Properties

Label 150.2.l.a.23.6
Level 150
Weight 2
Character 150.23
Analytic conductor 1.198
Analytic rank 0
Dimension 80
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.l (of order \(20\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{20})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 23.6
Character \(\chi\) = 150.23
Dual form 150.2.l.a.137.6

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(0.987688 + 0.156434i) q^{2}\) \(+(-1.49368 + 0.876876i) q^{3}\) \(+(0.951057 + 0.309017i) q^{4}\) \(+(0.197931 + 2.22729i) q^{5}\) \(+(-1.61247 + 0.632416i) q^{6}\) \(+(-1.43195 + 1.43195i) q^{7}\) \(+(0.891007 + 0.453990i) q^{8}\) \(+(1.46218 - 2.61955i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(0.987688 + 0.156434i) q^{2}\) \(+(-1.49368 + 0.876876i) q^{3}\) \(+(0.951057 + 0.309017i) q^{4}\) \(+(0.197931 + 2.22729i) q^{5}\) \(+(-1.61247 + 0.632416i) q^{6}\) \(+(-1.43195 + 1.43195i) q^{7}\) \(+(0.891007 + 0.453990i) q^{8}\) \(+(1.46218 - 2.61955i) q^{9}\) \(+(-0.152931 + 2.23083i) q^{10}\) \(+(3.22713 + 4.44177i) q^{11}\) \(+(-1.69155 + 0.372385i) q^{12}\) \(+(-1.00424 - 6.34051i) q^{13}\) \(+(-1.63832 + 1.19031i) q^{14}\) \(+(-2.24870 - 3.15331i) q^{15}\) \(+(0.809017 + 0.587785i) q^{16}\) \(+(0.101553 - 0.199309i) q^{17}\) \(+(1.85396 - 2.35856i) q^{18}\) \(+(2.05900 - 0.669009i) q^{19}\) \(+(-0.500027 + 2.17944i) q^{20}\) \(+(0.883235 - 3.39451i) q^{21}\) \(+(2.49256 + 4.89192i) q^{22}\) \(+(0.339741 - 2.14504i) q^{23}\) \(+(-1.72897 + 0.103184i) q^{24}\) \(+(-4.92165 + 0.881699i) q^{25}\) \(-6.41955i q^{26}\) \(+(0.112987 + 5.19492i) q^{27}\) \(+(-1.80436 + 0.919366i) q^{28}\) \(+(2.33841 - 7.19688i) q^{29}\) \(+(-1.72773 - 3.46626i) q^{30}\) \(+(-0.944961 - 2.90829i) q^{31}\) \(+(0.707107 + 0.707107i) q^{32}\) \(+(-8.71519 - 3.80480i) q^{33}\) \(+(0.131482 - 0.180969i) q^{34}\) \(+(-3.47279 - 2.90593i) q^{35}\) \(+(2.20010 - 2.03950i) q^{36}\) \(+(6.46438 - 1.02386i) q^{37}\) \(+(2.13830 - 0.338674i) q^{38}\) \(+(7.05986 + 8.59013i) q^{39}\) \(+(-0.834811 + 2.07439i) q^{40}\) \(+(-0.896615 + 1.23409i) q^{41}\) \(+(1.40338 - 3.21455i) q^{42}\) \(+(-2.14384 - 2.14384i) q^{43}\) \(+(1.69660 + 5.22161i) q^{44}\) \(+(6.12391 + 2.73821i) q^{45}\) \(+(0.671116 - 2.06548i) q^{46}\) \(+(-4.66039 + 2.37459i) q^{47}\) \(+(-1.72383 - 0.168558i) q^{48}\) \(+2.89906i q^{49}\) \(+(-4.99898 + 0.100928i) q^{50}\) \(+(0.0230812 + 0.386754i) q^{51}\) \(+(1.00424 - 6.34051i) q^{52}\) \(+(5.56485 + 10.9216i) q^{53}\) \(+(-0.701069 + 5.14864i) q^{54}\) \(+(-9.25436 + 8.06693i) q^{55}\) \(+(-1.92596 + 0.625783i) q^{56}\) \(+(-2.48885 + 2.80477i) q^{57}\) \(+(3.43546 - 6.74246i) q^{58}\) \(+(-4.61185 - 3.35071i) q^{59}\) \(+(-1.16422 - 3.69386i) q^{60}\) \(+(2.55529 - 1.85653i) q^{61}\) \(+(-0.478370 - 3.02031i) q^{62}\) \(+(1.65729 + 5.84481i) q^{63}\) \(+(0.587785 + 0.809017i) q^{64}\) \(+(13.9234 - 3.49171i) q^{65}\) \(+(-8.01269 - 5.12131i) q^{66}\) \(+(2.22498 + 1.13368i) q^{67}\) \(+(0.158173 - 0.158173i) q^{68}\) \(+(1.37347 + 3.50192i) q^{69}\) \(+(-2.97544 - 3.41342i) q^{70}\) \(+(5.77333 + 1.87587i) q^{71}\) \(+(2.49206 - 1.67022i) q^{72}\) \(+(-3.02002 - 0.478324i) q^{73}\) \(+6.54496 q^{74}\) \(+(6.57824 - 5.63265i) q^{75}\) \(+2.16496 q^{76}\) \(+(-10.9815 - 1.73929i) q^{77}\) \(+(5.62915 + 9.58877i) q^{78}\) \(+(-11.0020 - 3.57478i) q^{79}\) \(+(-1.14904 + 1.91826i) q^{80}\) \(+(-4.72407 - 7.66049i) q^{81}\) \(+(-1.07863 + 1.07863i) q^{82}\) \(+(-9.31624 - 4.74686i) q^{83}\) \(+(1.88897 - 2.95544i) q^{84}\) \(+(0.464020 + 0.186739i) q^{85}\) \(+(-1.78208 - 2.45282i) q^{86}\) \(+(2.81793 + 12.8003i) q^{87}\) \(+(0.858876 + 5.42273i) q^{88}\) \(+(-7.34358 + 5.33542i) q^{89}\) \(+(5.62016 + 3.66248i) q^{90}\) \(+(10.5173 + 7.64126i) q^{91}\) \(+(0.985966 - 1.93507i) q^{92}\) \(+(3.96168 + 3.51545i) q^{93}\) \(+(-4.97448 + 1.61631i) q^{94}\) \(+(1.89762 + 4.45357i) q^{95}\) \(+(-1.67624 - 0.436149i) q^{96}\) \(+(1.09363 + 2.14637i) q^{97}\) \(+(-0.453513 + 2.86337i) q^{98}\) \(+(16.3541 - 1.95898i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut -\mathstrut 4q^{10} \) \(\mathstrut -\mathstrut 4q^{12} \) \(\mathstrut -\mathstrut 8q^{15} \) \(\mathstrut +\mathstrut 20q^{16} \) \(\mathstrut -\mathstrut 8q^{18} \) \(\mathstrut -\mathstrut 40q^{19} \) \(\mathstrut -\mathstrut 36q^{22} \) \(\mathstrut -\mathstrut 104q^{25} \) \(\mathstrut +\mathstrut 4q^{27} \) \(\mathstrut -\mathstrut 16q^{28} \) \(\mathstrut +\mathstrut 12q^{30} \) \(\mathstrut +\mathstrut 4q^{33} \) \(\mathstrut -\mathstrut 40q^{34} \) \(\mathstrut -\mathstrut 24q^{37} \) \(\mathstrut -\mathstrut 40q^{39} \) \(\mathstrut -\mathstrut 8q^{40} \) \(\mathstrut -\mathstrut 4q^{42} \) \(\mathstrut -\mathstrut 24q^{43} \) \(\mathstrut -\mathstrut 72q^{45} \) \(\mathstrut -\mathstrut 4q^{48} \) \(\mathstrut -\mathstrut 12q^{55} \) \(\mathstrut -\mathstrut 64q^{57} \) \(\mathstrut +\mathstrut 20q^{58} \) \(\mathstrut +\mathstrut 24q^{60} \) \(\mathstrut +\mathstrut 64q^{63} \) \(\mathstrut +\mathstrut 96q^{67} \) \(\mathstrut +\mathstrut 140q^{69} \) \(\mathstrut +\mathstrut 76q^{70} \) \(\mathstrut +\mathstrut 8q^{72} \) \(\mathstrut +\mathstrut 100q^{73} \) \(\mathstrut +\mathstrut 132q^{75} \) \(\mathstrut +\mathstrut 100q^{78} \) \(\mathstrut +\mathstrut 80q^{79} \) \(\mathstrut -\mathstrut 40q^{81} \) \(\mathstrut +\mathstrut 96q^{82} \) \(\mathstrut +\mathstrut 60q^{84} \) \(\mathstrut +\mathstrut 32q^{85} \) \(\mathstrut +\mathstrut 80q^{87} \) \(\mathstrut +\mathstrut 4q^{88} \) \(\mathstrut +\mathstrut 52q^{90} \) \(\mathstrut +\mathstrut 12q^{93} \) \(\mathstrut -\mathstrut 32q^{97} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.987688 + 0.156434i 0.698401 + 0.110616i
\(3\) −1.49368 + 0.876876i −0.862378 + 0.506264i
\(4\) 0.951057 + 0.309017i 0.475528 + 0.154508i
\(5\) 0.197931 + 2.22729i 0.0885173 + 0.996075i
\(6\) −1.61247 + 0.632416i −0.658287 + 0.258183i
\(7\) −1.43195 + 1.43195i −0.541225 + 0.541225i −0.923888 0.382663i \(-0.875007\pi\)
0.382663 + 0.923888i \(0.375007\pi\)
\(8\) 0.891007 + 0.453990i 0.315018 + 0.160510i
\(9\) 1.46218 2.61955i 0.487393 0.873183i
\(10\) −0.152931 + 2.23083i −0.0483611 + 0.705451i
\(11\) 3.22713 + 4.44177i 0.973017 + 1.33924i 0.940508 + 0.339772i \(0.110350\pi\)
0.0325093 + 0.999471i \(0.489650\pi\)
\(12\) −1.69155 + 0.372385i −0.488307 + 0.107498i
