\) −8.33207 + 8.33207i −0.395869 + 0.395869i −0.876773 0.480904i \(-0.840308\pi\)
0.480904 + 0.876773i \(0.340308\pi\)
\(444\) 0.715917 5.72539i 0.0339759 0.271715i
\(445\) −2.24866 + 22.3459i −0.106597 + 1.05930i
\(446\) −23.3229 7.57807i −1.10437 0.358832i
\(447\) 0.0513357 + 1.57017i 0.00242810 + 0.0742667i
\(448\) −1.51780 0.240395i −0.0717092 0.0113576i
\(449\) −11.1961 −0.528377 −0.264188 0.964471i \(-0.585104\pi\)
−0.264188 + 0.964471i \(0.585104\pi\)
\(450\) 0.327892 + 14.9964i 0.0154570 + 0.706938i
\(451\) 25.0317 1.17869
\(452\) −6.54968 1.03737i −0.308071 0.0487936i
\(453\) −0.400586 12.2525i −0.0188212 0.575671i
\(454\) −20.7525 6.74288i −0.973961 0.316459i
\(455\) −7.62534 + 1.65614i −0.357481 + 0.0776410i
\(456\) 0.915845 7.32426i 0.0428884 0.342990i
\(457\) −7.27927 + 7.27927i −0.340510 + 0.340510i −0.856559 0.516049i \(-0.827402\pi\)
0.516049 + 0.856559i \(0.327402\pi\)
\(458\) 13.2567 + 6.75464i 0.619446 + 0.315624i
\(459\) −29.5737 11.5792i −1.38038 0.540473i
\(460\) 4.17131 + 10.7245i 0.194488 + 0.500031i
\(461\) −11.8441 16.3020i −0.551633 0.759258i 0.438600 0.898683i \(-0.355475\pi\)
−0.990233 + 0.139425i \(0.955475\pi\)
\(462\) −2.02792 + 7.01331i −0.0943475 + 0.326289i
\(463\) −0.0186291 0.117620i −0.000865770 0.00546626i 0.987252 0.159167i \(-0.0508808\pi\)
−0.988117 + 0.153701i \(0.950881\pi\)
\(464\) 6.20687 4.50956i 0.288147 0.209351i
\(465\) 8.67070 21.5977i 0.402094 1.00157i
\(466\) −8.09078 5.87830i −0.374798 0.272307i
\(467\) −7.83859 + 15.3841i −0.362727 + 0.711892i −0.998184 0.0602449i \(-0.980812\pi\)
0.635457 + 0.772136i \(0.280812\pi\)
\(468\) 0.623934 6.78393i 0.0288413 0.313587i
\(469\) −8.67129 + 2.81747i −0.400403 + 0.130099i
\(470\) 2.17468 4.94321i 0.100311 0.228013i
\(471\) −5.52442 5.17462i −0.254552 0.238434i
\(472\) 3.29384 + 6.46453i 0.151611 + 0.297554i
\(473\) 4.03931 25.5032i 0.185728 1.17264i
\(474\) −4.69260 + 10.0052i −0.215538 + 0.459552i
\(475\) 8.83878 + 19.3883i 0.405551 + 0.889596i
\(476\) 9.39267i 0.430512i
\(477\) −0.673718 1.13264i −0.0308474 0.0518598i
\(478\) 5.97621 3.04503i 0.273345 0.139276i
\(479\) 6.64843 20.4618i 0.303775 0.934922i −0.676357 0.736574i \(-0.736442\pi\)
0.980132 0.198348i \(-0.0635576\pi\)
\(480\) 0.346055 + 3.85749i 0.0157952 + 0.176070i
\(481\) −2.33768 7.19463i −0.106589 0.328047i
\(482\) 6.75775 + 6.75775i 0.307807 + 0.307807i
\(483\) 10.8124 8.40890i 0.491980 0.382618i
\(484\) 2.04354 2.81269i 0.0928882 0.127850i
\(485\) 26.2480 + 6.90871i 1.19186 + 0.313708i
\(486\) 0.0987294 + 15.5881i 0.00447846 + 0.707093i
\(487\) 2.58759 0.409833i 0.117255 0.0185713i −0.0975313 0.995232i \(-0.531095\pi\)
