Properties

Label 150.2.l.a.23.5
Level 150
Weight 2
Character 150.23
Analytic conductor 1.198
Analytic rank 0
Dimension 80
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.l (of order \(20\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{20})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 23.5
Character \(\chi\) = 150.23
Dual form 150.2.l.a.137.5

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-0.987688 - 0.156434i) q^{2}\) \(+(1.64008 + 0.556890i) q^{3}\) \(+(0.951057 + 0.309017i) q^{4}\) \(+(0.545143 + 2.16860i) q^{5}\) \(+(-1.53277 - 0.806599i) q^{6}\) \(+(-1.41702 + 1.41702i) q^{7}\) \(+(-0.891007 - 0.453990i) q^{8}\) \(+(2.37975 + 1.82669i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-0.987688 - 0.156434i) q^{2}\) \(+(1.64008 + 0.556890i) q^{3}\) \(+(0.951057 + 0.309017i) q^{4}\) \(+(0.545143 + 2.16860i) q^{5}\) \(+(-1.53277 - 0.806599i) q^{6}\) \(+(-1.41702 + 1.41702i) q^{7}\) \(+(-0.891007 - 0.453990i) q^{8}\) \(+(2.37975 + 1.82669i) q^{9}\) \(+(-0.199188 - 2.22718i) q^{10}\) \(+(-2.37267 - 3.26569i) q^{11}\) \(+(1.38772 + 1.03645i) q^{12}\) \(+(0.301677 + 1.90471i) q^{13}\) \(+(1.62125 - 1.17790i) q^{14}\) \(+(-0.313590 + 3.86027i) q^{15}\) \(+(0.809017 + 0.587785i) q^{16}\) \(+(1.78386 - 3.50102i) q^{17}\) \(+(-2.06469 - 2.17648i) q^{18}\) \(+(6.42284 - 2.08691i) q^{19}\) \(+(-0.151672 + 2.23092i) q^{20}\) \(+(-3.11316 + 1.53491i) q^{21}\) \(+(1.83259 + 3.59666i) q^{22}\) \(+(-0.317431 + 2.00418i) q^{23}\) \(+(-1.20850 - 1.24077i) q^{24}\) \(+(-4.40564 + 2.36439i) q^{25}\) \(-1.92846i q^{26}\) \(+(2.88572 + 4.32118i) q^{27}\) \(+(-1.78555 + 0.909783i) q^{28}\) \(+(1.79717 - 5.53113i) q^{29}\) \(+(0.913608 - 3.76368i) q^{30}\) \(+(-2.88201 - 8.86991i) q^{31}\) \(+(-0.707107 - 0.707107i) q^{32}\) \(+(-2.07274 - 6.67733i) q^{33}\) \(+(-2.30957 + 3.17886i) q^{34}\) \(+(-3.84543 - 2.30047i) q^{35}\) \(+(1.69880 + 2.47267i) q^{36}\) \(+(-6.31949 + 1.00091i) q^{37}\) \(+(-6.67023 + 1.05646i) q^{38}\) \(+(-0.565940 + 3.29189i) q^{39}\) \(+(0.498797 - 2.17973i) q^{40}\) \(+(0.756950 - 1.04185i) q^{41}\) \(+(3.31494 - 1.02900i) q^{42}\) \(+(-6.68950 - 6.68950i) q^{43}\) \(+(-1.24738 - 3.83905i) q^{44}\) \(+(-2.66406 + 6.15652i) q^{45}\) \(+(0.627046 - 1.92985i) q^{46}\) \(+(-1.18073 + 0.601612i) q^{47}\) \(+(0.999524 + 1.41455i) q^{48}\) \(+2.98411i q^{49}\) \(+(4.72127 - 1.64609i) q^{50}\) \(+(4.87536 - 4.74855i) q^{51}\) \(+(-0.301677 + 1.90471i) q^{52}\) \(+(4.96215 + 9.73877i) q^{53}\) \(+(-2.17421 - 4.71941i) q^{54}\) \(+(5.78854 - 6.92563i) q^{55}\) \(+(1.90589 - 0.619261i) q^{56}\) \(+(11.6962 + 0.154113i) q^{57}\) \(+(-2.64031 + 5.18189i) q^{58}\) \(+(-3.81952 - 2.77504i) q^{59}\) \(+(-1.49113 + 3.57443i) q^{60}\) \(+(-0.433671 + 0.315081i) q^{61}\) \(+(1.45897 + 9.21155i) q^{62}\) \(+(-5.96061 + 0.783690i) q^{63}\) \(+(0.587785 + 0.809017i) q^{64}\) \(+(-3.96610 + 1.69256i) q^{65}\) \(+(1.00265 + 6.91936i) q^{66}\) \(+(-1.35097 - 0.688356i) q^{67}\) \(+(2.77842 - 2.77842i) q^{68}\) \(+(-1.63672 + 3.11025i) q^{69}\) \(+(3.43821 + 2.87370i) q^{70}\) \(+(0.520251 + 0.169040i) q^{71}\) \(+(-1.29107 - 2.70798i) q^{72}\) \(+(7.37855 + 1.16865i) q^{73}\) \(+6.39826 q^{74}\) \(+(-8.54232 + 1.42435i) q^{75}\) \(+6.75337 q^{76}\) \(+(7.98967 + 1.26544i) q^{77}\) \(+(1.07394 - 3.16283i) q^{78}\) \(+(10.2088 + 3.31704i) q^{79}\) \(+(-0.833640 + 2.07486i) q^{80}\) \(+(2.32639 + 8.69413i) q^{81}\) \(+(-0.910612 + 0.910612i) q^{82}\) \(+(-3.00600 - 1.53163i) q^{83}\) \(+(-3.43510 + 0.497765i) q^{84}\) \(+(8.56476 + 1.95991i) q^{85}\) \(+(5.56067 + 7.65361i) q^{86}\) \(+(6.02774 - 8.07068i) q^{87}\) \(+(0.631467 + 3.98692i) q^{88}\) \(+(-11.4865 + 8.34544i) q^{89}\) \(+(3.59435 - 5.66398i) q^{90}\) \(+(-3.12650 - 2.27153i) q^{91}\) \(+(-0.921220 + 1.80800i) q^{92}\) \(+(0.212830 - 16.1523i) q^{93}\) \(+(1.26031 - 0.409498i) q^{94}\) \(+(8.02703 + 12.7909i) q^{95}\) \(+(-0.765933 - 1.55349i) q^{96}\) \(+(-4.82956 - 9.47854i) q^{97}\) \(+(0.466817 - 2.94737i) q^{98}\) \(+(0.319074 - 12.1057i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut -\mathstrut 4q^{10} \) \(\mathstrut -\mathstrut 4q^{12} \) \(\mathstrut -\mathstrut 8q^{15} \) \(\mathstrut +\mathstrut 20q^{16} \) \(\mathstrut -\mathstrut 8q^{18} \) \(\mathstrut -\mathstrut 40q^{19} \) \(\mathstrut -\mathstrut 36q^{22} \) \(\mathstrut -\mathstrut 104q^{25} \) \(\mathstrut +\mathstrut 4q^{27} \) \(\mathstrut -\mathstrut 16q^{28} \) \(\mathstrut +\mathstrut 12q^{30} \) \(\mathstrut +\mathstrut 4q^{33} \) \(\mathstrut -\mathstrut 40q^{34} \) \(\mathstrut -\mathstrut 24q^{37} \) \(\mathstrut -\mathstrut 40q^{39} \) \(\mathstrut -\mathstrut 8q^{40} \) \(\mathstrut -\mathstrut 4q^{42} \) \(\mathstrut -\mathstrut 24q^{43} \) \(\mathstrut -\mathstrut 72q^{45} \) \(\mathstrut -\mathstrut 4q^{48} \) \(\mathstrut -\mathstrut 12q^{55} \) \(\mathstrut -\mathstrut 64q^{57} \) \(\mathstrut +\mathstrut 20q^{58} \) \(\mathstrut +\mathstrut 24q^{60} \) \(\mathstrut +\mathstrut 64q^{63} \) \(\mathstrut +\mathstrut 96q^{67} \) \(\mathstrut +\mathstrut 140q^{69} \) \(\mathstrut +\mathstrut 76q^{70} \) \(\mathstrut +\mathstrut 8q^{72} \) \(\mathstrut +\mathstrut 100q^{73} \) \(\mathstrut +\mathstrut 132q^{75} \) \(\mathstrut +\mathstrut 100q^{78} \) \(\mathstrut +\mathstrut 80q^{79} \) \(\mathstrut -\mathstrut 40q^{81} \) \(\mathstrut +\mathstrut 96q^{82} \) \(\mathstrut +\mathstrut 60q^{84} \) \(\mathstrut +\mathstrut 32q^{85} \) \(\mathstrut +\mathstrut 80q^{87} \) \(\mathstrut +\mathstrut 4q^{88} \) \(\mathstrut +\mathstrut 52q^{90} \) \(\mathstrut +\mathstrut 12q^{93} \) \(\mathstrut -\mathstrut 32q^{97} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.987688 0.156434i −0.698401 0.110616i
\(3\) 1.64008 + 0.556890i 0.946903 + 0.321521i
\(4\) 0.951057 + 0.309017i 0.475528 + 0.154508i
\(5\) 0.545143 + 2.16860i 0.243795 + 0.969827i
\(6\) −1.53277 0.806599i −0.625753 0.329293i
\(7\) −1.41702 + 1.41702i −0.535583 + 0.535583i −0.922229 0.386645i \(-0.873634\pi\)
0.386645 + 0.922229i \(0.373634\pi\)
\(8\) −0.891007 0.453990i −0.315018 0.160510i
\(9\) 2.37975 + 1.82669i 0.793249 + 0.608897i
\(10\) −0.199188 2.22718i −0.0629888 0.704296i
\(11\) −2.37267 3.26569i −0.715386 0.984644i −0.999664 0.0259024i \(-0.991754\pi\)
0.284279 0.958742i \(-0.408246\pi\)
\(12\) 1.38772 + 1.03645i 0.400601 + 0.299197i