\(13\) −1.00424 6.34051i −0.278526 1.75854i −0.589164 0.808014i \(-0.700543\pi\)
0.310638 0.950528i \(-0.399457\pi\)
\(14\) −1.63832 + 1.19031i −0.437860 + 0.318124i
\(15\) −2.24870 3.15331i −0.580613 0.814180i
\(16\) 0.809017 + 0.587785i 0.202254 + 0.146946i
\(17\) 0.101553 0.199309i 0.0246303 0.0483396i −0.878364 0.477993i \(-0.841364\pi\)
0.902994 + 0.429654i \(0.141364\pi\)
\(18\) 1.85396 2.35856i 0.436984 0.555919i
\(19\) 2.05900 0.669009i 0.472366 0.153481i −0.0631534 0.998004i \(-0.520116\pi\)
0.535520 + 0.844523i \(0.320116\pi\)
\(20\) −0.500027 + 2.17944i −0.111810 + 0.487338i
\(21\) 0.883235 3.39451i 0.192738 0.740743i
\(22\) 2.49256 + 4.89192i 0.531415 + 1.04296i
\(23\) 0.339741 2.14504i 0.0708408 0.447271i −0.926617 0.376007i \(-0.877297\pi\)
0.997457 0.0712640i \(-0.0227033\pi\)
\(24\) −1.72897 + 0.103184i −0.352925 + 0.0210623i
\(25\) −4.92165 + 0.881699i −0.984329 + 0.176340i
\(26\) 6.41955i 1.25898i
\(27\) 0.112987 + 5.19492i 0.0217444 + 0.999764i
\(28\) −1.80436 + 0.919366i −0.340992 + 0.173744i
\(29\) 2.33841 7.19688i 0.434231 1.33643i −0.459641 0.888105i \(-0.652022\pi\)
0.893872 0.448322i \(-0.147978\pi\)
\(30\) −1.72773 3.46626i −0.315439 0.632849i
\(31\) −0.944961 2.90829i −0.169720 0.522344i 0.829633 0.558309i \(-0.188550\pi\)
−0.999353 + 0.0359646i \(0.988550\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) −8.71519 3.80480i −1.51712 0.662330i
\(34\) 0.131482 0.180969i 0.0225489 0.0310359i
\(35\) −3.47279 2.90593i −0.587008 0.491193i
\(36\) 2.20010 2.03950i 0.366683 0.339917i
\(37\) 6.46438 1.02386i 1.06274 0.168321i 0.399502 0.916732i \(-0.369183\pi\)
0.663235 + 0.748411i \(0.269183\pi\)
\(38\) 2.13830 0.338674i 0.346879 0.0549402i
\(39\) 7.05986 + 8.59013i 1.13048 + 1.37552i
\(40\) −0.834811 + 2.07439i −0.131995 + 0.327990i
\(41\) −0.896615 + 1.23409i −0.140028 + 0.192732i −0.873271 0.487235i \(-0.838006\pi\)
0.733243 + 0.679966i \(0.238006\pi\)
\(42\) 1.40338 3.21455i 0.216546 0.496016i
\(43\) −2.14384 2.14384i −0.326933 0.326933i 0.524486 0.851419i \(-0.324258\pi\)
−0.851419 + 0.524486i \(0.824258\pi\)
\(44\) 1.69660 + 5.22161i 0.255773 + 0.787187i
\(45\) 6.12391 + 2.73821i 0.912898 + 0.408188i
\(46\) 0.671116 2.06548i 0.0989506 0.304539i
\(47\) −4.66039 + 2.37459i −0.679788 + 0.346369i −0.759554 0.650444i \(-0.774583\pi\)
0.0797657 + 0.996814i \(0.474583\pi\)
\(48\) −1.72383 0.168558i −0.248813 0.0243292i
\(49\) 2.89906i 0.414151i
\(50\) −4.99898 + 0.100928i −0.706963 + 0.0142734i
\(51\) 0.0230812 + 0.386754i 0.00323202 + 0.0541564i
\(52\) 1.00424 6.34051i 0.139263 0.879271i
\(53\) 5.56485 + 10.9216i 0.764390 + 1.50020i 0.863072 + 0.505082i \(0.168538\pi\)
−0.0986812 + 0.995119i \(0.531462\pi\)
\(54\) −0.701069 + 5.14864i −0.0954034 + 0.700641i
\(55\) −9.25436 + 8.06693i −1.24786 + 1.08774i
\(56\) −1.92596 + 0.625783i −0.257368 + 0.0836238i
\(57\) −2.48885 + 2.80477i −0.329657 + 0.371501i
\(58\) 3.43546 6.74246i 0.451098 0.885329i
\(59\) −4.61185 3.35071i −0.600412 0.436225i 0.245613 0.969368i \(-0.421011\pi\)
−0.846025 + 0.533143i \(0.821011\pi\)
\(60\) −1.16422 3.69386i −0.150300 0.476875i
\(61\) 2.55529 1.85653i 0.327171 0.237704i −0.412058 0.911158i \(-0.635190\pi\)
0.739229 + 0.673454i \(0.235190\pi\)
\(62\) −0.478370 3.02031i −0.0607530 0.383580i
\(63\) 1.65729 + 5.84481i 0.208799 + 0.736377i
\(64\) 0.587785 + 0.809017i 0.0734732 + 0.101127i
\(65\) 13.9234 3.49171i 1.72698 0.433094i
\(66\) −8.01269 5.12131i −0.986294 0.630390i
\(67\) 2.22498 + 1.13368i 0.271824 + 0.138501i 0.584590 0.811329i \(-0.301255\pi\)
−0.312766 + 0.949830i \(0.601255\pi\)
\(68\) 0.158173 0.158173i 0.0191813 0.0191813i
\(69\) 1.37347 + 3.50192i 0.165346 + 0.421581i
\(70\) −2.97544 3.41342i −0.355633 0.407982i
\(71\) 5.77333 + 1.87587i 0.685168 + 0.222625i 0.630856 0.775900i \(-0.282704\pi\)
0.0543113 + 0.998524i \(0.482704\pi\)
\(72\) 2.49206 1.67022i 0.293692 0.196837i
\(73\) −3.02002 0.478324i −0.353467 0.0559836i −0.0228237 0.999740i \(-0.507266\pi\)
−0.330643 + 0.943756i \(0.607266\pi\)
\(74\) 6.54496 0.760836
\(75\) 6.57824 5.63265i 0.759590 0.650402i
\(76\) 2.16496 0.248338
\(77\) −10.9815 1.73929i −1.25145 0.198211i
\(78\) 5.62915 + 9.58877i 0.637375 + 1.08571i
\(79\) −11.0020 3.57478i −1.23783 0.402194i −0.384282 0.923216i \(-0.625551\pi\)
−0.853543 + 0.521022i \(0.825551\pi\)
\(80\) −1.14904 + 1.91826i −0.128466 + 0.214468i
\(81\) −4.72407 7.66049i −0.524897 0.851166i
\(82\) −1.07863 + 1.07863i −0.119115 + 0.119115i
\(83\) −9.31624 4.74686i −1.02259 0.521036i −0.139492 0.990223i \(-0.544547\pi\)
−0.883099 + 0.469187i \(0.844547\pi\)
\(84\) 1.88897 2.95544i 0.206103 0.322465i
\(85\) 0.464020 + 0.186739i 0.0503301 + 0.0202547i
\(86\) −1.78208 2.45282i −0.192166 0.264494i
\(87\) 2.81793 + 12.8003i 0.302113 + 1.37234i
\(88\) 0.858876 + 5.42273i 0.0915565 + 0.578065i
\(89\) −7.34358 + 5.33542i −0.778418 + 0.565554i −0.904504 0.426466i \(-0.859759\pi\)
0.126086 + 0.992019i \(0.459759\pi\)
\(90\) 5.62016 + 3.66248i 0.592417 + 0.386060i
\(91\) 10.5173 + 7.64126i 1.10251 + 0.801022i
\(92\) 0.985966 1.93507i 0.102794 0.201745i
\(93\) 3.96168 + 3.51545i 0.410807 + 0.364535i
\(94\) −4.97448 + 1.61631i −0.513079 + 0.166709i
\(95\) 1.89762 + 4.45357i 0.194691 + 0.456926i
\(96\) −1.67624 0.436149i −0.171080 0.0445142i
\(97\) 1.09363 + 2.14637i 0.111041 + 0.217931i 0.939839 0.341617i \(-0.110975\pi\)
−0.828798 + 0.559548i \(0.810975\pi\)
\(98\) −0.453513 + 2.86337i −0.0458117 + 0.289244i
\(99\) 16.3541 1.95898i 1.64365 0.196884i
\(100\) −4.95322 0.682327i −0.495322 0.0682327i
\(101\) 7.60118i 0.756346i −0.925735 0.378173i \(-0.876552\pi\)
0.925735 0.378173i \(-0.123448\pi\)
\(102\) −0.0377047 + 0.385604i −0.00373332 + 0.0381804i
\(103\) 7.60819 3.87657i 0.749657 0.381970i −0.0370356 0.999314i \(-0.511791\pi\)
0.786693 + 0.617344i \(0.211791\pi\)
\(104\) 1.98375 6.10535i 0.194523 0.598679i
\(105\) 7.73539 + 1.29534i 0.754896 + 0.126413i
\(106\) 3.78781 + 11.6577i 0.367905 + 1.13230i
\(107\) 3.60945 + 3.60945i 0.348939 + 0.348939i 0.859714 0.510775i \(-0.170642\pi\)
−0.510775 + 0.859714i \(0.670642\pi\)
\(108\) −1.49786 + 4.97558i −0.144132 + 0.478776i
\(109\) 5.74999 7.91418i 0.550749 0.758041i −0.439365 0.898309i \(-0.644796\pi\)
0.990114 + 0.140268i \(0.0447964\pi\)
\(110\) −10.4024 + 6.51991i −0.991827 + 0.621649i
\(111\) −8.75794 + 7.19777i −0.831266 + 0.683182i