0.214786 + 0.976661i \(0.431095\pi\)
\(488\) −9.94759 + 1.57554i −0.450306 + 0.0713215i
\(489\) 12.9605 2.48936i 0.586093 0.112573i
\(490\) 6.56294 + 8.03158i 0.296483 + 0.362830i
\(491\) −4.48442 + 6.17227i −0.202379 + 0.278551i −0.898128 0.439734i \(-0.855073\pi\)
0.695749 + 0.718285i \(0.255073\pi\)
\(492\) −9.70394 12.4776i −0.437488 0.562533i
\(493\) −33.1585 33.1585i −1.49338 1.49338i
\(494\) −2.99050 9.20380i −0.134549 0.414099i
\(495\) 18.3885 + 0.642508i 0.826501 + 0.0288786i
\(496\) 1.85692 5.71500i 0.0833780 0.256611i
\(497\) 8.48196 4.32177i 0.380468 0.193858i
\(498\) 7.55334 11.1447i 0.338473 0.499408i
\(499\) 26.6590i 1.19342i 0.802456 + 0.596711i \(0.203526\pi\)
−0.802456 + 0.596711i \(0.796474\pi\)
\(500\) −6.69121 8.95699i −0.299240 0.400569i
\(501\) −24.6290 11.5515i −1.10034 0.516081i
\(502\) 2.21784 14.0029i 0.0989870 0.624979i
\(503\) 7.87808 + 15.4616i 0.351266 + 0.689399i 0.997263 0.0739419i \(-0.0235579\pi\)
−0.645996 + 0.763340i \(0.723558\pi\)
\(504\) 4.28210 1.70796i 0.190740 0.0760787i
\(505\) −5.90184 5.26691i −0.262629 0.234374i
\(506\) 13.4243 4.36183i 0.596785 0.193907i
\(507\) 4.61790 + 12.7759i 0.205088 + 0.567398i
\(508\) 3.97865 7.80853i 0.176524 0.346448i
\(509\) 33.7904 + 24.5502i 1.49773 + 1.08817i 0.971273 + 0.237969i \(0.0764816\pi\)
0.526461 + 0.850199i \(0.323518\pi\)
\(510\) 22.9565 5.77746i 1.01653 0.255830i
\(511\) −12.9266 + 9.39175i −0.571841 + 0.415467i
\(512\) 0.156434 + 0.987688i 0.00691349 + 0.0436501i
\(513\) 8.87156 + 20.2891i 0.391689 + 0.895785i
\(514\) 11.4364 + 15.7408i 0.504436 + 0.694297i
\(515\) −9.38086 + 35.6403i −0.413370 + 1.57050i
\(516\) −14.2785 + 7.87326i −0.628577 + 0.346601i
\(517\) −5.90240 3.00742i −0.259587 0.132266i
\(518\) 3.61986 3.61986i 0.159048 0.159048i
\(519\) 32.4351 + 4.05577i 1.42374 + 0.178029i
\(520\) 2.55834 + 4.38620i 0.112190 + 0.192348i
\(521\) −16.9663 5.51270i −0.743309 0.241516i −0.0872091 0.996190i \(-0.527795\pi\)
−0.656099 + 0.754674i \(0.727795\pi\)
\(522\) −9.08735 + 21.1465i −0.397743 + 0.925555i
\(523\) 5.49799 + 0.870797i 0.240410 + 0.0380773i 0.275477 0.961308i \(-0.411164\pi\)
−0.0350664 + 0.999385i \(0.511164\pi\)
\(524\) 11.5830 0.506006
\(525\) −7.93851 + 10.6814i −0.346465 + 0.466175i
\(526\) 11.9165 0.519586
\(527\) −36.2764 5.74562i −1.58023 0.250283i
\(528\) 4.74825 0.155241i 0.206641 0.00675598i
\(529\) −3.31234 1.07624i −0.144015 0.0467932i
\(530\) 0.899114 + 0.395551i 0.0390550 + 0.0171816i
\(531\) −18.4071 11.6162i −0.798799 0.504099i
\(532\) 4.63075 4.63075i 0.200768 0.200768i
\(533\) −18.4652 9.40850i −0.799818 0.407527i