\(13\) 0.301677 + 1.90471i 0.0836701 + 0.528272i 0.993549 + 0.113399i \(0.0361740\pi\)
−0.909879 + 0.414873i \(0.863826\pi\)
\(14\) 1.62125 1.17790i 0.433296 0.314808i
\(15\) −0.313590 + 3.86027i −0.0809687 + 0.996717i
\(16\) 0.809017 + 0.587785i 0.202254 + 0.146946i
\(17\) 1.78386 3.50102i 0.432649 0.849121i −0.567028 0.823699i \(-0.691907\pi\)
0.999677 0.0254227i \(-0.00809318\pi\)
\(18\) −2.06469 2.17648i −0.486652 0.513001i
\(19\) 6.42284 2.08691i 1.47350 0.478769i 0.541336 0.840806i \(-0.317919\pi\)
0.932164 + 0.362037i \(0.117919\pi\)
\(20\) −0.151672 + 2.23092i −0.0339148 + 0.498848i
\(21\) −3.11316 + 1.53491i −0.679346 + 0.334944i
\(22\) 1.83259 + 3.59666i 0.390709 + 0.766810i
\(23\) −0.317431 + 2.00418i −0.0661889 + 0.417900i 0.932239 + 0.361844i \(0.117853\pi\)
−0.998428 + 0.0560564i \(0.982147\pi\)
\(24\) −1.20850 1.24077i −0.246684 0.253272i
\(25\) −4.40564 + 2.36439i −0.881128 + 0.472879i
\(26\) 1.92846i 0.378201i
\(27\) 2.88572 + 4.32118i 0.555357 + 0.831612i
\(28\) −1.78555 + 0.909783i −0.337437 + 0.171933i
\(29\) 1.79717 5.53113i 0.333727 1.02710i −0.633619 0.773645i \(-0.718431\pi\)
0.967346 0.253460i \(-0.0815685\pi\)
\(30\) 0.913608 3.76368i 0.166801 0.687152i
\(31\) −2.88201 8.86991i −0.517624 1.59308i −0.778457 0.627698i \(-0.783997\pi\)
0.260833 0.965384i \(-0.416003\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) −2.07274 6.67733i −0.360817 1.16237i
\(34\) −2.30957 + 3.17886i −0.396089 + 0.545169i
\(35\) −3.84543 2.30047i −0.649996 0.388850i
\(36\) 1.69880 + 2.47267i 0.283133 + 0.412112i
\(37\) −6.31949 + 1.00091i −1.03892 + 0.164548i −0.652510 0.757780i \(-0.726284\pi\)
−0.386407 + 0.922328i \(0.626284\pi\)
\(38\) −6.67023 + 1.05646i −1.08205 + 0.171380i
\(39\) −0.565940 + 3.29189i −0.0906230 + 0.527124i
\(40\) 0.498797 2.17973i 0.0788667 0.344645i
\(41\) 0.756950 1.04185i 0.118216 0.162710i −0.745808 0.666161i \(-0.767936\pi\)
0.864024 + 0.503451i \(0.167936\pi\)
\(42\) 3.31494 1.02900i 0.511506 0.158779i
\(43\) −6.68950 6.68950i −1.02014 1.02014i −0.999793 0.0203466i \(-0.993523\pi\)
−0.0203466 0.999793i \(-0.506477\pi\)
\(44\) −1.24738 3.83905i −0.188050 0.578759i
\(45\) −2.66406 + 6.15652i −0.397134 + 0.917760i
\(46\) 0.627046 1.92985i 0.0924528 0.284541i
\(47\) −1.18073 + 0.601612i −0.172227 + 0.0877541i −0.537979 0.842958i \(-0.680812\pi\)
0.365752 + 0.930712i \(0.380812\pi\)
\(48\) 0.999524 + 1.41455i 0.144269 + 0.204173i
\(49\) 2.98411i 0.426301i
\(50\) 4.72127 1.64609i 0.667688 0.232792i
\(51\) 4.87536 4.74855i 0.682686 0.664930i
\(52\) −0.301677 + 1.90471i −0.0418351 + 0.264136i
\(53\) 4.96215 + 9.73877i 0.681604 + 1.33772i 0.929459 + 0.368926i \(0.120275\pi\)
−0.247854 + 0.968797i \(0.579725\pi\)
\(54\) −2.17421 4.71941i −0.295872 0.642230i
\(55\) 5.78854 6.92563i 0.780526 0.933852i
\(56\) 1.90589 0.619261i 0.254685 0.0827522i
\(57\) 11.6962 + 0.154113i 1.54920 + 0.0204128i
\(58\) −2.64031 + 5.18189i −0.346689 + 0.680416i
\(59\) −3.81952 2.77504i −0.497259 0.361280i 0.310710 0.950505i \(-0.399433\pi\)
−0.807969 + 0.589225i \(0.799433\pi\)
\(60\) −1.49113 + 3.57443i −0.192504 + 0.461457i
\(61\) −0.433671 + 0.315081i −0.0555259 + 0.0403419i −0.615202 0.788370i \(-0.710926\pi\)
0.559676 + 0.828711i \(0.310926\pi\)
\(62\) 1.45897 + 9.21155i 0.185289 + 1.16987i
\(63\) −5.96061 + 0.783690i −0.750966 + 0.0987357i
\(64\) 0.587785 + 0.809017i 0.0734732 + 0.101127i
\(65\) −3.96610 + 1.69256i −0.491934 + 0.209936i
\(66\) 1.00265 + 6.91936i 0.123418 + 0.851715i
\(67\) −1.35097 0.688356i −0.165048 0.0840960i 0.369515 0.929225i \(-0.379524\pi\)
−0.534563 + 0.845129i \(0.679524\pi\)
\(68\) 2.77842 2.77842i 0.336933 0.336933i
\(69\) −1.63672 + 3.11025i −0.197038 + 0.374430i
\(70\) 3.43821 + 2.87370i 0.410945 + 0.343473i
\(71\) 0.520251 + 0.169040i 0.0617424 + 0.0200613i 0.339725 0.940525i \(-0.389666\pi\)
−0.277983 + 0.960586i \(0.589666\pi\)
\(72\) −1.29107 2.70798i −0.152154 0.319138i
\(73\) 7.37855 + 1.16865i 0.863594 + 0.136780i 0.572490 0.819912i \(-0.305977\pi\)
0.291104 + 0.956691i \(0.405977\pi\)
\(74\) 6.39826 0.743783
\(75\) −8.54232 + 1.42435i −0.986382 + 0.164469i
\(76\) 6.75337 0.774665
\(77\) 7.98967 + 1.26544i 0.910508 + 0.144210i
\(78\) 1.07394 3.16283i 0.121599 0.358120i
\(79\) 10.2088 + 3.31704i 1.14858 + 0.373196i 0.820607 0.571492i \(-0.193635\pi\)
0.327971 + 0.944688i \(0.393635\pi\)
\(80\) −0.833640 + 2.07486i −0.0932038 + 0.231976i
\(81\) 2.32639 + 8.69413i 0.258488 + 0.966014i
\(82\) −0.910612 + 0.910612i −0.100560 + 0.100560i
\(83\) −3.00600 1.53163i −0.329952 0.168119i 0.281165 0.959659i \(-0.409279\pi\)
−0.611116 + 0.791541i \(0.709279\pi\)
\(84\) −3.43510 + 0.497765i −0.374800 + 0.0543106i
\(85\) 8.56476 + 1.95991i 0.928978 + 0.212583i
\(86\) 5.56067 + 7.65361i 0.599623 + 0.825310i
\(87\) 6.02774 8.07068i 0.646242 0.865268i
\(88\) 0.631467 + 3.98692i 0.0673146 + 0.425007i
\(89\) −11.4865 + 8.34544i −1.21757 + 0.884615i −0.995896 0.0905063i \(-0.971151\pi\)
−0.221672 + 0.975121i \(0.571151\pi\)
\(90\) 3.59435 5.66398i 0.378878 0.597036i
\(91\) −3.12650 2.27153i −0.327746 0.238122i
\(92\) −0.921220 + 1.80800i −0.0960439 + 0.188497i
\(93\) 0.212830 16.1523i 0.0220694 1.67492i
\(94\) 1.26031 0.409498i 0.129991 0.0422365i
\(95\) 8.02703 + 12.7909i 0.823556 + 1.31232i
\(96\) −0.765933 1.55349i −0.0781727 0.158553i
\(97\) −4.82956 9.47854i −0.490367 0.962400i −0.995076 0.0991108i \(-0.968400\pi\)
0.504709 0.863290i \(-0.331600\pi\)
\(98\) 0.466817 2.94737i 0.0471557 0.297729i
\(99\) 0.319074 12.1057i 0.0320681 1.21666i
\(100\) −4.92065 + 0.887255i −0.492065 + 0.0887255i
\(101\) 11.9603i 1.19010i 0.803690 + 0.595048i \(0.202867\pi\)
−0.803690 + 0.595048i \(0.797133\pi\)
\(102\) −5.55817 + 3.92741i −0.550341 + 0.388872i
\(103\) 2.58470 1.31697i 0.254678 0.129765i −0.321991 0.946743i \(-0.604352\pi\)
0.576669 + 0.816978i \(0.304352\pi\)
\(104\) 0.595926 1.83407i 0.0584353 0.179845i
\(105\) −5.02571 5.91444i −0.490459 0.577190i
\(106\) −3.37758 10.3951i −0.328060 1.00966i
\(107\) −10.4011 10.4011i −1.00551 1.00551i −0.999985 0.00552544i \(-0.998241\pi\)
−0.00552544 0.999985i \(-0.501759\pi\)
\(108\) 1.40916 + 5.00143i 0.135597 + 0.481262i
\(109\) −7.36263 + 10.1338i −0.705212 + 0.970641i 0.294675 + 0.955598i \(0.404789\pi\)
−0.999887 + 0.0150436i \(0.995211\pi\)
\(110\) −6.80068 + 5.93484i −0.648419 + 0.565865i
\(111\) −10.9219 1.87769i −1.03666 0.178222i