\(112\) −2.00015 + 0.316792i −0.188996 + 0.0299340i
\(113\) −13.0078 + 2.06024i −1.22367 + 0.193811i −0.734642 0.678454i \(-0.762650\pi\)
−0.489033 + 0.872266i \(0.662650\pi\)
\(114\) −2.89697 + 2.38090i −0.271326 + 0.222992i
\(115\) 4.84487 + 0.332132i 0.451786 + 0.0309715i
\(116\) 4.44791 6.12203i 0.412978 0.568416i
\(117\) −18.0777 6.64031i −1.67128 0.613897i
\(118\) −4.03091 4.03091i −0.371075 0.371075i
\(119\) 0.139982 + 0.430819i 0.0128321 + 0.0394931i
\(120\) −0.572038 3.83051i −0.0522197 0.349676i
\(121\) −5.91572 + 18.2067i −0.537793 + 1.65516i
\(122\) 2.81426 1.43393i 0.254791 0.129822i
\(123\) 0.257120 2.62955i 0.0231837 0.237099i
\(124\) 3.05796i 0.274613i
\(125\) −2.93794 10.7874i −0.262778 0.964856i
\(126\) 0.722558 + 6.03211i 0.0643706 + 0.537383i
\(127\) 1.79653 11.3429i 0.159417 1.00652i −0.770150 0.637863i \(-0.779819\pi\)
0.929567 0.368654i \(-0.120181\pi\)
\(128\) 0.453990 + 0.891007i 0.0401275 + 0.0787546i
\(129\) 5.08211 + 1.32234i 0.447455 + 0.116425i
\(130\) 14.2982 1.27063i 1.25404 0.111441i
\(131\) −9.82350 + 3.19185i −0.858284 + 0.278873i −0.704911 0.709295i \(-0.749013\pi\)
−0.153372 + 0.988169i \(0.549013\pi\)
\(132\) −7.11289 6.31172i −0.619098 0.549365i
\(133\) −1.99039 + 3.90636i −0.172589 + 0.338724i
\(134\) 2.02024 + 1.46779i 0.174522 + 0.126797i
\(135\) −11.5482 + 1.27989i −0.993914 + 0.110155i
\(136\) 0.180969 0.131482i 0.0155180 0.0112745i
\(137\) −2.11029 13.3238i −0.180294 1.13833i −0.897351 0.441317i \(-0.854511\pi\)
0.717057 0.697014i \(-0.245489\pi\)
\(138\) 0.808736 + 3.67366i 0.0688442 + 0.312723i
\(139\) −6.69452 9.21421i −0.567822 0.781539i 0.424473 0.905441i \(-0.360459\pi\)
−0.992295 + 0.123901i \(0.960459\pi\)
\(140\) −2.40483 3.83686i −0.203246 0.324274i
\(141\) 4.87893 7.63347i 0.410880 0.642854i
\(142\) 5.40880 + 2.75592i 0.453896 + 0.231272i
\(143\) 24.9223 24.9223i 2.08411 2.08411i
\(144\) 2.72266 1.25981i 0.226888 0.104984i
\(145\) 16.4924 + 3.78383i 1.36962 + 0.314230i
\(146\) −2.90801 0.944871i −0.240669 0.0781981i
\(147\) −2.54211 4.33028i −0.209670 0.357155i
\(148\) 6.46438 + 1.02386i 0.531369 + 0.0841605i
\(149\) −5.97158 −0.489211 −0.244606 0.969623i \(-0.578658\pi\)
−0.244606 + 0.969623i \(0.578658\pi\)
\(150\) 7.37839 4.53424i 0.602443 0.370219i
\(151\) −3.02183 −0.245913 −0.122956 0.992412i \(-0.539238\pi\)
−0.122956 + 0.992412i \(0.539238\pi\)
\(152\) 2.13830 + 0.338674i 0.173439 + 0.0274701i
\(153\) −0.373612 0.557449i −0.0302047 0.0450671i
\(154\) −10.5742 3.43576i −0.852091 0.276861i
\(155\) 6.29057 2.68034i 0.505271 0.215290i
\(156\) 4.05983 + 10.3513i 0.325046 + 0.828768i
\(157\) 4.40896 4.40896i 0.351873 0.351873i −0.508933 0.860806i \(-0.669960\pi\)
0.860806 + 0.508933i \(0.169960\pi\)
\(158\) −10.3074 5.25186i −0.820010 0.417816i
\(159\) −17.8890 11.4338i −1.41869 0.906757i
\(160\) −1.43497 + 1.71489i −0.113445 + 0.135574i
\(161\) 2.58509 + 3.55807i 0.203734 + 0.280415i
\(162\) −3.46754 8.30519i −0.272436 0.652517i
\(163\) −0.896493 5.66023i −0.0702187 0.443344i −0.997601 0.0692282i \(-0.977946\pi\)
0.927382 0.374116i \(-0.122054\pi\)
\(164\) −1.23409 + 0.896615i −0.0963659 + 0.0700139i
\(165\) 6.74939 20.1644i 0.525439 1.56979i
\(166\) −8.45897 6.14580i −0.656544 0.477007i
\(167\) −4.42748 + 8.68941i −0.342608 + 0.672407i −0.996447 0.0842276i \(-0.973158\pi\)
0.653838 + 0.756634i \(0.273158\pi\)
\(168\) 2.32804 2.62355i 0.179613 0.202411i
\(169\) −26.8299 + 8.71756i −2.06384 + 0.670581i
\(170\) 0.429095 + 0.257029i 0.0329101 + 0.0197132i
\(171\) 1.25812 6.37185i 0.0962109 0.487268i
\(172\) −1.37643 2.70140i −0.104952 0.205980i
\(173\) −2.74408 + 17.3254i −0.208629 + 1.31723i 0.631726 + 0.775192i \(0.282347\pi\)
−0.840354 + 0.542037i \(0.817653\pi\)
\(174\) 0.780818 + 13.0836i 0.0591937 + 0.991863i
\(175\) 5.78499 8.31008i 0.437304 0.628183i
\(176\) 5.49033i 0.413849i
\(177\) 9.82680 + 0.960873i 0.738627 + 0.0722237i
\(178\) −8.08781 + 4.12095i −0.606207 + 0.308878i
\(179\) 3.59155 11.0537i 0.268445 0.826190i −0.722434 0.691440i \(-0.756977\pi\)
0.990880 0.134750i \(-0.0430232\pi\)
\(180\) 4.97803 + 4.49658i 0.371040 + 0.335155i
\(181\) −1.22208 3.76116i −0.0908362 0.279565i 0.895310 0.445444i \(-0.146954\pi\)
−0.986146 + 0.165879i \(0.946954\pi\)
\(182\) 9.19245 + 9.19245i 0.681390 + 0.681390i
\(183\) −2.18885 + 5.01373i −0.161804 + 0.370626i
\(184\) 1.27654 1.75700i 0.0941076 0.129528i
\(185\) 3.55993 + 14.1954i 0.261731 + 1.04367i
\(186\) 3.36297 + 4.09191i 0.246585 + 0.300034i
\(187\) 1.21301 0.192122i 0.0887042 0.0140494i
\(188\) −5.16609 + 0.818228i −0.376776 + 0.0596754i
\(189\) −7.60064 7.27706i −0.552865 0.529328i
\(190\) 1.17756 + 4.69559i 0.0854293 + 0.340654i
\(191\) −9.89270 + 13.6161i −0.715810 + 0.985228i 0.283842 + 0.958871i \(0.408391\pi\)
−0.999653 + 0.0263574i \(0.991609\pi\)
\(192\) −1.58737 0.693000i −0.114559 0.0500130i
\(193\) 11.0921 + 11.0921i 0.798428 + 0.798428i 0.982848 0.184419i \(-0.0590404\pi\)
−0.184419 + 0.982848i \(0.559040\pi\)
\(194\) 0.744401 + 2.29103i 0.0534449 + 0.164486i
\(195\) −17.7353 + 17.4246i −1.27005 + 1.24780i
\(196\) −0.895859 + 2.75717i −0.0639899 + 0.196941i
\(197\) 15.8178 8.05955i 1.12697 0.574219i 0.211809 0.977311i \(-0.432064\pi\)
0.915160 + 0.403091i \(0.132064\pi\)
\(198\) 16.4592 + 0.623483i 1.16970 + 0.0443090i
\(199\) 2.78155i 0.197179i 0.995128 + 0.0985894i \(0.0314330\pi\)
−0.995128 + 0.0985894i \(0.968567\pi\)
\(200\) −4.78550 1.44878i −0.338386 0.102444i
\(201\) −4.31751 + 0.257666i −0.304533 + 0.0181743i
\(202\) 1.18909 7.50760i 0.0836639 0.528233i
\(203\) 6.95707 + 13.6540i 0.488290 + 0.958324i
\(204\) −0.0975621 + 0.374958i −0.00683072 + 0.0262523i
\(205\) −2.92613 1.75276i −0.204370 0.122418i
\(206\) 8.12095 2.63866i 0.565813 0.183844i
\(207\) −5.12227 4.02640i −0.356022 0.279854i
\(208\) 2.91441 5.71986i 0.202078 0.396601i
\(209\) 9.61624 + 6.98661i 0.665169 + 0.483274i
\(210\) 7.43751 + 2.48948i 0.513237 + 0.171790i
\(211\) −11.4724 + 8.33520i −0.789794 + 0.573819i −0.907902 0.419182i \(-0.862317\pi\)
0.118108 + 0.993001i \(0.462317\pi\)
\(212\) 1.91752 + 12.1067i 0.131695 + 0.831493i
\(213\) −10.2684 + 2.26054i −0.703581 + 0.154889i
\(214\) 3.00037 + 4.12966i 0.205101 + 0.282298i
\(215\) 4.35063 5.19930i 0.296711 0.354589i
\(216\) −2.25777 + 4.68001i −0.153622 + 0.318434i
\(217\) 5.51765 + 2.81138i 0.374562 + 0.190849i
\(218\) 6.91725 6.91725i 0.468495 0.468495i