\(534\) −8.40013 15.2340i −0.363509 0.659242i
\(535\) 4.19020 0.238208i 0.181158 0.0102986i
\(536\) 3.48741 + 4.80000i 0.150633 + 0.207328i
\(537\) 43.0782 + 12.4562i 1.85896 + 0.537526i
\(538\) −2.42133 15.2876i −0.104391 0.659097i
\(539\) 10.2930 7.47827i 0.443349 0.322112i
\(540\) −6.80834 9.41523i −0.292984 0.405167i
\(541\) −11.9935 8.71377i −0.515640 0.374634i 0.299319 0.954153i \(-0.403241\pi\)
−0.814959 + 0.579519i \(0.803241\pi\)
\(542\) −2.32992 + 4.57272i −0.100079 + 0.196415i
\(543\) 13.8781 5.01628i 0.595565 0.215269i
\(544\) 5.81301 1.88876i 0.249231 0.0809800i
\(545\) −8.61478 39.6649i −0.369017 1.69906i
\(546\) 4.13200 4.41132i 0.176833 0.188787i
\(547\) −16.7685 32.9101i −0.716970 1.40713i −0.905191 0.425006i \(-0.860272\pi\)
0.188221 0.982127i \(-0.439728\pi\)
\(548\) −1.14803 + 7.24839i −0.0490415 + 0.309636i
\(549\) 23.2320 19.3185i 0.991518 0.824495i
\(550\) −11.4352 + 7.57093i −0.487599 + 0.322825i
\(551\) 32.6954i 1.39287i
\(552\) −7.37843 5.00072i −0.314047 0.212845i
\(553\) −8.73602 + 4.45123i −0.371493 + 0.189285i
\(554\) −1.20572 + 3.71082i −0.0512261 + 0.157658i
\(555\) −11.0738 6.62066i −0.470058 0.281031i
\(556\) −2.69402 8.29133i −0.114252 0.351631i
\(557\) 7.87026 + 7.87026i 0.333474 + 0.333474i 0.853904 0.520430i \(-0.174228\pi\)
−0.520430 + 0.853904i \(0.674228\pi\)
\(558\) 3.97710 + 17.5831i 0.168364 + 0.744354i
\(559\) −12.5654 + 17.2948i −0.531461 + 0.731493i
\(560\) −1.85871 + 2.89010i −0.0785449 + 0.122129i
\(561\) −5.47723 28.5163i −0.231249 1.20396i
\(562\) −2.32119 + 0.367641i −0.0979136 + 0.0155080i
\(563\) 3.65971 0.579641i 0.154238 0.0244289i −0.0788377 0.996887i \(-0.525121\pi\)
0.233076 + 0.972459i \(0.425121\pi\)
\(564\) 0.789048 + 4.10806i 0.0332249 + 0.172980i
\(565\) −8.02081 + 12.4715i −0.337438 + 0.524681i
\(566\) 2.01289 2.77050i 0.0846079 0.116453i
\(567\) −8.42130 + 10.9710i −0.353661 + 0.460739i
\(568\) −4.38033 4.38033i −0.183794 0.183794i
\(569\) 1.23085 + 3.78815i 0.0515998 + 0.158808i 0.973536 0.228534i \(-0.0733933\pi\)
−0.921936 + 0.387342i \(0.873393\pi\)
\(570\) −14.1663 8.46954i −0.593362 0.354750i
\(571\) 9.70723 29.8758i 0.406235 1.25026i −0.513625 0.858015i \(-0.671698\pi\)
0.919860 0.392248i \(-0.128302\pi\)
\(572\) 5.54976 2.82775i 0.232047 0.118234i
\(573\) 12.5685 + 8.51826i 0.525055 + 0.355855i
\(574\) 14.0242i 0.585359i
\(575\) 25.7064 + 1.11904i 1.07203 + 0.0466671i
\(576\) −1.91812 2.30669i −0.0799217 0.0961120i
\(577\) 2.77556 17.5242i 0.115548 0.729541i −0.860088 0.510145i \(-0.829592\pi\)
0.975636 0.219395i \(-0.0704084\pi\)
\(578\) −9.24259 18.1396i −0.384441 0.754508i