\(112\) −1.97930 + 0.313490i −0.187026 + 0.0296220i
\(113\) 14.3852 2.27840i 1.35325 0.214333i 0.562663 0.826686i \(-0.309777\pi\)
0.790585 + 0.612353i \(0.209777\pi\)
\(114\) −11.5281 1.98190i −1.07970 0.185622i
\(115\) −4.51931 + 0.404185i −0.421428 + 0.0376904i
\(116\) 3.41843 4.70506i 0.317393 0.436854i
\(117\) −2.76141 + 5.08381i −0.255292 + 0.469998i
\(118\) 3.33838 + 3.33838i 0.307323 + 0.307323i
\(119\) 2.43325 + 7.48877i 0.223056 + 0.686495i
\(120\) 2.03194 3.29716i 0.185489 0.300988i
\(121\) −1.63603 + 5.03519i −0.148730 + 0.457744i
\(122\) 0.477622 0.243360i 0.0432418 0.0220328i
\(123\) 1.82166 1.28719i 0.164253 0.116062i
\(124\) 9.32637i 0.837533i
\(125\) −7.52912 8.26513i −0.673425 0.739255i
\(126\) 6.00982 + 0.158403i 0.535397 + 0.0141117i
\(127\) 0.572870 3.61696i 0.0508340 0.320953i −0.949147 0.314832i \(-0.898052\pi\)
0.999981 0.00612070i \(-0.00194829\pi\)
\(128\) −0.453990 0.891007i −0.0401275 0.0787546i
\(129\) −7.24602 14.6967i −0.637977 1.29397i
\(130\) 4.18205 1.05128i 0.366790 0.0922037i
\(131\) 2.34952 0.763407i 0.205279 0.0666992i −0.204573 0.978851i \(-0.565580\pi\)
0.409852 + 0.912152i \(0.365580\pi\)
\(132\) 0.0921166 6.99103i 0.00801772 0.608491i
\(133\) −6.14410 + 12.0585i −0.532761 + 1.04560i
\(134\) 1.22666 + 0.891220i 0.105967 + 0.0769897i
\(135\) −7.79778 + 8.61363i −0.671126 + 0.741343i
\(136\) −3.17886 + 2.30957i −0.272585 + 0.198044i
\(137\) −0.709676 4.48072i −0.0606317 0.382814i −0.999280 0.0379379i \(-0.987921\pi\)
0.938648 0.344876i \(-0.112079\pi\)
\(138\) 2.10312 2.81592i 0.179029 0.239707i
\(139\) 3.37296 + 4.64248i 0.286091 + 0.393770i 0.927739 0.373228i \(-0.121749\pi\)
−0.641649 + 0.766999i \(0.721749\pi\)
\(140\) −2.94633 3.37618i −0.249011 0.285339i
\(141\) −2.27153 + 0.329157i −0.191297 + 0.0277200i
\(142\) −0.487402 0.248344i −0.0409019 0.0208405i
\(143\) 5.50443 5.50443i 0.460304 0.460304i
\(144\) 0.851553 + 2.87661i 0.0709628 + 0.239717i
\(145\) 12.9745 + 0.882088i 1.07747 + 0.0732534i
\(146\) −7.10489 2.30852i −0.588005 0.191054i
\(147\) −1.66182 + 4.89419i −0.137065 + 0.403666i
\(148\) −6.31949 1.00091i −0.519459 0.0822742i
\(149\) 15.3490 1.25744 0.628720 0.777632i \(-0.283579\pi\)
0.628720 + 0.777632i \(0.283579\pi\)
\(150\) 8.65997 0.0704973i 0.707083 0.00575608i
\(151\) −22.6955 −1.84694 −0.923468 0.383676i \(-0.874658\pi\)
−0.923468 + 0.383676i \(0.874658\pi\)
\(152\) −6.67023 1.05646i −0.541027 0.0856902i
\(153\) 10.6404 5.07298i 0.860226 0.410126i
\(154\) −7.69335 2.49972i −0.619948 0.201433i
\(155\) 17.6642 11.0853i 1.41882 0.890392i
\(156\) −1.55549 + 2.95589i −0.124539 + 0.236660i
\(157\) 0.431200 0.431200i 0.0344135 0.0344135i −0.689691 0.724104i \(-0.742253\pi\)
0.724104 + 0.689691i \(0.242253\pi\)
\(158\) −9.56420 4.87320i −0.760887 0.387691i
\(159\) 2.71492 + 18.7358i 0.215307 + 1.48584i
\(160\) 1.14796 1.91891i 0.0907539 0.151703i
\(161\) −2.39016 3.28977i −0.188371 0.259270i
\(162\) −0.937689 8.95102i −0.0736718 0.703258i
\(163\) 3.70877 + 23.4163i 0.290493 + 1.83410i 0.512049 + 0.858956i \(0.328886\pi\)
−0.221556 + 0.975148i \(0.571114\pi\)
\(164\) 1.04185 0.756950i 0.0813550 0.0591079i
\(165\) 13.3505 8.13503i 1.03933 0.633312i
\(166\) 2.72939 + 1.98302i 0.211842 + 0.153912i
\(167\) 1.54555 3.03330i 0.119598 0.234724i −0.823444 0.567397i \(-0.807950\pi\)
0.943042 + 0.332673i \(0.107950\pi\)
\(168\) 3.47068 + 0.0457310i 0.267768 + 0.00352823i
\(169\) 8.82681 2.86800i 0.678986 0.220616i
\(170\) −8.15271 3.27561i −0.625285 0.251228i
\(171\) 19.0969 + 6.76624i 1.46037 + 0.517427i
\(172\) −4.29493 8.42926i −0.327485 0.642725i
\(173\) −0.203505 + 1.28488i −0.0154722 + 0.0976874i −0.994216 0.107399i \(-0.965748\pi\)
0.978744 + 0.205087i \(0.0657477\pi\)
\(174\) −7.21606 + 7.02837i −0.547048 + 0.532820i
\(175\) 2.89248 9.59327i 0.218651 0.725183i
\(176\) 4.03662i 0.304272i
\(177\) −4.71894 6.67836i −0.354697 0.501976i
\(178\) 12.6506 6.44581i 0.948203 0.483134i
\(179\) −7.13852 + 21.9701i −0.533558 + 1.64212i 0.213186 + 0.977012i \(0.431616\pi\)
−0.746744 + 0.665112i \(0.768384\pi\)
\(180\) −4.43614 + 5.03196i −0.330650 + 0.375060i
\(181\) 5.01359 + 15.4302i 0.372657 + 1.14692i 0.945046 + 0.326938i \(0.106017\pi\)
−0.572389 + 0.819983i \(0.693983\pi\)
\(182\) 2.73266 + 2.73266i 0.202558 + 0.202558i
\(183\) −0.886722 + 0.275251i −0.0655484 + 0.0203472i
\(184\) 1.19271 1.64163i 0.0879279 0.121022i
\(185\) −5.61560 13.1588i −0.412867 0.967454i
\(186\) −2.73699 + 15.9202i −0.200686 + 1.16733i
\(187\) −15.6658 + 2.48121i −1.14559 + 0.181444i
\(188\) −1.30885 + 0.207301i −0.0954576 + 0.0151190i
\(189\) −10.2123 2.03409i −0.742837 0.147958i
\(190\) −5.92727 13.8891i −0.430009 1.00762i
\(191\) −3.27557 + 4.50844i −0.237012 + 0.326219i −0.910910 0.412606i \(-0.864619\pi\)
0.673898 + 0.738825i \(0.264619\pi\)
\(192\) 0.513483 + 1.65419i 0.0370575 + 0.119381i
\(193\) −6.12138 6.12138i −0.440626 0.440626i 0.451596 0.892222i \(-0.350855\pi\)
−0.892222 + 0.451596i \(0.850855\pi\)
\(194\) 3.28733 + 10.1174i 0.236016 + 0.726384i
\(195\) −7.44730 + 0.567254i −0.533313 + 0.0406219i
\(196\) −0.922140 + 2.83806i −0.0658671 + 0.202718i
\(197\) −15.7984 + 8.04970i −1.12559 + 0.573518i −0.914757 0.404004i \(-0.867618\pi\)
−0.210834 + 0.977522i \(0.567618\pi\)
\(198\) −2.20889 + 11.9067i −0.156979 + 0.846173i
\(199\) 10.3594i 0.734359i −0.930150 0.367180i \(-0.880323\pi\)
0.930150 0.367180i \(-0.119677\pi\)
\(200\) 4.99886 0.106572i 0.353473 0.00753580i
\(201\) −1.83237 1.88130i −0.129246 0.132697i
\(202\) 1.87101 11.8131i 0.131644 0.831165i
\(203\) 5.29109 + 10.3843i 0.371362 + 0.728838i
\(204\) 6.10412 3.00957i 0.427374 0.210712i
\(205\) 2.67201 + 1.07356i 0.186621 + 0.0749808i
\(206\) −2.75890 + 0.896420i −0.192221 + 0.0624565i
\(207\) −4.41642 + 4.18959i −0.306963 + 0.291197i
\(208\) −0.875501 + 1.71827i −0.0607050 + 0.119140i
\(209\) −22.0545 16.0235i −1.52554 1.10837i
\(210\) 4.03862 + 6.62782i 0.278691 + 0.457363i
\(211\) 17.8594 12.9756i 1.22949 0.893278i 0.232640 0.972563i \(-0.425264\pi\)
0.996852 + 0.0792851i \(0.0252638\pi\)
\(212\) 1.70984 + 10.7955i 0.117432 + 0.741439i
\(213\) 0.759118 + 0.566962i 0.0520139 + 0.0388476i
\(214\) 8.64594 + 11.9001i 0.591024 + 0.813475i
\(215\) 10.8601 18.1536i 0.740653 1.23806i
\(216\) −0.609416 5.16029i −0.0414655 0.351113i
\(217\) 16.6527 + 8.48497i 1.13046 + 0.575998i