\(219\) 4.93039 1.93372i 0.333165 0.130669i
\(220\) −11.2942 + 4.81235i −0.761457 + 0.324448i
\(221\) −1.36571 0.443745i −0.0918674 0.0298495i
\(222\) −9.77609 + 5.73911i −0.656128 + 0.385184i
\(223\) 5.36327 + 0.849459i 0.359151 + 0.0568840i 0.333403 0.942784i \(-0.391803\pi\)
0.0257485 + 0.999668i \(0.491803\pi\)
\(224\) −2.02508 −0.135306
\(225\) −4.88667 + 14.1817i −0.325778 + 0.945446i
\(226\) −13.1700 −0.876055
\(227\) 19.7103 + 3.12180i 1.30822 + 0.207201i 0.771320 0.636448i \(-0.219597\pi\)
0.536896 + 0.843649i \(0.319597\pi\)
\(228\) −3.23376 + 1.89840i −0.214161 + 0.125725i
\(229\) 10.9433 + 3.55568i 0.723151 + 0.234966i 0.647389 0.762160i \(-0.275861\pi\)
0.0757621 + 0.997126i \(0.475861\pi\)
\(230\) 4.73326 + 1.08595i 0.312102 + 0.0716052i
\(231\) 17.9280 7.03142i 1.17957 0.462633i
\(232\) 5.35085 5.35085i 0.351300 0.351300i
\(233\) −4.33449 2.20854i −0.283962 0.144686i 0.306208 0.951964i \(-0.400940\pi\)
−0.590171 + 0.807279i \(0.700940\pi\)
\(234\) −16.8163 9.38652i −1.09932 0.613616i
\(235\) −6.21134 9.91005i −0.405183 0.646460i
\(236\) −3.35071 4.61185i −0.218112 0.300206i
\(237\) 19.5682 4.30783i 1.27109 0.279824i
\(238\) 0.0708632 + 0.447413i 0.00459338 + 0.0290015i
\(239\) −13.5737 + 9.86185i −0.878008 + 0.637910i −0.932724 0.360592i \(-0.882575\pi\)
0.0547159 + 0.998502i \(0.482575\pi\)
\(240\) 0.0342279 3.87283i 0.00220940 0.249990i
\(241\) 13.7609 + 9.99786i 0.886416 + 0.644019i 0.934941 0.354803i \(-0.115452\pi\)
−0.0485253 + 0.998822i \(0.515452\pi\)
\(242\) −8.69105 + 17.0571i −0.558682 + 1.09648i
\(243\) 13.7736 + 7.29993i 0.883574 + 0.468291i
\(244\) 3.00392 0.976034i 0.192307 0.0624842i
\(245\) −6.45705 + 0.573813i −0.412526 + 0.0366596i
\(246\) 0.665307 2.55696i 0.0424184 0.163026i
\(247\) −6.30958 12.3833i −0.401469 0.787928i
\(248\) 0.478370 3.02031i 0.0303765 0.191790i
\(249\) 18.0779 1.07888i 1.14564 0.0683711i
\(250\) −1.21425 11.1142i −0.0767959 0.702924i
\(251\) 27.1027i 1.71071i 0.518046 + 0.855353i \(0.326660\pi\)
−0.518046 + 0.855353i \(0.673340\pi\)
\(252\) −0.229968 + 6.07088i −0.0144866 + 0.382429i
\(253\) 10.6241 5.41327i 0.667934 0.340330i
\(254\) 3.54883 10.9222i 0.222673 0.685318i
\(255\) −0.856846 + 0.127959i −0.0536578 + 0.00801312i
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) −11.8188 11.8188i −0.737238 0.737238i 0.234805 0.972043i \(-0.424555\pi\)
−0.972043 + 0.234805i \(0.924555\pi\)
\(258\) 4.81268 + 2.10108i 0.299624 + 0.130807i
\(259\) −7.79053 + 10.7227i −0.484080 + 0.666279i
\(260\) 14.3209 + 0.981749i 0.888147 + 0.0608855i
\(261\) −15.4334 16.6487i −0.955303 1.03053i
\(262\) −10.2019 + 1.61582i −0.630274 + 0.0998256i
\(263\) 7.20902 1.14180i 0.444527 0.0704062i 0.0698415 0.997558i \(-0.477751\pi\)
0.374686 + 0.927152i \(0.377751\pi\)
\(264\) −6.03795 7.34671i −0.371610 0.452159i
\(265\) −23.2242 + 14.5563i −1.42665 + 0.894184i
\(266\) −2.57697 + 3.54690i −0.158004 + 0.217474i
\(267\) 6.29048 14.4088i 0.384971 0.881807i
\(268\) 1.76575 + 1.76575i 0.107860 + 0.107860i
\(269\) 9.50784 + 29.2621i 0.579703 + 1.78414i 0.619573 + 0.784939i \(0.287306\pi\)
−0.0398701 + 0.999205i \(0.512694\pi\)
\(270\) −11.6063 0.542410i −0.706336 0.0330100i
\(271\) 4.91027 15.1123i 0.298278 0.918004i −0.683823 0.729648i \(-0.739684\pi\)
0.982101 0.188356i \(-0.0603160\pi\)
\(272\) 0.199309 0.101553i 0.0120849 0.00615756i
\(273\) −22.4099 2.19126i −1.35631 0.132621i
\(274\) 13.4899i 0.814956i
\(275\) −19.7991 19.0155i −1.19393 1.14667i
\(276\) 0.224092 + 3.75495i 0.0134888 + 0.226021i
\(277\) −1.50370 + 9.49399i −0.0903486 + 0.570438i 0.900436 + 0.434989i \(0.143248\pi\)
−0.990784 + 0.135449i \(0.956752\pi\)
\(278\) −5.17068 10.1480i −0.310117 0.608638i
\(279\) −9.00011 1.77707i −0.538822 0.106390i
\(280\) −1.77501 4.16582i −0.106077 0.248955i
\(281\) 19.6851 6.39607i 1.17431 0.381558i 0.344062 0.938947i \(-0.388197\pi\)
0.830251 + 0.557389i \(0.188197\pi\)
\(282\) 6.01300 6.77626i 0.358069 0.403520i
\(283\) −5.53912 + 10.8711i −0.329267 + 0.646222i −0.994990 0.0999766i \(-0.968123\pi\)
0.665723 + 0.746199i \(0.268123\pi\)
\(284\) 4.91108 + 3.56811i 0.291419 + 0.211728i
\(285\) −6.73966 4.98825i −0.399223 0.295478i
\(286\) 28.5141 20.7167i 1.68608 1.22501i
\(287\) −0.483239 3.05105i −0.0285247 0.180098i
\(288\) 2.88622 0.818384i 0.170072 0.0482238i
\(289\) 9.96294 + 13.7128i 0.586055 + 0.806636i
\(290\) 15.6974 + 6.31722i 0.921784 + 0.370960i
\(291\) −3.51564 2.24702i −0.206091 0.131723i
\(292\) −2.72440 1.38815i −0.159433 0.0812354i
\(293\) −0.153372 + 0.153372i −0.00896009 + 0.00896009i −0.711573 0.702613i \(-0.752017\pi\)
0.702613 + 0.711573i \(0.252017\pi\)
\(294\) −1.83341 4.67464i −0.106927 0.272630i
\(295\) 6.55017 10.9351i 0.381366 0.636669i
\(296\) 6.22462 + 2.02250i 0.361799 + 0.117556i
\(297\) −22.7100 + 17.2666i −1.31777 + 1.00191i
\(298\) −5.89806 0.934161i −0.341666 0.0541145i
\(299\) −13.9418 −0.806276
\(300\) 7.99686 3.32418i 0.461699 0.191922i
\(301\) 6.13974 0.353889
\(302\) −2.98463 0.472718i −0.171746 0.0272019i
\(303\) 6.66529 + 11.3538i 0.382911 + 0.652256i
\(304\) 2.05900 + 0.669009i 0.118092 + 0.0383703i
\(305\) 4.64080 + 5.32391i 0.265731 + 0.304846i
\(306\) −0.281808 0.609032i −0.0161099 0.0348160i
\(307\) −4.76351 + 4.76351i −0.271868 + 0.271868i −0.829852 0.557984i \(-0.811575\pi\)
0.557984 + 0.829852i \(0.311575\pi\)
\(308\) −9.90651 5.04762i −0.564476 0.287615i
\(309\) −7.96496 + 12.4618i −0.453111 + 0.708927i
\(310\) 6.63242 1.66328i 0.376696 0.0944680i
\(311\) −17.8640 24.5877i −1.01298 1.39424i −0.917012 0.398859i \(-0.869406\pi\)
−0.0959647 0.995385i \(-0.530594\pi\)
\(312\) 2.39054 + 10.8590i 0.135338 + 0.614768i
\(313\) 1.36617 + 8.62568i 0.0772206 + 0.487552i 0.995742 + 0.0921812i \(0.0293839\pi\)
−0.918522 + 0.395371i \(0.870616\pi\)
\(314\) 5.04439 3.66496i 0.284671 0.206826i
\(315\) −12.6901 + 4.84814i −0.715004 + 0.273162i
\(316\) −9.35889 6.79963i −0.526479 0.382509i
\(317\) 4.58149 8.99167i 0.257322 0.505023i −0.725816 0.687889i \(-0.758538\pi\)
0.983138 + 0.182866i \(0.0585376\pi\)
\(318\) −15.8801 14.0915i −0.890514 0.790210i
\(319\) 39.5132 12.8386i 2.21231 0.718825i
\(320\) −1.68558 + 1.46930i −0.0942265 + 0.0821363i
\(321\) −8.55642 2.22634i −0.477573 0.124262i
\(322\) 1.99666 + 3.91866i 0.111269 + 0.218378i
\(323\) 0.0757580 0.478317i 0.00421529 0.0266143i