\(579\) −28.1653 + 30.0693i −1.17051 + 1.24964i
\(580\) −3.64107 16.7645i −0.151187 0.696109i
\(581\) 11.3603 3.69118i 0.471303 0.153136i
\(582\) −19.7721 + 7.14671i −0.819582 + 0.296241i
\(583\) 0.547016 1.07358i 0.0226551 0.0444631i
\(584\) 8.41185 + 6.11157i 0.348085 + 0.252899i
\(585\) −13.3232 7.38554i −0.550848 0.305354i
\(586\) −16.0023 + 11.6263i −0.661049 + 0.480280i
\(587\) −0.244573 1.54417i −0.0100946 0.0637349i 0.982127 0.188220i \(-0.0602720\pi\)
−0.992221 + 0.124486i \(0.960272\pi\)
\(588\) −7.71795 2.23167i −0.318283 0.0920327i
\(589\) 15.0522 + 20.7176i 0.620216 + 0.853654i
\(590\) 16.1972 0.920794i 0.666829 0.0379085i
\(591\) 5.86598 + 10.6382i 0.241294 + 0.437598i
\(592\) −2.96821 1.51238i −0.121992 0.0621583i
\(593\) 10.2180 10.2180i 0.419603 0.419603i −0.465464 0.885067i \(-0.654113\pi\)
0.885067 + 0.465464i \(0.154113\pi\)
\(594\) −12.0046 + 7.68247i −0.492553 + 0.315215i
\(595\) 19.2245 + 8.45750i 0.788128 + 0.346724i
\(596\) 0.862632 + 0.280286i 0.0353348 + 0.0114810i
\(597\) −32.0027 + 1.04631i −1.30978 + 0.0428225i
\(598\) −11.5423 1.82811i −0.471998 0.0747571i
\(599\) −22.7078 −0.927816 −0.463908 0.885883i \(-0.653553\pi\)
−0.463908 + 0.885883i \(0.653553\pi\)
\(600\) 8.20695 + 2.76514i 0.335047 + 0.112886i
\(601\) 30.2561 1.23417 0.617087 0.786895i \(-0.288313\pi\)
0.617087 + 0.786895i \(0.288313\pi\)
\(602\) −14.2884 2.26306i −0.582351 0.0922354i
\(603\) −16.3533 7.02758i −0.665959 0.286185i
\(604\) −6.73134 2.18714i −0.273894 0.0889936i
\(605\) −3.91682 6.71528i −0.159241 0.273015i
\(606\) 6.07991 + 0.760248i 0.246979 + 0.0308830i
\(607\) 18.2359 18.2359i 0.740173 0.740173i −0.232438 0.972611i \(-0.574670\pi\)
0.972611 + 0.232438i \(0.0746703\pi\)
\(608\) −3.79711 1.93472i −0.153993 0.0784634i
\(609\) −17.8823 + 9.86039i −0.724627 + 0.399563i
\(610\) −5.73242 + 21.7790i −0.232099 + 0.881805i
\(611\) 3.22367 + 4.43700i 0.130416 + 0.179502i
\(612\) −12.0913 + 13.7851i −0.488760 + 0.557229i
\(613\) −0.0961939 0.607344i −0.00388524 0.0245304i 0.985670 0.168688i \(-0.0539529\pi\)
−0.989555 + 0.144157i \(0.953953\pi\)
\(614\) −0.123814 + 0.0899560i −0.00499672 + 0.00363033i
\(615\) −34.2764 + 8.62634i −1.38216 + 0.347848i
\(616\) 3.41002 + 2.47752i 0.137393 + 0.0998222i
\(617\) 5.39346 10.5853i 0.217133 0.426147i −0.756588 0.653892i \(-0.773135\pi\)
0.973721 + 0.227745i \(0.0731353\pi\)
\(618\) −9.70402 26.8472i −0.390353 1.07995i
\(619\) 17.4319 5.66397i 0.700647 0.227654i 0.0630348 0.998011i \(-0.479922\pi\)
0.637613 + 0.770357i \(0.279922\pi\)
\(620\) −10.0252 8.94665i −0.402621 0.359306i
\(621\) 26.6936 + 1.57760i 1.07118 + 0.0633069i