\(218\) 8.85726 8.85726i 0.599889 0.599889i
\(219\) 11.4506 + 6.02572i 0.773762 + 0.407180i
\(220\) 7.64536 4.79791i 0.515450 0.323475i
\(221\) 7.20658 + 2.34156i 0.484767 + 0.157510i
\(222\) 10.4937 + 3.56313i 0.704290 + 0.239142i
\(223\) 14.8047 + 2.34483i 0.991395 + 0.157022i 0.631004 0.775780i \(-0.282643\pi\)
0.360391 + 0.932801i \(0.382643\pi\)
\(224\) 2.00397 0.133896
\(225\) −14.8033 2.42109i −0.986888 0.161406i
\(226\) −14.5645 −0.968819
\(227\) 3.77582 + 0.598031i 0.250610 + 0.0396927i 0.280475 0.959861i \(-0.409508\pi\)
−0.0298656 + 0.999554i \(0.509508\pi\)
\(228\) 11.0761 + 3.76089i 0.733532 + 0.249071i
\(229\) −21.4172 6.95886i −1.41529 0.459854i −0.501185 0.865340i \(-0.667102\pi\)
−0.914101 + 0.405486i \(0.867102\pi\)
\(230\) 4.52689 + 0.307767i 0.298495 + 0.0202935i
\(231\) 12.3990 + 6.52479i 0.815795 + 0.429300i
\(232\) −4.11237 + 4.11237i −0.269990 + 0.269990i
\(233\) −15.3187 7.80526i −1.00356 0.511340i −0.126626 0.991950i \(-0.540415\pi\)
−0.876934 + 0.480611i \(0.840415\pi\)
\(234\) 3.52269 4.58924i 0.230286 0.300008i
\(235\) −1.94832 2.23256i −0.127094 0.145636i
\(236\) −2.77504 3.81952i −0.180640 0.248630i
\(237\) 14.8960 + 11.1254i 0.967601 + 0.722671i
\(238\) −1.23179 7.77722i −0.0798451 0.504122i
\(239\) 2.77696 2.01758i 0.179626 0.130506i −0.494339 0.869269i \(-0.664590\pi\)
0.673965 + 0.738763i \(0.264590\pi\)
\(240\) −2.52271 + 2.93870i −0.162840 + 0.189692i
\(241\) −6.92845 5.03381i −0.446300 0.324256i 0.341833 0.939761i \(-0.388952\pi\)
−0.788133 + 0.615505i \(0.788952\pi\)
\(242\) 2.40357 4.71726i 0.154507 0.303237i
\(243\) −1.02620 + 15.5546i −0.0658306 + 0.997831i
\(244\) −0.509811 + 0.165648i −0.0326373 + 0.0106045i
\(245\) −6.47133 + 1.62677i −0.413438 + 0.103930i
\(246\) −2.00059 + 0.986369i −0.127553 + 0.0628886i
\(247\) 5.91258 + 11.6041i 0.376209 + 0.738351i
\(248\) −1.45897 + 9.21155i −0.0926444 + 0.584934i
\(249\) −4.07714 4.18602i −0.258378 0.265278i
\(250\) 6.14348 + 9.34118i 0.388548 + 0.590788i
\(251\) 11.9423i 0.753789i 0.926256 + 0.376894i \(0.123008\pi\)
−0.926256 + 0.376894i \(0.876992\pi\)
\(252\) −5.91105 1.09660i −0.372361 0.0690791i
\(253\) 7.29820 3.71862i 0.458834 0.233787i
\(254\) −1.13163 + 3.48281i −0.0710050 + 0.218531i
\(255\) 12.9555 + 7.98405i 0.811302 + 0.499981i
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) −2.09358 2.09358i −0.130594 0.130594i 0.638789 0.769382i \(-0.279436\pi\)
−0.769382 + 0.638789i \(0.779436\pi\)
\(258\) 4.85775 + 15.6492i 0.302430 + 0.974280i
\(259\) 7.53654 10.3732i 0.468298 0.644556i
\(260\) −4.29501 + 0.384125i −0.266366 + 0.0238224i
\(261\) 14.3805 9.87981i 0.890130 0.611545i
\(262\) −2.44002 + 0.386461i −0.150745 + 0.0238757i
\(263\) −22.4419 + 3.55445i −1.38383 + 0.219177i −0.803547 0.595241i \(-0.797057\pi\)
−0.580279 + 0.814418i \(0.697057\pi\)
\(264\) −1.18462 + 6.89054i −0.0729083 + 0.424084i
\(265\) −18.4144 + 16.0699i −1.13119 + 0.987169i
\(266\) 7.95482 10.9489i 0.487741 0.671318i
\(267\) −23.4863 + 7.29049i −1.43734 + 0.446171i
\(268\) −1.07214 1.07214i −0.0654913 0.0654913i
\(269\) −3.72777 11.4729i −0.227286 0.699515i −0.998051 0.0623960i \(-0.980126\pi\)
0.770765 0.637119i \(-0.219874\pi\)
\(270\) 9.04925 7.28774i 0.550720 0.443517i
\(271\) 2.54786 7.84151i 0.154772 0.476338i −0.843366 0.537339i \(-0.819429\pi\)
0.998138 + 0.0610015i \(0.0194294\pi\)
\(272\) 3.50102 1.78386i 0.212280 0.108162i
\(273\) −3.86272 5.46662i −0.233783 0.330855i
\(274\) 4.53657i 0.274064i
\(275\) 18.1745 + 8.77755i 1.09596 + 0.529306i
\(276\) −2.51773 + 2.45225i −0.151550 + 0.147608i
\(277\) 1.31490 8.30193i 0.0790045 0.498815i −0.916178 0.400772i \(-0.868742\pi\)
0.995182 0.0980425i \(-0.0312581\pi\)
\(278\) −2.60519 5.11297i −0.156249 0.306656i
\(279\) 9.34414 26.3727i 0.559419 1.57889i
\(280\) 2.38191 + 3.79552i 0.142346 + 0.226826i
\(281\) −0.214763 + 0.0697807i −0.0128117 + 0.00416277i −0.315416 0.948954i \(-0.602144\pi\)
0.302604 + 0.953116i \(0.402144\pi\)
\(282\) 2.29505 + 0.0302405i 0.136668 + 0.00180080i
\(283\) −10.2206 + 20.0591i −0.607554 + 1.19239i 0.358374 + 0.933578i \(0.383331\pi\)
−0.965927 + 0.258813i \(0.916669\pi\)
\(284\) 0.442552 + 0.321533i 0.0262606 + 0.0190795i
\(285\) 6.04188 + 25.4483i 0.357890 + 1.50743i
\(286\) −6.29775 + 4.57558i −0.372394 + 0.270560i
\(287\) 0.403712 + 2.54894i 0.0238304 + 0.150459i
\(288\) −0.391069 2.97440i −0.0230440 0.175268i
\(289\) 0.917376 + 1.26266i 0.0539633 + 0.0742741i
\(290\) −12.6768 2.90089i −0.744406 0.170346i
\(291\) −2.64237 18.2351i −0.154899 1.06896i
\(292\) 6.65629 + 3.39155i 0.389530 + 0.198475i
\(293\) 7.91375 7.91375i 0.462326 0.462326i −0.437091 0.899417i \(-0.643991\pi\)
0.899417 + 0.437091i \(0.143991\pi\)
\(294\) 2.40698 4.57396i 0.140378 0.266759i
\(295\) 3.93577 9.79580i 0.229149 0.570334i
\(296\) 6.08511 + 1.97717i 0.353690 + 0.114921i
\(297\) 7.26483 19.6766i 0.421548 1.14175i
\(298\) −15.1600 2.40111i −0.878197 0.139093i
\(299\) −3.91315 −0.226303
\(300\) −8.56438 1.28509i −0.494465 0.0741946i
\(301\) 18.9583 1.09274
\(302\) 22.4161 + 3.55036i 1.28990 + 0.204300i
\(303\) −6.66059 + 19.6159i −0.382641 + 1.12691i
\(304\) 6.42284 + 2.08691i 0.368375 + 0.119692i
\(305\) −0.919696 0.768695i −0.0526617 0.0440153i
\(306\) −11.3030 + 3.34599i −0.646149 + 0.191278i
\(307\) −7.00526 + 7.00526i −0.399811 + 0.399811i −0.878166 0.478355i \(-0.841233\pi\)
0.478355 + 0.878166i \(0.341233\pi\)
\(308\) 7.20759 + 3.67245i 0.410690 + 0.209257i
\(309\) 4.97253 0.720548i 0.282877 0.0409905i
\(310\) −19.1808 + 8.18552i −1.08940 + 0.464907i
\(311\) −7.14665 9.83652i −0.405249 0.557778i 0.556802 0.830645i \(-0.312028\pi\)
−0.962052 + 0.272867i \(0.912028\pi\)
\(312\) 1.99874 2.67616i 0.113157 0.151508i
\(313\) −3.84643 24.2854i −0.217413 1.37269i −0.818958 0.573853i \(-0.805448\pi\)
0.601545 0.798839i \(-0.294552\pi\)
\(314\) −0.493346 + 0.358437i −0.0278411 + 0.0202278i
\(315\) −4.94889 12.4989i −0.278839 0.704236i
\(316\) 8.68411 + 6.30938i 0.488519 + 0.354930i
\(317\) 4.73623 9.29537i 0.266013 0.522080i −0.718904 0.695110i \(-0.755356\pi\)
0.984917 + 0.173030i \(0.0553557\pi\)
\(318\) 0.249427 18.9298i 0.0139872 1.06153i
\(319\) −22.3271 + 7.25450i −1.25008 + 0.406174i
\(320\) −1.43401 + 1.71570i −0.0801634 + 0.0959106i
\(321\) −11.2664 22.8509i −0.628828 1.27541i
\(322\) 1.84610 + 3.62317i 0.102879 + 0.201911i
\(323\) 4.15113 26.2092i 0.230975 1.45832i