\(324\) −2.12563 8.74538i −0.118091 0.485854i
\(325\) 10.5329 + 30.3203i 0.584262 + 1.68187i
\(326\) 5.73079i 0.317399i
\(327\) −1.64891 + 16.8633i −0.0911849 + 0.932543i
\(328\) −1.35915 + 0.692523i −0.0750467 + 0.0382382i
\(329\) 3.27315 10.0737i 0.180455 0.555382i
\(330\) 9.82069 18.8603i 0.540611 1.03822i
\(331\) −7.78449 23.9582i −0.427874 1.31686i −0.900215 0.435445i \(-0.856591\pi\)
0.472341 0.881416i \(-0.343409\pi\)
\(332\) −7.39341 7.39341i −0.405766 0.405766i
\(333\) 6.77003 18.4308i 0.370995 1.01000i
\(334\) −5.73229 + 7.88982i −0.313657 + 0.431712i
\(335\) −2.08465 + 5.18006i −0.113896 + 0.283017i
\(336\) 2.70980 2.22707i 0.147832 0.121496i
\(337\) −29.9840 + 4.74900i −1.63333 + 0.258694i −0.904649 0.426157i \(-0.859867\pi\)
−0.728683 + 0.684852i \(0.759867\pi\)
\(338\) −27.8633 + 4.41311i −1.51556 + 0.240042i
\(339\) 17.6230 14.4836i 0.957151 0.786642i
\(340\) 0.383604 + 0.320989i 0.0208038 + 0.0174081i
\(341\) 9.86844 13.5827i 0.534406 0.735546i
\(342\) 2.23941 6.09659i 0.121093 0.329666i
\(343\) −14.1749 14.1749i −0.765374 0.765374i
\(344\) −0.936894 2.88346i −0.0505139 0.155466i
\(345\) −7.52794 + 3.75225i −0.405290 + 0.202014i
\(346\) −5.42059 + 16.6829i −0.291413 + 0.896877i
\(347\) 22.1485 11.2852i 1.18899 0.605823i 0.256337 0.966587i \(-0.417484\pi\)
0.932657 + 0.360765i \(0.117484\pi\)
\(348\) −1.27552 + 13.0446i −0.0683749 + 0.699266i
\(349\) 7.66380i 0.410234i −0.978737 0.205117i \(-0.934243\pi\)
0.978737 0.205117i \(-0.0657575\pi\)
\(350\) 7.01375 7.30280i 0.374901 0.390351i
\(351\) 32.8250 5.93334i 1.75207 0.316698i
\(352\) −0.858876 + 5.42273i −0.0457783 + 0.289033i
\(353\) 1.23037 + 2.41473i 0.0654859 + 0.128523i 0.921429 0.388547i \(-0.127023\pi\)
−0.855943 + 0.517070i \(0.827023\pi\)
\(354\) 9.55550 + 2.48629i 0.507869 + 0.132145i
\(355\) −3.03538 + 13.2302i −0.161101 + 0.702184i
\(356\) −8.63290 + 2.80500i −0.457543 + 0.148665i
\(357\) −0.586863 0.520760i −0.0310601 0.0275616i
\(358\) 5.27651 10.3557i 0.278872 0.547317i
\(359\) 3.19128 + 2.31860i 0.168429 + 0.122371i 0.668807 0.743436i \(-0.266805\pi\)
−0.500377 + 0.865807i \(0.666805\pi\)
\(360\) 4.21332 + 5.21996i 0.222061 + 0.275116i
\(361\) −11.5794 + 8.41294i −0.609443 + 0.442787i
\(362\) −0.618655 3.90603i −0.0325158 0.205297i
\(363\) −7.12882 32.3824i −0.374166 1.69964i
\(364\) 7.64126 + 10.5173i 0.400511 + 0.551256i
\(365\) 0.467612 6.82114i 0.0244759 0.357035i
\(366\) −2.94622 + 4.60960i −0.154002 + 0.240947i
\(367\) 25.0999 + 12.7890i 1.31020 + 0.667581i 0.962820 0.270143i \(-0.0870709\pi\)
0.347381 + 0.937724i \(0.387071\pi\)
\(368\) 1.53568 1.53568i 0.0800527 0.0800527i
\(369\) 1.92173 + 4.15318i 0.100042 + 0.216206i
\(370\) 1.29545 + 14.5775i 0.0673471 + 0.757849i
\(371\) −23.6077 7.67062i −1.22565 0.398239i
\(372\) 2.68145 + 4.56762i 0.139027 + 0.236820i
\(373\) −25.8075 4.08750i −1.33626 0.211643i −0.552919 0.833235i \(-0.686486\pi\)
−0.783341 + 0.621592i \(0.786486\pi\)
\(374\) 1.22813 0.0635052
\(375\) 13.8476 + 13.5368i 0.715086 + 0.699036i
\(376\) −5.23048 −0.269742
\(377\) −47.9802 7.59932i −2.47111 0.391385i
\(378\) −6.36868 8.37647i −0.327570 0.430839i
\(379\) 20.6572 + 6.71194i 1.06109 + 0.344769i 0.787012 0.616938i \(-0.211627\pi\)
0.274079 + 0.961707i \(0.411627\pi\)
\(380\) 0.428512 + 4.82199i 0.0219822 + 0.247363i
\(381\) 7.26283 + 18.5180i 0.372086 + 0.948705i
\(382\) −11.9009 + 11.9009i −0.608905 + 0.608905i
\(383\) 21.2826 + 10.8440i 1.08749 + 0.554104i 0.903397 0.428805i \(-0.141065\pi\)
0.184093 + 0.982909i \(0.441065\pi\)
\(384\) −1.45942 0.932788i −0.0744757 0.0476011i
\(385\) 1.70034 24.8031i 0.0866573 1.26409i
\(386\) 9.22037 + 12.6908i 0.469304 + 0.645942i
\(387\) −8.75058 + 2.48122i −0.444817 + 0.126128i
\(388\) 0.376840 + 2.37927i 0.0191311 + 0.120789i
\(389\) −14.6439 + 10.6394i −0.742476 + 0.539440i −0.893486 0.449092i \(-0.851748\pi\)
0.151010 + 0.988532i \(0.451748\pi\)
\(390\) −20.2428 + 14.4357i −1.02503 + 0.730978i
\(391\) −0.393024 0.285549i −0.0198761 0.0144408i
\(392\) −1.31615 + 2.58308i −0.0664754 + 0.130465i
\(393\) 11.8743 13.3816i 0.598982 0.675013i
\(394\) 16.8838 5.48588i 0.850594 0.276375i
\(395\) 5.78443 25.2123i 0.291046 1.26857i
\(396\) 16.1590 + 3.19059i 0.812020 + 0.160333i
\(397\) 6.38543 + 12.5321i 0.320476 + 0.628969i 0.993900 0.110287i \(-0.0351771\pi\)
−0.673424 + 0.739257i \(0.735177\pi\)
\(398\) −0.435130 + 2.74730i −0.0218111 + 0.137710i
\(399\) −0.452380 7.58019i −0.0226473 0.379484i
\(400\) −4.49995 2.17956i −0.224997 0.108978i
\(401\) 0.841787i 0.0420368i −0.999779 0.0210184i \(-0.993309\pi\)
0.999779 0.0210184i \(-0.00669086\pi\)
\(402\) −4.30466 0.420913i −0.214697 0.0209933i
\(403\) −17.4911 + 8.91216i −0.871293 + 0.443946i
\(404\) 2.34889 7.22915i 0.116862 0.359664i
\(405\) 16.1271 12.0381i 0.801362 0.598179i
\(406\) 4.73546 + 14.5742i 0.235017 + 0.723307i
\(407\) 25.4091 + 25.4091i 1.25948 + 1.25948i
\(408\) −0.155017 + 0.355079i −0.00767450 + 0.0175790i
\(409\) 8.95042 12.3192i 0.442570 0.609145i −0.528211 0.849113i \(-0.677137\pi\)
0.970781 + 0.239968i \(0.0771371\pi\)
\(410\) −2.61592 2.18893i −0.129191 0.108103i
\(411\) 14.8354 + 18.0511i 0.731779 + 0.890396i
\(412\) 8.43375 1.33577i 0.415501 0.0658089i
\(413\) 11.4020 1.80589i 0.561054 0.0888622i
\(414\) −4.42934 4.77812i −0.217690 0.234832i
\(415\) 8.72867 21.6895i 0.428474 1.06470i
\(416\) 3.77332 5.19352i 0.185002 0.254633i
\(417\) 18.0792 + 7.89285i 0.885343 + 0.386515i
\(418\) 8.40490 + 8.40490i 0.411097 + 0.411097i
\(419\) −0.0964938 0.296977i −0.00471403 0.0145083i 0.948672 0.316262i \(-0.102428\pi\)
−0.953386 + 0.301754i \(0.902428\pi\)
\(420\) 6.95651 + 3.62231i 0.339443 + 0.176751i
\(421\) 11.7686 36.2199i 0.573565 1.76525i −0.0674500 0.997723i \(-0.521486\pi\)
0.641015 0.767528i \(-0.278514\pi\)
\(422\) −12.6351 + 6.43790i −0.615067 + 0.313392i
\(423\) −0.593975 + 15.6802i −0.0288800 + 0.762398i
\(424\) 12.2576i 0.595283i
\(425\) −0.324078 + 1.07047i −0.0157201 + 0.0519254i
\(426\) −10.4956 + 0.626372i −0.508515 + 0.0303478i
\(427\) −1.00059 + 6.31749i −0.0484220 + 0.305725i
\(428\) 2.31741 + 4.54817i 0.112016 + 0.219844i
\(429\) −15.3722 + 59.0797i −0.742179 + 2.85240i
\(430\) 5.11042 4.45470i 0.246446 0.214824i
\(431\) −23.0434 + 7.48726i −1.10996 + 0.360648i −0.805928 0.592013i \(-0.798333\pi\)
−0.304033 + 0.952661i \(0.598333\pi\)
\(432\) −2.96209 + 4.26919i −0.142514 + 0.205402i