\(622\) −7.44637 14.6143i −0.298572 0.585981i
\(623\) 2.41450 15.2446i 0.0967350 0.610761i
\(624\) −3.56101 1.67018i −0.142555 0.0668607i
\(625\) −24.3578 + 5.63007i −0.974312 + 0.225203i
\(626\) 23.3209i 0.932092i
\(627\) −11.3587 + 16.7594i −0.453622 + 0.669306i
\(628\) −3.89388 + 1.98403i −0.155383 + 0.0791714i
\(629\) −6.29202 + 19.3649i −0.250879 + 0.772127i
\(630\) 0.359971 10.3023i 0.0143416 0.410454i
\(631\) −10.2915 31.6740i −0.409698 1.26092i −0.916908 0.399098i \(-0.869323\pi\)
0.507210 0.861822i \(-0.330677\pi\)
\(632\) 4.51153 + 4.51153i 0.179459 + 0.179459i
\(633\) 16.6634 + 21.4262i 0.662309 + 0.851614i
\(634\) −4.20844 + 5.79242i −0.167138 + 0.230046i
\(635\) −12.3996 15.1744i −0.492065 0.602178i
\(636\) −0.747210 + 0.143519i −0.0296288 + 0.00569090i
\(637\) −10.4037 + 1.64778i −0.412208 + 0.0652874i
\(638\) −20.7845 + 3.29194i −0.822867 + 0.130329i
\(639\) 18.0119 + 4.57607i 0.712541 + 0.181027i
\(640\) 2.16242 + 0.569168i 0.0854770 + 0.0224983i
\(641\) 5.38356 7.40984i 0.212638 0.292671i −0.689353 0.724425i \(-0.742105\pi\)
0.901991 + 0.431754i \(0.142105\pi\)
\(642\) −2.56623 + 1.99579i −0.101281 + 0.0787674i
\(643\) −10.3369 10.3369i −0.407649 0.407649i 0.473269 0.880918i \(-0.343074\pi\)
−0.880918 + 0.473269i \(0.843074\pi\)
\(644\) −2.44376 7.52111i −0.0962975 0.296373i
\(645\) 3.25773 + 36.3140i 0.128273 + 1.42986i
\(646\) −8.04914 + 24.7727i −0.316689 + 0.974669i
\(647\) −9.67805 + 4.93122i −0.380484 + 0.193866i −0.633763 0.773527i \(-0.718491\pi\)
0.253280 + 0.967393i \(0.418491\pi\)
\(648\) 8.48327 + 3.00570i 0.333254 + 0.118075i
\(649\) 19.9004i 0.781157i
\(650\) 11.2811 1.28680i 0.442481 0.0504723i
\(651\) −6.79169 + 14.4807i −0.266187 + 0.567542i
\(652\) 1.19195 7.52570i 0.0466805 0.294729i
\(653\) −14.0273 27.5300i −0.548929 1.07733i −0.984204 0.177036i \(-0.943349\pi\)
0.435276 0.900297i \(-0.356651\pi\)
\(654\) 22.9465 + 21.4935i 0.897278 + 0.840463i
\(655\) 10.4298 23.7076i 0.407525 0.926333i
\(656\) −8.67943 + 2.82012i −0.338875 + 0.110107i
\(657\) −31.0618 2.85683i −1.21184 0.111455i
\(658\) −1.68494 + 3.30687i −0.0656856 + 0.128915i
\(659\) 32.9364 + 23.9297i 1.28302 + 0.932169i 0.999640 0.0268379i \(-0.00854379\pi\)
0.283381 + 0.959007i \(0.408544\pi\)
\(660\) 3.95776 9.85829i 0.154056 0.383734i
\(661\) 0.749210 0.544333i 0.0291409 0.0211721i −0.573119 0.819472i \(-0.694267\pi\)
0.602260 + 0.798300i \(0.294267\pi\)
\(662\) 2.56231 + 16.1778i 0.0995869 + 0.628767i
\(663\) −6.67785 + 23.0945i −0.259346 + 0.896915i
\(664\) −4.56885 6.28849i −0.177306 0.244041i
\(665\) −5.30832 13.6477i −0.205848 0.529235i