\(324\) −0.474104 + 8.98750i −0.0263391 + 0.499306i
\(325\) −5.83257 7.67819i −0.323533 0.425910i
\(326\) 23.7082i 1.31307i
\(327\) −17.7187 + 12.5201i −0.979848 + 0.692362i
\(328\) −1.14744 + 0.584649i −0.0633567 + 0.0322818i
\(329\) 0.820621 2.52561i 0.0452423 0.139242i
\(330\) −14.4587 + 5.94640i −0.795927 + 0.327339i
\(331\) 5.72324 + 17.6143i 0.314578 + 0.968170i 0.975928 + 0.218093i \(0.0699837\pi\)
−0.661350 + 0.750077i \(0.730016\pi\)
\(332\) −2.38558 2.38558i −0.130926 0.130926i
\(333\) −16.8671 9.16185i −0.924313 0.502066i
\(334\) −2.00103 + 2.75418i −0.109492 + 0.150702i
\(335\) 0.756293 3.30497i 0.0413207 0.180570i
\(336\) −3.42079 0.588101i −0.186619 0.0320836i
\(337\) 11.7295 1.85777i 0.638947 0.101199i 0.171448 0.985193i \(-0.445155\pi\)
0.467498 + 0.883994i \(0.345155\pi\)
\(338\) −9.16679 + 1.45188i −0.498608 + 0.0789717i
\(339\) 24.8618 + 4.27423i 1.35031 + 0.232144i
\(340\) 7.53992 + 4.51064i 0.408910 + 0.244624i
\(341\) −22.1284 + 30.4571i −1.19832 + 1.64934i
\(342\) −17.8033 9.67034i −0.962691 0.522912i
\(343\) −14.1477 14.1477i −0.763903 0.763903i
\(344\) 2.92342 + 8.99736i 0.157620 + 0.485105i
\(345\) −7.63713 1.85386i −0.411169 0.0998084i
\(346\) 0.401998 1.23722i 0.0216115 0.0665135i
\(347\) 6.98295 3.55799i 0.374864 0.191003i −0.256400 0.966571i \(-0.582536\pi\)
0.631264 + 0.775568i \(0.282536\pi\)
\(348\) 8.22670 5.81300i 0.440998 0.311610i
\(349\) 9.37804i 0.501995i 0.967988 + 0.250997i \(0.0807586\pi\)
−0.967988 + 0.250997i \(0.919241\pi\)
\(350\) −4.35759 + 9.02268i −0.232923 + 0.482282i
\(351\) −7.36006 + 6.80006i −0.392851 + 0.362961i
\(352\) −0.631467 + 3.98692i −0.0336573 + 0.212504i
\(353\) 6.61368 + 12.9801i 0.352010 + 0.690859i 0.997328 0.0730551i \(-0.0232749\pi\)
−0.645317 + 0.763915i \(0.723275\pi\)
\(354\) 3.61612 + 7.33434i 0.192194 + 0.389816i
\(355\) −0.0829681 + 1.22037i −0.00440349 + 0.0647703i
\(356\) −13.5032 + 4.38746i −0.715669 + 0.232535i
\(357\) −0.179690 + 13.6373i −0.00951021 + 0.721761i
\(358\) 10.4875 20.5829i 0.554283 1.08784i
\(359\) −9.55110 6.93928i −0.504088 0.366241i 0.306488 0.951874i \(-0.400846\pi\)
−0.810576 + 0.585633i \(0.800846\pi\)
\(360\) 5.16870 4.27605i 0.272414 0.225367i
\(361\) 21.5264 15.6398i 1.13297 0.823148i
\(362\) −2.53804 16.0246i −0.133397 0.842233i
\(363\) −5.48727 + 7.34704i −0.288007 + 0.385619i
\(364\) −2.27153 3.12650i −0.119061 0.163873i
\(365\) 1.48804 + 16.6382i 0.0778875 + 0.870883i
\(366\) 0.918864 0.133149i 0.0480298 0.00695979i
\(367\) −2.40607 1.22595i −0.125596 0.0639943i 0.390064 0.920788i \(-0.372453\pi\)
−0.515659 + 0.856794i \(0.672453\pi\)
\(368\) −1.43483 + 1.43483i −0.0747959 + 0.0747959i
\(369\) 3.70449 1.09663i 0.192848 0.0570883i
\(370\) 3.48797 + 13.8753i 0.181331 + 0.721340i
\(371\) −20.8315 6.76857i −1.08152 0.351407i
\(372\) 5.19376 15.2960i 0.269284 0.793062i
\(373\) −21.1854 3.35543i −1.09694 0.173738i −0.418370 0.908277i \(-0.637398\pi\)
−0.678566 + 0.734539i \(0.737398\pi\)
\(374\) 15.8610 0.820154
\(375\) −7.74562 17.7484i −0.399982 0.916523i
\(376\) 1.32516 0.0683401
\(377\) 11.0774 + 1.75448i 0.570514 + 0.0903605i
\(378\) 9.76839 + 3.60660i 0.502432 + 0.185504i
\(379\) −10.0630 3.26966i −0.516901 0.167951i 0.0389376 0.999242i \(-0.487603\pi\)
−0.555838 + 0.831290i \(0.687603\pi\)
\(380\) 3.68156 + 14.6454i 0.188860 + 0.751291i
\(381\) 2.95380 5.61309i 0.151328 0.287567i
\(382\) 3.94052 3.94052i 0.201614 0.201614i
\(383\) 0.124163 + 0.0632642i 0.00634444 + 0.00323265i 0.457160 0.889385i \(-0.348867\pi\)
−0.450815 + 0.892617i \(0.648867\pi\)
\(384\) −0.248390 1.71415i −0.0126756 0.0874747i
\(385\) 1.61128 + 18.0162i 0.0821187 + 0.918192i
\(386\) 5.08842 + 7.00360i 0.258994 + 0.356474i
\(387\) −3.69966 28.1390i −0.188064 1.43039i
\(388\) −1.66415 10.5070i −0.0844846 0.533415i
\(389\) 28.0002 20.3434i 1.41967 1.03145i 0.427842 0.903854i \(-0.359274\pi\)
0.991826 0.127596i \(-0.0407260\pi\)
\(390\) 7.44435 + 0.604745i 0.376959 + 0.0306225i
\(391\) 6.45042 + 4.68650i 0.326212 + 0.237007i
\(392\) 1.35476 2.65886i 0.0684255 0.134293i
\(393\) 4.27855 + 0.0563759i 0.215824 + 0.00284379i
\(394\) 16.8632 5.47918i 0.849555 0.276037i
\(395\) −1.62807 + 23.9470i −0.0819170 + 1.20490i
\(396\) 4.04431 11.4146i 0.203234 0.573604i
\(397\) 13.8341 + 27.1510i 0.694315 + 1.36267i 0.921331 + 0.388778i \(0.127103\pi\)
−0.227017 + 0.973891i \(0.572897\pi\)
\(398\) −1.62057 + 10.2319i −0.0812318 + 0.512877i
\(399\) −16.7921 + 16.3553i −0.840656 + 0.818790i
\(400\) −4.95399 0.676734i −0.247700 0.0338367i
\(401\) 0.718503i 0.0358803i −0.999839 0.0179402i \(-0.994289\pi\)
0.999839 0.0179402i \(-0.00571084\pi\)
\(402\) 1.51551 + 2.14479i 0.0755868 + 0.106972i
\(403\) 16.0252 8.16524i 0.798272 0.406740i
\(404\) −3.69594 + 11.3749i −0.183880 + 0.565925i
\(405\) −17.5859 + 9.78456i −0.873848 + 0.486199i
\(406\) −3.60148 11.0842i −0.178738 0.550100i
\(407\) 18.2627 + 18.2627i 0.905248 + 0.905248i
\(408\) −6.49977 + 2.01762i −0.321787 + 0.0998871i
\(409\) 1.73765 2.39167i 0.0859211 0.118260i −0.763893 0.645343i \(-0.776714\pi\)
0.849814 + 0.527083i \(0.176714\pi\)
\(410\) −2.47117 1.47834i −0.122042 0.0730099i
\(411\) 1.33134 7.74396i 0.0656701 0.381981i
\(412\) 2.86516 0.453797i 0.141156 0.0223570i
\(413\) 9.34463 1.48004i 0.459819 0.0728282i
\(414\) 5.01745 3.44713i 0.246594 0.169417i
\(415\) 1.68280 7.35377i 0.0826053 0.360982i
\(416\) 1.13352 1.56015i 0.0555753 0.0764928i
\(417\) 2.94659 + 9.49243i 0.144295 + 0.464846i
\(418\) 19.2763 + 19.2763i 0.942835 + 0.942835i
\(419\) −0.976706 3.00599i −0.0477152 0.146852i 0.924360 0.381521i \(-0.124600\pi\)
−0.972075 + 0.234668i \(0.924600\pi\)
\(420\) −2.95207 7.17800i −0.144046 0.350250i
\(421\) −3.57566 + 11.0047i −0.174267 + 0.536338i −0.999599 0.0283089i \(-0.990988\pi\)
0.825332 + 0.564647i \(0.190988\pi\)
\(422\) −19.6694 + 10.0220i −0.957489 + 0.487865i
\(423\) −3.90880 0.725145i −0.190052 0.0352578i
\(424\) 10.9301i 0.530812i
\(425\) 0.418753 + 19.6420i 0.0203125 + 0.952775i
\(426\) −0.661080 0.678734i −0.0320294 0.0328848i
\(427\) 0.168045 1.06100i 0.00813228 0.0513452i
\(428\) −6.67790 13.1061i −0.322789 0.633508i
\(429\) 12.0931 5.96237i 0.583860 0.287866i
\(430\) −13.5662 + 16.2312i −0.654223 + 0.782737i
\(431\) 24.8006 8.05821i 1.19460 0.388150i 0.356831 0.934169i \(-0.383857\pi\)
0.837773 + 0.546019i \(0.183857\pi\)