\(433\) −2.46001 + 4.82804i −0.118220 + 0.232021i −0.942532 0.334116i \(-0.891562\pi\)
0.824312 + 0.566136i \(0.191562\pi\)
\(434\) 5.00992 + 3.63992i 0.240484 + 0.174722i
\(435\) −27.9523 + 8.80992i −1.34021 + 0.422403i
\(436\) 7.91418 5.74999i 0.379021 0.275375i
\(437\) −0.735524 4.64392i −0.0351849 0.222149i
\(438\) 5.17219 1.13863i 0.247137 0.0544058i
\(439\) −15.7160 21.6312i −0.750083 1.03240i −0.997975 0.0636130i \(-0.979738\pi\)
0.247892 0.968788i \(-0.420262\pi\)
\(440\) −11.9080 + 2.98629i −0.567692 + 0.142366i
\(441\) 7.59423 + 4.23894i 0.361630 + 0.201854i
\(442\) −1.27948 0.651925i −0.0608585 0.0310089i
\(443\) −16.9801 + 16.9801i −0.806749 + 0.806749i −0.984140 0.177391i \(-0.943234\pi\)
0.177391 + 0.984140i \(0.443234\pi\)
\(444\) −10.5535 + 4.13914i −0.500848 + 0.196435i
\(445\) −13.3371 15.3002i −0.632237 0.725301i
\(446\) 5.16436 + 1.67800i 0.244539 + 0.0794557i
\(447\) 8.91965 5.23633i 0.421885 0.247670i
\(448\) −2.00015 0.316792i −0.0944980 0.0149670i
\(449\) 6.98488 0.329637 0.164818 0.986324i \(-0.447296\pi\)
0.164818 + 0.986324i \(0.447296\pi\)
\(450\) −7.04502 + 13.2426i −0.332105 + 0.624264i
\(451\) −8.37502 −0.394364
\(452\) −13.0078 2.06024i −0.611837 0.0969055i
\(453\) 4.51366 2.64977i 0.212070 0.124497i
\(454\) 18.9792 + 6.16673i 0.890739 + 0.289419i
\(455\) −14.9376 + 24.9375i −0.700286 + 1.16909i
\(456\) −3.49092 + 1.36915i −0.163477 + 0.0641165i
\(457\) −4.53549 + 4.53549i −0.212161 + 0.212161i −0.805185 0.593024i \(-0.797934\pi\)
0.593024 + 0.805185i \(0.297934\pi\)
\(458\) 10.2523 + 5.22381i 0.479058 + 0.244092i
\(459\) 1.04687 + 0.505042i 0.0488637 + 0.0235733i
\(460\) 4.50511 + 1.81302i 0.210052 + 0.0845326i
\(461\) 1.73628 + 2.38979i 0.0808667 + 0.111303i 0.847534 0.530741i \(-0.178086\pi\)
−0.766667 + 0.642045i \(0.778086\pi\)
\(462\) 18.8072 4.14030i 0.874990 0.192624i
\(463\) −4.47610 28.2610i −0.208022 1.31340i −0.841761 0.539851i \(-0.818481\pi\)
0.633739 0.773547i \(-0.281519\pi\)
\(464\) 6.12203 4.44791i 0.284208 0.206489i
\(465\) −7.04579 + 9.51963i −0.326741 + 0.441462i
\(466\) −3.93564 2.85941i −0.182315 0.132460i
\(467\) −2.07783 + 4.07796i −0.0961504 + 0.188706i −0.934072 0.357085i \(-0.883771\pi\)
0.837922 + 0.545791i \(0.183771\pi\)
\(468\) −15.1409 11.9016i −0.699889 0.550152i
\(469\) −4.80942 + 1.56267i −0.222078 + 0.0721576i
\(470\) −4.58459 10.7597i −0.211471 0.496308i
\(471\) −2.71948 + 10.4517i −0.125307 + 0.481588i
\(472\) −2.58800 5.07924i −0.119122 0.233791i
\(473\) 2.60399 16.4409i 0.119731 0.755955i
\(474\) 20.0012 1.19365i 0.918684 0.0548264i
\(475\) −9.54379 + 5.10804i −0.437899 + 0.234373i
\(476\) 0.452990i 0.0207628i
\(477\) 36.7465 + 1.39198i 1.68251 + 0.0637343i
\(478\) −14.9493 + 7.61704i −0.683765 + 0.348395i
\(479\) 8.54601 26.3019i 0.390477 1.20176i −0.541951 0.840410i \(-0.682314\pi\)
0.932428 0.361355i \(-0.117686\pi\)
\(480\) 0.639651 3.81980i 0.0291959 0.174349i
\(481\) −12.9836 39.9593i −0.591999 1.82199i
\(482\) 12.0274 + 12.0274i 0.547835 + 0.547835i
\(483\) −6.98129 3.04783i −0.317660 0.138681i
\(484\) −11.2524 + 15.4876i −0.511472 + 0.703980i
\(485\) −4.56413 + 2.86067i −0.207247 + 0.129896i
\(486\) 12.4620 + 9.36471i 0.565289 + 0.424792i
\(487\) −29.8920 + 4.73443i −1.35454 + 0.214538i −0.791133 0.611644i \(-0.790509\pi\)
−0.563404 + 0.826182i \(0.690509\pi\)
\(488\) 3.11963 0.494100i 0.141219 0.0223669i
\(489\) 6.30240 + 7.66848i 0.285004 + 0.346781i
\(490\) −6.46731 0.443356i −0.292164 0.0200288i
\(491\) 4.84555 6.66933i 0.218677 0.300982i −0.685558 0.728018i \(-0.740442\pi\)
0.904235 + 0.427035i \(0.140442\pi\)
\(492\) 1.05711 2.42140i 0.0476583 0.109165i
\(493\) −1.19693 1.19693i −0.0539071 0.0539071i
\(494\) −4.29473 13.2178i −0.193229 0.594698i
\(495\) 7.60018 + 36.0375i 0.341603 + 1.61977i
\(496\) 0.944961 2.90829i 0.0424300 0.130586i
\(497\) −10.9532 + 5.58095i −0.491320 + 0.250340i
\(498\) 18.0241 + 1.76242i 0.807680 + 0.0789757i
\(499\) 38.0463i 1.70318i 0.524205 + 0.851592i \(0.324363\pi\)
−0.524205 + 0.851592i \(0.675637\pi\)
\(500\) 0.539345 11.1673i 0.0241203 0.499418i
\(501\) −1.00629 16.8616i −0.0449576 0.753320i
\(502\) −4.23979 + 26.7690i −0.189231 + 1.19476i
\(503\) −17.3097 33.9723i −0.771804 1.51475i −0.855237 0.518236i \(-0.826589\pi\)
0.0834338 0.996513i \(-0.473411\pi\)
\(504\) −1.17683 + 5.96016i −0.0524203 + 0.265487i
\(505\) 16.9300 1.50451i 0.753377 0.0669497i
\(506\) 11.3402 3.68464i 0.504132 0.163802i
\(507\) 32.4311 36.5477i 1.44032 1.62314i
\(508\) 5.21374 10.2325i 0.231322 0.453996i
\(509\) 5.62616 + 4.08765i 0.249375 + 0.181182i 0.705450 0.708760i \(-0.250745\pi\)
−0.456075 + 0.889942i \(0.650745\pi\)
\(510\) −0.866314 0.00765643i −0.0383610 0.000339032i
\(511\) 5.00944 3.63957i 0.221605 0.161005i
\(512\) 0.156434 + 0.987688i 0.00691349 + 0.0436501i
\(513\) 3.70809 + 10.6207i 0.163716 + 0.468917i
\(514\) −9.82444 13.5222i −0.433337 0.596438i
\(515\) 10.1401 + 16.1784i 0.446828 + 0.712904i
\(516\) 4.42475 + 2.82808i 0.194789 + 0.124499i
\(517\) −25.5871 13.0373i −1.12532 0.573379i
\(518\) −9.37203 + 9.37203i −0.411783 + 0.411783i
\(519\) −11.0935 28.2849i −0.486950 1.24157i
\(520\) 13.9910 + 3.20995i 0.613548 + 0.140766i
\(521\) 20.6631 + 6.71385i 0.905267 + 0.294139i 0.724409 0.689370i \(-0.242113\pi\)
0.180858 + 0.983509i \(0.442113\pi\)
\(522\) −12.6390 18.8580i −0.553192 0.825394i
\(523\) 42.4737 + 6.72718i 1.85725 + 0.294159i 0.981909 0.189354i \(-0.0606393\pi\)
0.875337 + 0.483513i \(0.160639\pi\)
\(524\) −10.3290 −0.451226
\(525\) −1.35403 + 17.4853i −0.0590949 + 0.763123i
\(526\) 7.29888 0.318246
\(527\) −0.675613 0.107007i −0.0294302 0.00466128i
\(528\) −4.81433 8.20081i −0.209517 0.356894i
\(529\) 17.3885 + 5.64988i 0.756023 + 0.245647i
\(530\) −25.2154 + 10.7440i −1.09528 + 0.466689i
\(531\) −15.5207 + 7.18164i −0.673541 + 0.311657i
\(532\) −3.10010 + 3.10010i −0.134407 + 0.134407i
\(533\) 8.72515 + 4.44569i 0.377928 + 0.192564i
\(534\) 8.46707 13.2474i 0.366406 0.573271i
\(535\) −7.32488 + 8.75372i −0.316682 + 0.378456i
\(536\) 1.46779 + 2.02024i 0.0633987 + 0.0872609i
\(537\) 4.32805 + 19.6600i 0.186769 + 0.848392i
\(538\) 4.81318 + 30.3892i 0.207511 + 1.31017i
\(539\) −12.8769 + 9.35565i −0.554649 + 0.402976i
\(540\) −11.3785 2.35135i −0.489654 0.101186i
\(541\) −8.60979 6.25538i −0.370164 0.268940i 0.387115 0.922031i \(-0.373472\pi\)