\(666\) 9.97254 0.652788i 0.386428 0.0252950i
\(667\) 35.1786 + 17.9244i 1.36212 + 0.694034i
\(668\) −11.1057 + 11.1057i −0.429694 + 0.429694i
\(669\) 5.27019 42.1471i 0.203757 1.62950i
\(670\) 12.9646 2.81577i 0.500867 0.108783i
\(671\) 26.2730 + 8.53660i 1.01426 + 0.329552i
\(672\) −0.0869750 2.66025i −0.00335513 0.102621i
\(673\) 9.13465 + 1.44679i 0.352115 + 0.0557695i 0.329987 0.943986i \(-0.392956\pi\)
0.0221284 + 0.999755i \(0.492956\pi\)
\(674\) 9.42262 0.362946
\(675\) −25.4012 + 5.45719i −0.977691 + 0.210047i
\(676\) 7.84323 0.301663
\(677\) 23.3458 + 3.69762i 0.897253 + 0.142111i 0.587993 0.808866i \(-0.299918\pi\)
0.309261 + 0.950977i \(0.399918\pi\)
\(678\) −0.375319 11.4797i −0.0144140 0.440873i
\(679\) −17.7401 5.76412i −0.680804 0.221207i
\(680\) 1.36841 13.5985i 0.0524763 0.521480i
\(681\) 4.68936 37.5020i 0.179696 1.43708i
\(682\) −11.6547 + 11.6547i −0.446280 + 0.446280i
\(683\) 20.2551 + 10.3205i 0.775041 + 0.394903i 0.796324 0.604870i \(-0.206775\pi\)
−0.0212830 + 0.999773i \(0.506775\pi\)
\(684\) 12.7575 0.835086i 0.487794 0.0319303i
\(685\) 13.8020 + 8.87646i 0.527346 + 0.339152i
\(686\) −10.5126 14.4693i −0.401372 0.552442i
\(687\) −7.15828 + 24.7559i −0.273105 + 0.944498i
\(688\) 1.47266 + 9.29800i 0.0561446 + 0.354483i
\(689\) −0.807040 + 0.586349i −0.0307458 + 0.0223381i
\(690\) −16.8791 + 10.5990i −0.642575 + 0.403497i
\(691\) 13.7351 + 9.97910i 0.522506 + 0.379623i 0.817547 0.575862i \(-0.195333\pi\)
−0.295041 + 0.955485i \(0.595333\pi\)
\(692\) 8.56782 16.8153i 0.325700 0.639222i
\(693\) −12.5919 1.15811i −0.478326 0.0439928i
\(694\) 22.7081 7.37832i 0.861989 0.280077i
\(695\) −19.3961 1.95182i −0.735737 0.0740368i
\(696\) 9.69841 + 9.08432i 0.367617 + 0.344340i
\(697\) 25.3237 + 49.7005i 0.959202 + 1.88254i
\(698\) 3.34140 21.0968i 0.126474 0.798525i
\(699\) 7.35541 15.6826i 0.278207 0.593170i
\(700\) 4.24168 + 6.40668i 0.160321 + 0.242150i
\(701\) 6.88173i 0.259920i 0.991519 + 0.129960i \(0.0414848\pi\)
−0.991519 + 0.129960i \(0.958515\pi\)
\(702\) 11.7430 1.15508i 0.443212 0.0435958i
\(703\) 12.6493 6.44513i 0.477077 0.243083i
\(704\) 0.847593 2.60862i 0.0319448 0.0983161i
\(705\) 9.11868 + 2.08406i 0.343430 + 0.0784901i
\(706\) 3.67522 + 11.3112i 0.138319 + 0.425701i
\(707\) 3.84401 + 3.84401i 0.144569 + 0.144569i
\(708\) −9.91977 + 7.71471i −0.372808 + 0.289937i
\(709\) 5.55483 7.64557i 0.208616 0.287135i −0.691868 0.722024i \(-0.743212\pi\)
0.900484 + 0.434888i \(0.143212\pi\)
\(710\) −12.9097 + 5.02126i −0.484491 + 0.188444i
\(711\) −18.5515 4.71314i −0.695734 0.176757i
\(712\) −9.92022 + 1.57121i −0.371776 + 0.0588835i