\(432\) −0.205335 + 5.19209i −0.00987916 + 0.249805i
\(433\) 6.52479 12.8056i 0.313561 0.615399i −0.679409 0.733759i \(-0.737764\pi\)
0.992971 + 0.118361i \(0.0377639\pi\)
\(434\) −15.1203 10.9856i −0.725799 0.527324i
\(435\) 20.7881 + 8.67207i 0.996711 + 0.415794i
\(436\) −10.1338 + 7.36263i −0.485321 + 0.352606i
\(437\) 2.14373 + 13.5350i 0.102548 + 0.647466i
\(438\) −10.3670 7.74281i −0.495356 0.369966i
\(439\) 2.49050 + 3.42787i 0.118865 + 0.163604i 0.864303 0.502971i \(-0.167760\pi\)
−0.745438 + 0.666575i \(0.767760\pi\)
\(440\) −8.30180 + 3.54284i −0.395773 + 0.168898i
\(441\) −5.45105 + 7.10142i −0.259574 + 0.338163i
\(442\) −6.75156 3.44009i −0.321139 0.163628i
\(443\) −18.5118 + 18.5118i −0.879523 + 0.879523i −0.993485 0.113962i \(-0.963646\pi\)
0.113962 + 0.993485i \(0.463646\pi\)
\(444\) −9.80709 5.16083i −0.465424 0.244922i
\(445\) −24.3597 20.3602i −1.15476 0.965165i
\(446\) −14.2556 4.63193i −0.675022 0.219328i
\(447\) 25.1737 + 8.54771i 1.19067 + 0.404293i
\(448\) −1.97930 0.313490i −0.0935130 0.0148110i
\(449\) 36.0779 1.70262 0.851311 0.524662i \(-0.175808\pi\)
0.851311 + 0.524662i \(0.175808\pi\)
\(450\) 14.2423 + 4.70703i 0.671390 + 0.221891i
\(451\) −5.19836 −0.244781
\(452\) 14.3852 + 2.27840i 0.676624 + 0.107167i
\(453\) −37.2226 12.6389i −1.74887 0.593828i
\(454\) −3.63578 1.18134i −0.170635 0.0554428i
\(455\) 3.22166 8.01843i 0.151034 0.375910i
\(456\) −10.3514 5.44727i −0.484749 0.255092i
\(457\) 12.7889 12.7889i 0.598241 0.598241i −0.341604 0.939844i \(-0.610970\pi\)
0.939844 + 0.341604i \(0.110970\pi\)
\(458\) 20.0649 + 10.2236i 0.937570 + 0.477716i
\(459\) 20.2762 2.39457i 0.946414 0.111769i
\(460\) −4.42302 1.01214i −0.206224 0.0471913i
\(461\) 10.1363 + 13.9514i 0.472092 + 0.649779i 0.976961 0.213417i \(-0.0684592\pi\)
−0.504869 + 0.863196i \(0.668459\pi\)
\(462\) −11.2257 8.38410i −0.522265 0.390064i
\(463\) −0.946894 5.97845i −0.0440059 0.277842i 0.955867 0.293800i \(-0.0949201\pi\)
−0.999873 + 0.0159582i \(0.994920\pi\)
\(464\) 4.70506 3.41843i 0.218427 0.158696i
\(465\) 35.1440 8.34380i 1.62976 0.386934i
\(466\) 13.9091 + 10.1055i 0.644325 + 0.468130i
\(467\) −0.901038 + 1.76839i −0.0416951 + 0.0818311i −0.910914 0.412596i \(-0.864622\pi\)
0.869219 + 0.494427i \(0.164622\pi\)
\(468\) −4.19724 + 3.98166i −0.194017 + 0.184053i
\(469\) 2.88977 0.938944i 0.133437 0.0433564i
\(470\) 1.57508 + 2.50986i 0.0726532 + 0.115771i
\(471\) 0.947336 0.467073i 0.0436509 0.0215216i
\(472\) 2.14337 + 4.20661i 0.0986568 + 0.193625i
\(473\) −5.97392 + 37.7178i −0.274681 + 1.73427i
\(474\) −12.9722 13.3187i −0.595835 0.611747i
\(475\) −23.3624 + 24.3803i −1.07194 + 1.11864i
\(476\) 7.87416i 0.360912i
\(477\) −5.98107 + 32.2401i −0.273854 + 1.47617i
\(478\) −3.05839 + 1.55833i −0.139887 + 0.0712762i
\(479\) −10.9260 + 33.6268i −0.499222 + 1.53645i 0.311051 + 0.950393i \(0.399319\pi\)
−0.810273 + 0.586053i \(0.800681\pi\)
\(480\) 2.95136 2.50788i 0.134711 0.114468i
\(481\) −3.81289 11.7349i −0.173853 0.535064i
\(482\) 6.05568 + 6.05568i 0.275829 + 0.275829i
\(483\) −2.08802 6.72655i −0.0950081 0.306069i
\(484\) −3.11192 + 4.28319i −0.141451 + 0.194690i
\(485\) 17.9224 15.6405i 0.813812 0.710200i
\(486\) 3.44685 15.2026i 0.156352 0.689604i
\(487\) 24.6253 3.90026i 1.11588 0.176738i 0.428855 0.903373i \(-0.358917\pi\)
0.687023 + 0.726636i \(0.258917\pi\)
\(488\) 0.529448 0.0838563i 0.0239670 0.00379599i
\(489\) −6.95759 + 40.4700i −0.314633 + 1.83012i
\(490\) 6.64614 0.594399i 0.300242 0.0268522i
\(491\) 3.22682 4.44133i 0.145624 0.200434i −0.729974 0.683475i \(-0.760468\pi\)
0.875598 + 0.483041i \(0.160468\pi\)
\(492\) 2.13026 0.661264i 0.0960396 0.0298121i
\(493\) −16.1587 16.1587i −0.727750 0.727750i
\(494\) −4.02451 12.3862i −0.181071 0.557280i
\(495\) 26.4263 5.90738i 1.18777 0.265517i
\(496\) 2.88201 8.86991i 0.129406 0.398271i
\(497\) −0.976739 + 0.497673i −0.0438127 + 0.0223237i
\(498\) 3.37211 + 4.77229i 0.151108 + 0.213851i
\(499\) 0.383555i 0.0171703i −0.999963 0.00858514i \(-0.997267\pi\)
0.999963 0.00858514i \(-0.00273277\pi\)
\(500\) −4.60656 10.1872i −0.206012 0.455587i
\(501\) 4.22404 4.11417i 0.188716 0.183808i
\(502\) 1.86818 11.7952i 0.0833810 0.526447i
\(503\) −3.58816 7.04217i −0.159988 0.313995i 0.797072 0.603885i \(-0.206381\pi\)
−0.957060 + 0.289890i \(0.906381\pi\)
\(504\) 5.66673 + 2.00779i 0.252416 + 0.0894339i
\(505\) −25.9371 + 6.52009i −1.15419 + 0.290140i
\(506\) −7.79006 + 2.53115i −0.346311 + 0.112523i
\(507\) 16.0739 + 0.211796i 0.713866 + 0.00940619i
\(508\) 1.66253 3.26290i 0.0737630 0.144768i
\(509\) −20.5303 14.9162i −0.909990 0.661147i 0.0310220 0.999519i \(-0.490124\pi\)
−0.941012 + 0.338372i \(0.890124\pi\)
\(510\) −11.5470 9.91243i −0.511309 0.438930i
\(511\) −12.1116 + 8.79956i −0.535784 + 0.389270i
\(512\) −0.156434 0.987688i −0.00691349 0.0436501i
\(513\) 27.5524 + 21.7320i 1.21647 + 0.959493i
\(514\) 1.74029 + 2.39531i 0.0767611 + 0.105653i
\(515\) 4.26501 + 4.88724i 0.187939 + 0.215357i
\(516\) −2.34986 16.2165i −0.103447 0.713892i
\(517\) 4.76616 + 2.42848i 0.209615 + 0.106804i
\(518\) −9.06647 + 9.06647i −0.398358 + 0.398358i
\(519\) −1.04930 + 1.99398i −0.0460591 + 0.0875258i
\(520\) 4.30223 + 0.292492i 0.188665 + 0.0128266i
\(521\) 19.7375 + 6.41311i 0.864716 + 0.280963i 0.707597 0.706616i \(-0.249779\pi\)
0.157119 + 0.987580i \(0.449779\pi\)
\(522\) −15.7490 + 7.50856i −0.689314 + 0.328641i
\(523\) 17.5234 + 2.77544i 0.766246 + 0.121361i 0.527309 0.849674i \(-0.323201\pi\)
0.238937 + 0.971035i \(0.423201\pi\)
\(524\) 2.47044 0.107922
\(525\) 10.0863 14.1230i 0.440203 0.616377i
\(526\) 22.7216 0.990710
\(527\) −36.1948 5.73269i −1.57667 0.249720i
\(528\) 2.24795 6.62039i 0.0978296 0.288116i
\(529\) 17.9583 + 5.83501i 0.780797 + 0.253696i
\(530\) 20.7016 12.9914i 0.899220 0.564313i
\(531\) −4.02034 13.5810i −0.174468 0.589365i
\(532\) −9.56966 + 9.56966i −0.414898 + 0.414898i
\(533\) 2.21278 + 1.12747i 0.0958463 + 0.0488361i
\(534\) 24.3377 3.52666i 1.05319 0.152614i
\(535\) 16.8857 28.2258i 0.730032 1.22031i
\(536\) 0.891220 + 1.22666i 0.0384948 + 0.0529836i
\(537\) −23.9427 + 32.0574i −1.03320 + 1.38338i
\(538\) 1.88712 + 11.9148i 0.0813595 + 0.513684i
\(539\) 9.74519 7.08029i 0.419755 0.304970i
\(540\) −10.0779 + 5.78240i −0.433683 + 0.248835i
\(541\) 10.0053 + 7.26924i 0.430160 + 0.312529i 0.781713 0.623639i \(-0.214346\pi\)