−0.757279 + 0.653092i \(0.773472\pi\)
\(542\) 7.21390 14.1581i 0.309863 0.608141i
\(543\) 5.12347 + 4.54638i 0.219869 + 0.195104i
\(544\) 0.212742 0.0691240i 0.00912123 0.00296367i
\(545\) 18.7653 + 11.2404i 0.803816 + 0.481487i
\(546\) −21.7912 5.66997i −0.932579 0.242652i
\(547\) 6.48863 + 12.7347i 0.277434 + 0.544495i 0.987112 0.160031i \(-0.0511596\pi\)
−0.709678 + 0.704526i \(0.751160\pi\)
\(548\) 2.11029 13.3238i 0.0901470 0.569166i
\(549\) −1.12697 9.40828i −0.0480980 0.401536i
\(550\) −16.5807 21.8786i −0.707002 0.932907i
\(551\) 16.3828i 0.697929i
\(552\) −0.366069 + 3.74377i −0.0155809 + 0.159346i
\(553\) 20.8732 10.6354i 0.887619 0.452265i
\(554\) −2.97037 + 9.14187i −0.126199 + 0.388401i
\(555\) −17.7650 18.0818i −0.754082 0.767530i
\(556\) −3.51952 10.8320i −0.149261 0.459377i
\(557\) −3.60663 3.60663i −0.152818 0.152818i 0.626557 0.779375i \(-0.284463\pi\)
−0.779375 + 0.626557i \(0.784463\pi\)
\(558\) −8.61131 3.16312i −0.364546 0.133905i
\(559\) −11.4401 + 15.7460i −0.483866 + 0.665985i
\(560\) −1.10148 4.39220i −0.0465460 0.185604i
\(561\) −1.64339 + 1.35063i −0.0693839 + 0.0570236i
\(562\) 20.4433 3.23790i 0.862349 0.136583i
\(563\) 25.1492 3.98324i 1.05991 0.167874i 0.397948 0.917408i \(-0.369723\pi\)
0.661965 + 0.749534i \(0.269723\pi\)
\(564\) 6.99901 5.75219i 0.294712 0.242211i
\(565\) −7.16341 28.5645i −0.301367 1.20172i
\(566\) −7.17155 + 9.87079i −0.301443 + 0.414900i
\(567\) 17.7340 + 4.20480i 0.744759 + 0.176585i
\(568\) 4.29245 + 4.29245i 0.180107 + 0.180107i
\(569\) −9.49637 29.2268i −0.398108 1.22525i −0.926514 0.376260i \(-0.877210\pi\)
0.528406 0.848992i \(-0.322790\pi\)
\(570\) −5.87635 5.98115i −0.246133 0.250523i
\(571\) −6.95564 + 21.4073i −0.291085 + 0.895866i 0.693424 + 0.720530i \(0.256101\pi\)
−0.984509 + 0.175336i \(0.943899\pi\)
\(572\) 31.4039 16.0011i 1.31306 0.669039i
\(573\) 2.83690 29.0128i 0.118513 1.21203i
\(574\) 3.08908i 0.128936i
\(575\) 0.219194 + 10.8567i 0.00914101 + 0.452754i
\(576\) 2.97871 0.356805i 0.124113 0.0148669i
\(577\) 6.51823 41.1545i 0.271358 1.71328i −0.355943 0.934508i \(-0.615840\pi\)
0.627301 0.778777i \(-0.284160\pi\)
\(578\) 7.69512 + 15.1025i 0.320075 + 0.628182i
\(579\) −26.2945 6.84170i −1.09276 0.284332i
\(580\) 14.5159 + 8.69506i 0.602741 + 0.361043i
\(581\) 20.1376 6.54311i 0.835449 0.271454i
\(582\) −3.12085 2.76933i −0.129363 0.114792i
\(583\) −30.5528 + 59.9633i −1.26537 + 2.48343i
\(584\) −2.47370 1.79725i −0.102363 0.0743708i
\(585\) 11.2118 41.5785i 0.463550 1.71906i
\(586\) −0.175477 + 0.127491i −0.00724887 + 0.00526661i
\(587\) −3.88731 24.5435i −0.160447 1.01302i −0.928148 0.372212i \(-0.878600\pi\)
0.767701 0.640808i \(-0.221400\pi\)
\(588\) −1.07957 4.90389i −0.0445205 0.202233i
\(589\) −3.89134 5.35598i −0.160340 0.220689i
\(590\) 8.18016 9.77584i 0.336772 0.402465i
\(591\) −16.5595 + 25.9086i −0.681167 + 1.06574i
\(592\) 5.83160 + 2.97135i 0.239677 + 0.122122i
\(593\) −25.7915 + 25.7915i −1.05913 + 1.05913i −0.0609902 + 0.998138i \(0.519426\pi\)
−0.998138 + 0.0609902i \(0.980574\pi\)
\(594\) −25.1315 + 13.5014i −1.03116 + 0.553968i
\(595\) −0.931852 + 0.397052i −0.0382022 + 0.0162775i
\(596\) −5.67931 1.84532i −0.232634 0.0755873i
\(597\) −2.43907 4.15475i −0.0998246 0.170043i
\(598\) −13.7702 2.18098i −0.563104 0.0891870i
\(599\) −36.9040 −1.50786 −0.753929 0.656956i \(-0.771844\pi\)
−0.753929 + 0.656956i \(0.771844\pi\)
\(600\) 8.41843 2.03227i 0.343681 0.0829671i
\(601\) 20.4696 0.834972 0.417486 0.908683i \(-0.362911\pi\)
0.417486 + 0.908683i \(0.362911\pi\)
\(602\) 6.06415 + 0.960467i 0.247156 + 0.0391457i
\(603\) 6.22305 4.17079i 0.253422 0.169848i
\(604\) −2.87393 0.933797i −0.116939 0.0379956i
\(605\) −41.7226 9.57237i −1.69626 0.389172i
\(606\) 4.80711 + 12.2567i 0.195276 + 0.497893i
\(607\) −4.57545 + 4.57545i −0.185712 + 0.185712i −0.793839 0.608128i \(-0.791921\pi\)
0.608128 + 0.793839i \(0.291921\pi\)
\(608\) 1.92899 + 0.982870i 0.0782309 + 0.0398607i
\(609\) −22.3645 14.2943i −0.906256 0.579234i
\(610\) 3.75082 + 5.98434i 0.151866 + 0.242299i
\(611\) 19.7363 + 27.1646i 0.798444 + 1.09896i
\(612\) −0.183064 0.645618i −0.00739994 0.0260976i
\(613\) 4.60648 + 29.0842i 0.186054 + 1.17470i 0.887098 + 0.461581i \(0.152718\pi\)
−0.701044 + 0.713118i \(0.747282\pi\)
\(614\) −5.45004 + 3.95968i −0.219946 + 0.159800i
\(615\) 5.90767 + 0.0522116i 0.238220 + 0.00210538i
\(616\) −8.99493 6.53520i −0.362416 0.263311i
\(617\) −11.4572 + 22.4860i −0.461250 + 0.905254i 0.536852 + 0.843676i \(0.319613\pi\)
−0.998102 + 0.0615777i \(0.980387\pi\)
\(618\) −9.81635 + 11.0624i −0.394872 + 0.444994i
\(619\) −2.83846 + 0.922271i −0.114087 + 0.0370692i −0.365504 0.930810i \(-0.619103\pi\)
0.251417 + 0.967879i \(0.419103\pi\)
\(620\) 6.81096 0.605264i 0.273535 0.0243080i
\(621\) 11.1817 + 1.52256i 0.448706 + 0.0610984i
\(622\) −13.7977 27.0796i −0.553239 1.08579i
\(623\) 2.87557 18.1557i 0.115207 0.727391i
\(624\) 0.662395 + 11.0992i 0.0265170 + 0.444325i
\(625\) 23.4452 8.67882i 0.937809 0.347153i
\(626\) 8.73320i 0.349049i
\(627\) −20.4900 2.00353i −0.818292 0.0800133i
\(628\) 5.55561 2.83072i 0.221693 0.112958i
\(629\) 0.452414 1.39239i 0.0180389 0.0555181i
\(630\) −13.2923 + 2.80329i −0.529576 + 0.111686i
\(631\) 9.27752 + 28.5533i 0.369332 + 1.13669i 0.947223 + 0.320574i \(0.103876\pi\)
−0.577891 + 0.816114i \(0.696124\pi\)
\(632\) −8.17997 8.17997i −0.325382 0.325382i
\(633\) 9.82723 22.5100i 0.390597 0.894694i
\(634\) 5.93169 8.16427i 0.235577 0.324245i
\(635\) 25.6194 + 1.75630i 1.01668 + 0.0696966i
\(636\) −13.4802 16.4022i −0.534526 0.650388i
\(637\) 18.3815 2.91135i 0.728303 0.115352i
\(638\) 41.0351 6.49933i 1.62460 0.257311i
\(639\) 13.3556 12.3807i 0.528338 0.489771i
\(640\) −1.89467 + 1.18753i −0.0748935 + 0.0469411i
\(641\) −10.4719 + 14.4133i −0.413614 + 0.569291i −0.964095 0.265557i \(-0.914444\pi\)
0.550481 + 0.834847i \(0.314444\pi\)
\(642\) −8.10280 3.53745i −0.319792 0.139612i
\(643\) 10.8997 + 10.8997i 0.429840 + 0.429840i 0.888574 0.458734i \(-0.151697\pi\)
−0.458734 + 0.888574i \(0.651697\pi\)
\(644\) 1.35906 + 4.18276i 0.0535545 + 0.164824i
\(645\) −1.93933 + 11.5811i −0.0763609 + 0.456004i
\(646\) 0.149651 0.460577i 0.00588792 0.0181212i
\(647\) −1.92749 + 0.982107i −0.0757776 + 0.0386106i −0.491469 0.870895i \(-0.663540\pi\)
0.415691 + 0.909506i \(0.363540\pi\)