\(713\) 30.5430 4.83754i 1.14384 0.181167i
\(714\) −15.9765 + 3.06867i −0.597907 + 0.114842i
\(715\) −0.790497 13.9052i −0.0295629 0.520026i
\(716\) 15.2178 20.9455i 0.568716 0.782771i
\(717\) 7.13195 + 9.17045i 0.266348 + 0.342477i
\(718\) −22.4396 22.4396i −0.837438 0.837438i
\(719\) 11.9133 + 36.6654i 0.444292 + 1.36739i 0.883259 + 0.468886i \(0.155344\pi\)
−0.438967 + 0.898503i \(0.644656\pi\)
\(720\) −6.44838 + 1.84890i −0.240317 + 0.0689045i
\(721\) 7.82670 24.0881i 0.291482 0.897088i
\(722\) −0.747392 + 0.380815i −0.0278151 + 0.0141725i
\(723\) −9.28683 + 13.7025i −0.345381 + 0.509600i
\(724\) 8.51986i 0.316638i
\(725\) −37.5915 7.64301i −1.39611 0.283854i
\(726\) 5.45192 + 2.55705i 0.202340 + 0.0949009i
\(727\) −5.82954 + 36.8063i −0.216206 + 1.36507i 0.605812 + 0.795608i \(0.292848\pi\)
−0.822018 + 0.569462i \(0.807152\pi\)
\(728\) −1.58427 3.10931i −0.0587170 0.115239i
\(729\) −26.4825 + 5.26072i −0.980835 + 0.194841i
\(730\) 20.0832 11.7139i 0.743314 0.433552i
\(731\) 54.7231 17.7806i 2.02401 0.657640i
\(732\) −5.92990 16.4057i −0.219175 0.606372i
\(733\) −11.2367 + 22.0534i −0.415039 + 0.814559i 0.584955 + 0.811066i \(0.301112\pi\)
−0.999994 + 0.00349370i \(0.998888\pi\)
\(734\) −6.44691 4.68395i −0.237960 0.172888i
\(735\) −11.5172 + 13.7873i −0.424819 + 0.508552i
\(736\) −4.16332 + 3.02483i −0.153462 + 0.111497i
\(737\) −2.54578 16.0734i −0.0937750 0.592072i
\(738\) 18.0535 20.5825i 0.664558 0.757654i
\(739\) −2.95524 4.06754i −0.108710 0.149627i 0.751195 0.660080i \(-0.229478\pi\)
−0.859906 + 0.510453i \(0.829478\pi\)
\(740\) −5.76815 + 4.71340i −0.212041 + 0.173268i
\(741\) 14.6783 8.09368i 0.539220 0.297329i
\(742\) −0.601483 0.306471i −0.0220811 0.0112509i
\(743\) −3.70154 + 3.70154i −0.135796 + 0.135796i −0.771738 0.635941i \(-0.780612\pi\)
0.635941 + 0.771738i \(0.280612\pi\)
\(744\) 10.3276 + 1.29140i 0.378630 + 0.0473449i
\(745\) 1.35042 1.51322i 0.0494757 0.0554400i
\(746\) 6.36476 + 2.06804i 0.233030 + 0.0757162i
\(747\) 21.4245 + 9.20684i 0.783882 + 0.336861i
\(748\) −16.5585 2.62260i −0.605437 0.0958918i
\(749\) −2.88433 −0.105391
\(750\) 13.0494 14.3078i 0.476497 0.522447i
\(751\) −21.2996 −0.777232 −0.388616 0.921400i \(-0.627047\pi\)
−0.388616 + 0.921400i \(0.627047\pi\)
\(752\) 2.38541 + 0.377811i 0.0869869 + 0.0137774i
\(753\) 24.5429 0.802413i 0.894394 0.0292416i
\(754\) 16.5695 + 5.38377i 0.603427 + 0.196065i
\(755\) −10.5377 + 11.8080i −0.383506 + 0.429738i
\(756\) 4.30417 + 6.72566i 0.156541 + 0.244610i
\(757\) 21.7093 21.7093i 0.789039 0.789039i −0.192298 0.981337i \(-0.561594\pi\)
0.981337 + 0.192298i \(0.0615939\pi\)
\(758\) −2.51128