−0.351553 + 0.936168i \(0.614346\pi\)
\(542\) −3.74318 + 7.34640i −0.160783 + 0.315555i
\(543\) −0.370243 + 28.0989i −0.0158886 + 1.20584i
\(544\) −3.73697 + 1.21422i −0.160221 + 0.0520591i
\(545\) −25.9898 10.4422i −1.11328 0.447296i
\(546\) 2.96000 + 6.00358i 0.126676 + 0.256930i
\(547\) −12.0831 23.7144i −0.516636 1.01396i −0.991030 0.133643i \(-0.957333\pi\)
0.474393 0.880313i \(-0.342667\pi\)
\(548\) 0.709676 4.48072i 0.0303159 0.191407i
\(549\) −1.60758 0.0423717i −0.0686100 0.00180838i
\(550\) −16.5776 11.5126i −0.706872 0.490899i
\(551\) 39.2761i 1.67322i
\(552\) 2.87035 2.02820i 0.122170 0.0863257i
\(553\) −19.1664 + 9.76575i −0.815036 + 0.415282i
\(554\) −2.59742 + 7.99403i −0.110354 + 0.339634i
\(555\) −1.88204 24.7088i −0.0798883 1.04883i
\(556\) 1.77327 + 5.45757i 0.0752034 + 0.231452i
\(557\) −28.3195 28.3195i −1.19993 1.19993i −0.974186 0.225748i \(-0.927517\pi\)
−0.225748 0.974186i \(-0.572483\pi\)
\(558\) −13.3547 + 24.5862i −0.565349 + 1.04082i
\(559\) 10.7235 14.7597i 0.453556 0.624267i
\(560\) −1.75883 4.12140i −0.0743243 0.174161i
\(561\) −27.0749 4.65471i −1.14310 0.196522i
\(562\) 0.223035 0.0353253i 0.00940816 0.00149011i
\(563\) 8.73181 1.38298i 0.368002 0.0582858i 0.0303051 0.999541i \(-0.490352\pi\)
0.337697 + 0.941255i \(0.390352\pi\)
\(564\) −2.26206 0.388893i −0.0952501 0.0163754i
\(565\) 12.7829 + 29.9537i 0.537782 + 1.26016i
\(566\) 13.2327 18.2133i 0.556214 0.765563i
\(567\) −15.6163 9.02321i −0.655823 0.378939i
\(568\) −0.386804 0.386804i −0.0162300 0.0162300i
\(569\) −7.02196 21.6114i −0.294376 0.905996i −0.983430 0.181286i \(-0.941974\pi\)
0.689054 0.724710i \(-0.258026\pi\)
\(570\) −1.98650 26.0802i −0.0832053 1.09238i
\(571\) −8.54837 + 26.3092i −0.357738 + 1.10101i 0.596666 + 0.802489i \(0.296492\pi\)
−0.954405 + 0.298516i \(0.903508\pi\)
\(572\) 6.93599 3.53406i 0.290008 0.147767i
\(573\) −7.88291 + 5.57008i −0.329313 + 0.232693i
\(574\) 2.58071i 0.107717i
\(575\) −3.34018 9.58022i −0.139295 0.399523i
\(576\) −0.0790447 + 2.99896i −0.00329353 + 0.124957i
\(577\) 1.72432 10.8869i 0.0717842 0.453228i −0.925448 0.378875i \(-0.876311\pi\)
0.997232 0.0743526i \(-0.0236890\pi\)
\(578\) −0.708558 1.39062i −0.0294721 0.0578423i
\(579\) −6.63063 13.4485i −0.275560 0.558901i
\(580\) 12.0669 + 4.84826i 0.501051 + 0.201313i
\(581\) 6.42992 2.08921i 0.266758 0.0866750i
\(582\) −0.242762 + 18.4240i −0.0100628 + 0.763699i
\(583\) 20.0303 39.3117i 0.829572 1.62813i
\(584\) −6.04378 4.39106i −0.250093 0.181704i
\(585\) −12.5301 3.21699i −0.518056 0.133006i
\(586\) −9.05430 + 6.57833i −0.374030 + 0.271749i
\(587\) 3.29168 + 20.7828i 0.135862 + 0.857800i 0.957635 + 0.287985i \(0.0929852\pi\)
−0.821773 + 0.569815i \(0.807015\pi\)
\(588\) −3.09287 + 4.14112i −0.127548 + 0.170777i
\(589\) −37.0213 50.9555i −1.52544 2.09958i
\(590\) −5.41972 + 9.05951i −0.223126 + 0.372974i
\(591\) −30.3935 + 4.40420i −1.25022 + 0.181164i
\(592\) −5.70089 2.90475i −0.234305 0.119385i
\(593\) −10.8276 + 10.8276i −0.444635 + 0.444635i −0.893566 0.448931i \(-0.851805\pi\)
0.448931 + 0.893566i \(0.351805\pi\)
\(594\) −10.2535 + 18.2979i −0.420706 + 0.750771i
\(595\) −14.9137 + 9.35920i −0.611401 + 0.383690i
\(596\) 14.5978 + 4.74310i 0.597948 + 0.194285i
\(597\) 5.76905 16.9903i 0.236112 0.695367i
\(598\) 3.86497 + 0.612151i 0.158050 + 0.0250327i
\(599\) −20.9614 −0.856459 −0.428230 0.903670i \(-0.640863\pi\)
−0.428230 + 0.903670i \(0.640863\pi\)
\(600\) 8.25790 + 2.60903i 0.337127 + 0.106513i
\(601\) −24.3199 −0.992029 −0.496015 0.868314i \(-0.665204\pi\)
−0.496015 + 0.868314i \(0.665204\pi\)
\(602\) −18.7249 2.96573i −0.763170 0.120874i
\(603\) −1.95756 4.10593i −0.0797181 0.167206i
\(604\) −21.5847 7.01330i −0.878270 0.285367i
\(605\) −11.8112 0.802997i −0.480192 0.0326465i
\(606\) 9.64719 18.3325i 0.391890 0.744706i
\(607\) −12.8780 + 12.8780i −0.522702 + 0.522702i −0.918386 0.395685i \(-0.870507\pi\)
0.395685 + 0.918386i \(0.370507\pi\)
\(608\) −6.01730 3.06597i −0.244034 0.124341i
\(609\) 2.89489 + 19.9778i 0.117307 + 0.809539i
\(610\) 0.788123 + 0.903103i 0.0319102 + 0.0365656i
\(611\) −1.50210 2.06746i −0.0607683 0.0836404i
\(612\) 11.6873 1.53662i 0.472430 0.0621142i
\(613\) 1.91504 + 12.0911i 0.0773477 + 0.488354i 0.995704 + 0.0925984i \(0.0295173\pi\)
−0.918356 + 0.395756i \(0.870483\pi\)
\(614\) 8.01488 5.82315i 0.323454 0.235003i
\(615\) 3.78446 + 3.24874i 0.152604 + 0.131002i
\(616\) −6.54435 4.75475i −0.263679 0.191574i
\(617\) 11.6432 22.8510i 0.468737 0.919948i −0.528728 0.848791i \(-0.677331\pi\)
0.997465 0.0711569i \(-0.0226691\pi\)
\(618\) −5.02403 0.0661986i −0.202096 0.00266290i
\(619\) −28.2577 + 9.18149i −1.13577 + 0.369035i −0.815767 0.578380i \(-0.803685\pi\)
−0.320006 + 0.947415i \(0.603685\pi\)
\(620\) 20.2252 5.08421i 0.812262 0.204187i
\(621\) −9.57645 + 4.41182i −0.384290 + 0.177040i
\(622\) 5.51989 + 10.8334i 0.221328 + 0.434380i
\(623\) 4.45096 28.1023i 0.178324 1.12589i
\(624\) −2.39278 + 2.33054i −0.0957878 + 0.0932964i
\(625\) 13.8193 20.8333i 0.552772 0.833333i
\(626\) 24.5881i 0.982739i
\(627\) −27.2478 38.5618i −1.08817 1.54001i
\(628\) 0.543344 0.276848i 0.0216818 0.0110474i
\(629\) −7.76887 + 23.9101i −0.309765 + 0.953359i
\(630\) 2.93270 + 13.1192i 0.116842 + 0.522683i
\(631\) −0.858936 2.64353i −0.0341937 0.105237i 0.932503 0.361162i \(-0.117620\pi\)
−0.966697 + 0.255925i \(0.917620\pi\)
\(632\) −7.59019 7.59019i −0.301922 0.301922i
\(633\) 36.5169 11.3354i 1.45142 0.450540i
\(634\) −6.13203 + 8.44002i −0.243534 + 0.335196i
\(635\) 8.15602 0.729435i 0.323662 0.0289468i
\(636\) −3.20763 + 18.6577i −0.127191 + 0.739827i
\(637\) −5.68387 + 0.900236i −0.225203 + 0.0356687i
\(638\) 23.1870 3.67247i 0.917984 0.145394i
\(639\) 0.929282 + 1.35261i 0.0367618 + 0.0535084i
\(640\) 1.68475 1.47025i 0.0665954 0.0581167i
\(641\) 18.3443 25.2487i 0.724554 0.997264i −0.274806 0.961500i \(-0.588614\pi\)
0.999360 0.0357639i \(-0.0113864\pi\)
\(642\) 7.55300 + 24.3320i 0.298093 + 0.960308i
\(643\) 23.9422 + 23.9422i 0.944188 + 0.944188i 0.998523 0.0543345i \(-0.0173037\pi\)
−0.0543345 + 0.998523i \(0.517304\pi\)
\(644\) −1.25658 3.86736i −0.0495162 0.152395i
\(645\) 27.9210 23.7255i 1.09939 0.934191i
\(646\) −8.20005 + 25.2372i −0.322627 + 0.992942i
\(647\) −0.500806 + 0.255174i −0.0196887 + 0.0100319i −0.463807 0.885936i \(-0.653517\pi\)