\(648\) −0.731385 8.97023i −0.0287315 0.352384i
\(649\) 31.2980i 1.22855i
\(650\) 5.66011 + 31.5948i 0.222008 + 1.23925i
\(651\) −10.7069 + 0.638977i −0.419635 + 0.0250435i
\(652\) 0.896493 5.66023i 0.0351094 0.221672i
\(653\) 2.89362 + 5.67905i 0.113236 + 0.222238i 0.940668 0.339327i \(-0.110199\pi\)
−0.827432 + 0.561565i \(0.810199\pi\)
\(654\) −4.26661 + 16.3977i −0.166838 + 0.641202i
\(655\) −9.05355 21.2480i −0.353752 0.830229i
\(656\) −1.45075 + 0.471379i −0.0566424 + 0.0184042i
\(657\) −5.66880 + 7.21170i −0.221161 + 0.281355i
\(658\) 4.80873 9.43766i 0.187464 0.367918i
\(659\) 27.9601 + 20.3142i 1.08917 + 0.791330i 0.979259 0.202611i \(-0.0649427\pi\)
0.109913 + 0.993941i \(0.464943\pi\)
\(660\) 12.6502 17.0918i 0.492407 0.665296i
\(661\) −33.8226 + 24.5736i −1.31555 + 0.955801i −0.315572 + 0.948902i \(0.602196\pi\)
−0.999976 + 0.00689972i \(0.997804\pi\)
\(662\) −3.94076 24.8810i −0.153162 0.967027i
\(663\) 2.42904 0.534741i 0.0943362 0.0207676i
\(664\) −6.14580 8.45897i −0.238503 0.328272i
\(665\) −9.09455 3.65999i −0.352672 0.141928i
\(666\) 9.56989 17.1448i 0.370826 0.664349i
\(667\) −14.6431 7.46104i −0.566984 0.288893i
\(668\) −6.89596 + 6.89596i −0.266813 + 0.266813i
\(669\) −8.75590 + 3.43410i −0.338523 + 0.132770i
\(670\) −2.86932 + 4.79017i −0.110852 + 0.185060i
\(671\) 16.4925 + 5.35875i 0.636687 + 0.206872i
\(672\) 3.02482 1.77574i 0.116685 0.0685007i
\(673\) −5.89775 0.934113i −0.227342 0.0360074i 0.0417241 0.999129i \(-0.486715\pi\)
−0.269066 + 0.963122i \(0.586715\pi\)
\(674\) −30.3577 −1.16934
\(675\) −5.13644 25.4680i −0.197702 0.980262i
\(676\) −28.2106 −1.08502
\(677\) 21.6557 + 3.42993i 0.832297 + 0.131823i 0.558020 0.829828i \(-0.311561\pi\)
0.274277 + 0.961651i \(0.411561\pi\)
\(678\) 19.6718 11.5484i 0.755490 0.443515i
\(679\) −4.63951 1.50747i −0.178048 0.0578514i
\(680\) 0.328667 + 0.377046i 0.0126038 + 0.0144591i
\(681\) −32.1783 + 12.6205i −1.23308 + 0.483617i
\(682\) 11.8717 11.8717i 0.454593 0.454593i
\(683\) −11.0839 5.64753i −0.424114 0.216097i 0.228888 0.973453i \(-0.426491\pi\)
−0.653002 + 0.757356i \(0.726491\pi\)
\(684\) 3.16555 5.67121i 0.121038 0.216844i
\(685\) 29.2584 7.33742i 1.11790 0.280348i
\(686\) −11.7830 16.2179i −0.449875 0.619200i
\(687\) −19.4637 + 4.28482i −0.742585 + 0.163476i
\(688\) −0.474286 2.99453i −0.0180820 0.114165i
\(689\) 63.6603 46.2519i 2.42526 1.76206i
\(690\) −8.02224 + 2.52842i −0.305401 + 0.0962554i
\(691\) 6.87945 + 4.99821i 0.261706 + 0.190141i 0.710899 0.703294i \(-0.248288\pi\)
−0.449193 + 0.893435i \(0.648288\pi\)
\(692\) −7.96363 + 15.6295i −0.302732 + 0.594145i
\(693\) −20.6130 + 26.2233i −0.783023 + 0.996141i
\(694\) 23.6412 7.68150i 0.897408 0.291586i
\(695\) 19.1977 16.7344i 0.728209 0.634772i
\(696\) −3.30044 + 12.6845i −0.125103 + 0.480805i
\(697\) 0.154911 + 0.304029i 0.00586765 + 0.0115159i
\(698\) 1.19888 7.56945i 0.0453784 0.286508i
\(699\) 8.41097 0.501961i 0.318132 0.0189859i
\(700\) 8.06981 6.11570i 0.305010 0.231152i
\(701\) 19.8483i 0.749660i −0.927093 0.374830i \(-0.877701\pi\)
0.927093 0.374830i \(-0.122299\pi\)
\(702\) 33.3491 0.725327i 1.25868 0.0273757i
\(703\) 12.6252 6.43284i 0.476167 0.242619i
\(704\) −1.69660 + 5.22161i −0.0639432 + 0.196797i
\(705\) 17.9676 + 9.35590i 0.676701 + 0.352364i
\(706\) 0.837472 + 2.57747i 0.0315187 + 0.0970045i
\(707\) 10.8845 + 10.8845i 0.409353 + 0.409353i
\(708\) 9.04891 + 3.95049i 0.340079 + 0.148469i
\(709\) 2.74291 3.77529i 0.103012 0.141784i −0.754399 0.656416i \(-0.772072\pi\)
0.857411 + 0.514632i \(0.172072\pi\)
\(710\) −5.06767 + 12.5924i −0.190186 + 0.472586i
\(711\) −25.4512 + 23.5934i −0.954496 + 0.884821i
\(712\) −8.96541 + 1.41998i −0.335993 + 0.0532160i
\(713\) −6.55944 + 1.03891i −0.245653 + 0.0389076i
\(714\) −0.498173 0.606155i −0.0186436 0.0226848i
\(715\) 60.4420 + 50.5763i 2.26040 + 1.89145i
\(716\) 6.83154 9.40281i 0.255307 0.351399i
\(717\) 11.6271 26.6329i 0.434224 0.994624i
\(718\) 2.78928 + 2.78928i 0.104095 + 0.104095i
\(719\) 5.35309 + 16.4751i 0.199637 + 0.614418i 0.999891 + 0.0147577i \(0.00469769\pi\)
−0.800255 + 0.599660i \(0.795302\pi\)
\(720\) 3.34487 + 5.81480i 0.124656 + 0.216705i
\(721\) −5.34349 + 16.4456i −0.199002 + 0.612465i
\(722\) −12.7529 + 6.49795i −0.474615 + 0.241829i
\(723\) −29.3213 2.86706i −1.09047 0.106627i
\(724\) 3.95472i 0.146976i
\(725\) −5.16334 + 37.4823i −0.191761 + 1.39206i
\(726\) −1.97532 33.0989i −0.0733111 1.22842i
\(727\) −0.833437 + 5.26211i −0.0309105 + 0.195161i −0.998311 0.0580887i \(-0.981499\pi\)
0.967401 + 0.253250i \(0.0814994\pi\)
\(728\) 5.90192 + 11.5832i 0.218740 + 0.429301i
\(729\) −26.9745 + 1.17392i −0.999054 + 0.0434785i
\(730\) 1.52892 6.66401i 0.0565877 0.246646i
\(731\) −0.645002 + 0.209574i −0.0238563 + 0.00775137i
\(732\) −3.63105 + 4.09195i −0.134207 + 0.151243i
\(733\) 7.56657 14.8502i 0.279478 0.548506i −0.708010 0.706202i \(-0.750407\pi\)
0.987488 + 0.157697i \(0.0504068\pi\)
\(734\) 22.7902 + 16.5580i 0.841201 + 0.611168i
\(735\) 9.14162 6.51912i 0.337194 0.240461i
\(736\) 1.75700 1.27654i 0.0647640 0.0470538i
\(737\) 2.14474 + 13.5414i 0.0790026 + 0.498803i
\(738\) 1.24837 + 4.40267i 0.0459533 + 0.162065i
\(739\) 4.33206 + 5.96257i 0.159357 + 0.219337i 0.881228 0.472691i \(-0.156717\pi\)
−0.721871 + 0.692028i \(0.756717\pi\)
\(740\) −1.00093 + 14.6007i −0.0367948 + 0.536732i
\(741\) 20.2831 + 12.9639i 0.745118 + 0.476242i
\(742\) −22.1171 11.2692i −0.811946 0.413707i
\(743\) −24.6348 + 24.6348i −0.903763 + 0.903763i −0.995759 0.0919959i \(-0.970675\pi\)
0.0919959 + 0.995759i \(0.470675\pi\)
\(744\) 1.93390 + 4.93086i 0.0709003 + 0.180774i
\(745\) −1.18196 13.3004i −0.0433037 0.487291i
\(746\) −24.8503 8.07436i −0.909835 0.295623i
\(747\) −26.0566 + 17.4636i −0.953363 + 0.638959i
\(748\) 1.21301 + 0.192122i 0.0443521 + 0.00702468i
\(749\) −10.3371 −0.377709
\(750\) 11.5595 + 15.5364i 0.422093 + 0.567308i
\(751\) −16.0915 −0.587188 −0.293594 0.955930i \(-0.594851\pi\)
−0.293594 + 0.955930i \(0.594851\pi\)
\(752\) −5.16609 0.818228i −0.188388 0.0298377i
\(753\) −23.7657 40.4828i −0.866069 1.47528i
\(754\) −46.2007 15.0115i −1.68253 0.546687i
\(755\) −0.598113 6.73049i −0.0217676 0.244948i
\(756\) −4.97991 9.26962i −0.181117 0.337133i
\(757\) −5.11239 + 5.11239i −0.185813 + 0.185813i −0.793883 0.608070i \(-0.791944\pi\)
0.608070 + 0.793883i \(0.291944\pi\)
\(758\) 1