0.444118 + 0.895968i \(0.353517\pi\)
\(648\) 1.87422 8.80269i 0.0736264 0.345802i
\(649\) 19.0576i 0.748078i
\(650\) 4.55963 + 8.49608i 0.178843 + 0.333244i
\(651\) 22.5866 + 23.1898i 0.885239 + 0.908879i
\(652\) −3.70877 + 23.4163i −0.145247 + 0.917052i
\(653\) −10.9835 21.5563i −0.429816 0.843562i −0.999761 0.0218786i \(-0.993035\pi\)
0.569944 0.821683i \(-0.306965\pi\)
\(654\) 19.4592 9.59412i 0.760913 0.375160i
\(655\) 2.93635 + 4.67901i 0.114733 + 0.182824i
\(656\) 1.22477 0.397952i 0.0478193 0.0155374i
\(657\) 15.4243 + 16.2594i 0.601760 + 0.634341i
\(658\) −1.20561 + 2.36614i −0.0469996 + 0.0922419i
\(659\) 4.30697 + 3.12920i 0.167776 + 0.121896i 0.668505 0.743708i \(-0.266935\pi\)
−0.500729 + 0.865604i \(0.666935\pi\)
\(660\) 15.2109 3.61135i 0.592085 0.140571i
\(661\) −10.9702 + 7.97029i −0.426690 + 0.310008i −0.780324 0.625376i \(-0.784946\pi\)
0.353634 + 0.935384i \(0.384946\pi\)
\(662\) −2.89729 18.2928i −0.112606 0.710969i
\(663\) 10.5154 + 7.85363i 0.408384 + 0.305010i
\(664\) 1.98302 + 2.72939i 0.0769561 + 0.105921i
\(665\) −29.4994 6.75049i −1.14394 0.261773i
\(666\) 15.2262 + 11.6877i 0.590005 + 0.452887i
\(667\) 10.5149 + 5.35761i 0.407138 + 0.207447i
\(668\) 2.40724 2.40724i 0.0931391 0.0931391i
\(669\) 22.9751 + 12.0903i 0.888269 + 0.467438i
\(670\) −1.26399 + 3.14597i −0.0488323 + 0.121540i
\(671\) 2.05791 + 0.668657i 0.0794449 + 0.0258132i
\(672\) 3.28668 + 1.11599i 0.126786 + 0.0430503i
\(673\) 48.7489 + 7.72106i 1.87913 + 0.297625i 0.987800 0.155727i \(-0.0497721\pi\)
0.891331 + 0.453353i \(0.149772\pi\)
\(674\) −11.8757 −0.457435
\(675\) −22.9304 12.2146i −0.882592 0.470140i
\(676\) 9.28106 0.356964
\(677\) 3.02000 + 0.478321i 0.116068 + 0.0183834i 0.214198 0.976790i \(-0.431286\pi\)
−0.0981301 + 0.995174i \(0.531286\pi\)
\(678\) −23.8871 8.11085i −0.917377 0.311495i
\(679\) 20.2749 + 6.58771i 0.778078 + 0.252813i
\(680\) −6.74147 5.63461i −0.258524 0.216078i
\(681\) 5.85962 + 3.08353i 0.224541 + 0.118161i
\(682\) 26.6205 26.6205i 1.01935 1.01935i
\(683\) 31.2546 + 15.9250i 1.19592 + 0.609353i 0.934532 0.355880i \(-0.115819\pi\)
0.261391 + 0.965233i \(0.415819\pi\)
\(684\) 16.0713 + 12.3363i 0.614502 + 0.471691i
\(685\) 9.33000 3.98163i 0.356481 0.152130i
\(686\) 11.7603 + 16.1867i 0.449011 + 0.618011i
\(687\) −31.2506 23.3401i −1.19229 0.890481i
\(688\) −1.47993 9.34391i −0.0564218 0.356233i
\(689\) −17.0526 + 12.3894i −0.649652 + 0.472000i
\(690\) 7.25309 + 3.02575i 0.276121 + 0.115188i
\(691\) −2.34860 1.70636i −0.0893451 0.0649130i 0.542216 0.840239i \(-0.317585\pi\)
−0.631561 + 0.775326i \(0.717585\pi\)
\(692\) −0.590593 + 1.15910i −0.0224510 + 0.0440625i
\(693\) 16.7018 + 17.6061i 0.634450 + 0.668800i
\(694\) −7.45357 + 2.42181i −0.282934 + 0.0919307i
\(695\) −8.22893 + 9.84542i −0.312141 + 0.373458i
\(696\) −9.03477 + 4.45449i −0.342462 + 0.168847i
\(697\) −2.29725 4.50861i −0.0870146 0.170776i
\(698\) 1.46705 9.26258i 0.0555286 0.350594i
\(699\) −20.7773 21.3321i −0.785868 0.806854i
\(700\) 5.71540 8.22992i 0.216022 0.311062i
\(701\) 5.87338i 0.221834i 0.993830 + 0.110917i \(0.0353788\pi\)
−0.993830 + 0.110917i \(0.964621\pi\)
\(702\) 8.33321 5.56498i 0.314517 0.210037i
\(703\) −38.5003 + 19.6169i −1.45206 + 0.739864i
\(704\) 1.24738 3.83905i 0.0470126 0.144690i
\(705\) −1.95212 4.74659i −0.0735209 0.178767i
\(706\) −4.50172 13.8549i −0.169424 0.521435i
\(707\) −16.9480 16.9480i −0.637396 0.637396i
\(708\) −2.42425 7.80973i −0.0911089 0.293508i
\(709\) 10.1538 13.9755i 0.381335 0.524862i −0.574603 0.818432i \(-0.694843\pi\)
0.955938 + 0.293570i \(0.0948434\pi\)
\(710\) 0.272854 1.19236i 0.0102400 0.0447486i
\(711\) 18.2351 + 26.5420i 0.683871 + 0.995403i
\(712\) 14.0233 2.22107i 0.525546 0.0832383i
\(713\) 18.6917 2.96048i 0.700011 0.110871i
\(714\) 2.31082 13.4413i 0.0864801 0.503026i
\(715\) 14.9376 + 8.93620i 0.558635 + 0.334195i
\(716\) −13.5783 + 18.6889i −0.507444 + 0.698437i
\(717\) 5.67801 1.76254i 0.212049 0.0658231i
\(718\) 8.34797 + 8.34797i 0.311544 + 0.311544i
\(719\) 12.3239 + 37.9289i 0.459602 + 1.41451i 0.865646 + 0.500656i \(0.166908\pi\)
−0.406044 + 0.913854i \(0.633092\pi\)
\(720\) −5.77398 + 3.41484i −0.215184 + 0.127264i
\(721\) −1.79640 + 5.52874i −0.0669013 + 0.205901i
\(722\) −23.7079 + 12.0798i −0.882318 + 0.449563i
\(723\) −8.55995 12.1143i −0.318348 0.450534i
\(724\) 16.2243i 0.602972i
\(725\) 5.16007 + 28.6174i 0.191640 + 1.06282i
\(726\) 6.56905 6.39818i 0.243800 0.237459i
\(727\) 3.26644 20.6235i 0.121146 0.764883i −0.850068 0.526673i \(-0.823439\pi\)
0.971214 0.238210i \(-0.0765608\pi\)
\(728\) 1.75448 + 3.44335i 0.0650252 + 0.127619i
\(729\) −10.3453 + 24.9394i −0.383158 + 0.923683i
\(730\) 1.13307 16.6661i 0.0419367 0.616841i
\(731\) −35.3532 + 11.4869i −1.30758 + 0.424860i
\(732\) −0.928380 0.0122327i −0.0343139 0.000452134i
\(733\) 4.26895 8.37829i 0.157677 0.309459i −0.798630 0.601822i \(-0.794442\pi\)
0.956307 + 0.292363i \(0.0944416\pi\)
\(734\) 2.18467 + 1.58725i 0.0806375 + 0.0585866i
\(735\) −11.5195 0.935788i −0.424901 0.0345170i
\(736\) 1.64163 1.19271i 0.0605112 0.0439639i
\(737\) 0.957451 + 6.04511i 0.0352682 + 0.222674i
\(738\) −3.83043 + 0.503619i −0.141000 + 0.0185385i
\(739\) 0.0758416 + 0.104387i 0.00278988 + 0.00383994i 0.810410 0.585864i \(-0.199245\pi\)
−0.807620 + 0.589704i \(0.799245\pi\)
\(740\) −1.27446 14.2501i −0.0468500 0.523843i
\(741\) 3.23492 + 22.3243i 0.118838 + 0.820105i
\(742\) 19.5162 + 9.94400i 0.716462 + 0.365056i
\(743\) 7.88637 7.88637i 0.289323 0.289323i −0.547490 0.836812i \(-0.684416\pi\)
0.836812 + 0.547490i \(0.184416\pi\)
\(744\) −7.52264 + 14.2952i −0.275794 + 0.524088i
\(745\) 8.36741 + 33.2858i 0.306558 + 1.21950i
\(746\) 20.3996 + 6.62824i 0.746883 + 0.242677i
\(747\) −4.35570 9.13594i −0.159367 0.334267i
\(748\) −15.6658 2.48121i −0.572797 0.0907221i
\(749\) 29.4771 1.07707
\(750\) 4.87380 + 18.7416i 0.177966 + 0.684345i
\(751\) 24.5205 0.894768 0.447384 0.894342i \(-0.352356\pi\)
0.447384 + 0.894342i \(0.352356\pi\)
\(752\) −1.30885 0.207301i −0.0477288 0.00755950i
\(753\) −6.65052 + 19.5863i −0.242359 + 0.713764i
\(754\) −10.6665 3.46577i −0.388452 0.126216i
\(755\) −12.3723 49.2175i −0.450275 1.79121i
\(756\) −9.08393 5.09031i −0.330379 0.185133i
\(757\) 13.4521 13.4521i 0.488924 0.488924i −0.419042 0.907967i \(-0.637634\pi\)
0.907967 + 0.419042i \(0.137634\pi\)
\(758\)