Properties

Label 150.2.l.a.23.2
Level 150
Weight 2
Character 150.23
Analytic conductor 1.198
Analytic rank 0
Dimension 80
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.l (of order \(20\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{20})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 23.2
Character \(\chi\) = 150.23
Dual form 150.2.l.a.137.2

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-0.987688 - 0.156434i) q^{2}\) \(+(-1.36724 - 1.06332i) q^{3}\) \(+(0.951057 + 0.309017i) q^{4}\) \(+(-1.48885 + 1.66833i) q^{5}\) \(+(1.18407 + 1.26411i) q^{6}\) \(+(-1.08662 + 1.08662i) q^{7}\) \(+(-0.891007 - 0.453990i) q^{8}\) \(+(0.738706 + 2.90763i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-0.987688 - 0.156434i) q^{2}\) \(+(-1.36724 - 1.06332i) q^{3}\) \(+(0.951057 + 0.309017i) q^{4}\) \(+(-1.48885 + 1.66833i) q^{5}\) \(+(1.18407 + 1.26411i) q^{6}\) \(+(-1.08662 + 1.08662i) q^{7}\) \(+(-0.891007 - 0.453990i) q^{8}\) \(+(0.738706 + 2.90763i) q^{9}\) \(+(1.73150 - 1.41488i) q^{10}\) \(+(1.61222 + 2.21903i) q^{11}\) \(+(-0.971742 - 1.43378i) q^{12}\) \(+(0.355240 + 2.24289i) q^{13}\) \(+(1.24323 - 0.903260i) q^{14}\) \(+(3.80959 - 0.697893i) q^{15}\) \(+(0.809017 + 0.587785i) q^{16}\) \(+(-2.77486 + 5.44598i) q^{17}\) \(+(-0.274758 - 2.98739i) q^{18}\) \(+(-4.05302 + 1.31690i) q^{19}\) \(+(-1.93152 + 1.12660i) q^{20}\) \(+(2.64110 - 0.330251i) q^{21}\) \(+(-1.24524 - 2.44391i) q^{22}\) \(+(0.805034 - 5.08279i) q^{23}\) \(+(0.735486 + 1.56814i) q^{24}\) \(+(-0.566658 - 4.96779i) q^{25}\) \(-2.27085i q^{26}\) \(+(2.08175 - 4.76092i) q^{27}\) \(+(-1.36922 + 0.697655i) q^{28}\) \(+(-2.37081 + 7.29662i) q^{29}\) \(+(-3.87186 + 0.0933498i) q^{30}\) \(+(-1.85692 - 5.71500i) q^{31}\) \(+(-0.707107 - 0.707107i) q^{32}\) \(+(0.155241 - 4.74825i) q^{33}\) \(+(3.59264 - 4.94484i) q^{34}\) \(+(-0.195030 - 3.43066i) q^{35}\) \(+(-0.195956 + 2.99359i) q^{36}\) \(+(-3.29028 + 0.521129i) q^{37}\) \(+(4.20913 - 0.666660i) q^{38}\) \(+(1.89921 - 3.44431i) q^{39}\) \(+(2.08398 - 0.810571i) q^{40}\) \(+(5.36418 - 7.38316i) q^{41}\) \(+(-2.66025 - 0.0869750i) q^{42}\) \(+(6.65663 + 6.65663i) q^{43}\) \(+(0.847593 + 2.60862i) q^{44}\) \(+(-5.95071 - 3.09662i) q^{45}\) \(+(-1.59025 + 4.89427i) q^{46}\) \(+(-2.15191 + 1.09645i) q^{47}\) \(+(-0.481119 - 1.66389i) q^{48}\) \(+4.63850i q^{49}\) \(+(-0.217452 + 4.99527i) q^{50}\) \(+(9.58472 - 4.49541i) q^{51}\) \(+(-0.355240 + 2.24289i) q^{52}\) \(+(-0.199432 - 0.391408i) q^{53}\) \(+(-2.80089 + 4.37664i) q^{54}\) \(+(-6.10242 - 0.614083i) q^{55}\) \(+(1.46150 - 0.474872i) q^{56}\) \(+(6.94175 + 2.50912i) q^{57}\) \(+(3.48307 - 6.83591i) q^{58}\) \(+(-5.86967 - 4.26457i) q^{59}\) \(+(3.83879 + 0.513492i) q^{60}\) \(+(-8.14808 + 5.91993i) q^{61}\) \(+(0.940031 + 5.93512i) q^{62}\) \(+(-3.96219 - 2.35680i) q^{63}\) \(+(0.587785 + 0.809017i) q^{64}\) \(+(-4.27079 - 2.74667i) q^{65}\) \(+(-0.896119 + 4.66550i) q^{66}\) \(+(5.28646 + 2.69358i) q^{67}\) \(+(-4.32195 + 4.32195i) q^{68}\) \(+(-6.50530 + 6.09340i) q^{69}\) \(+(-0.344046 + 3.41894i) q^{70}\) \(+(5.89152 + 1.91427i) q^{71}\) \(+(0.661845 - 2.92608i) q^{72}\) \(+(10.2696 + 1.62655i) q^{73}\) \(+3.33129 q^{74}\) \(+(-4.50758 + 7.39471i) q^{75}\) \(-4.26159 q^{76}\) \(+(-4.16312 - 0.659373i) q^{77}\) \(+(-2.41464 + 3.10481i) q^{78}\) \(+(6.06800 + 1.97161i) q^{79}\) \(+(-2.18512 + 0.474585i) q^{80}\) \(+(-7.90863 + 4.29577i) q^{81}\) \(+(-6.45312 + 6.45312i) q^{82}\) \(+(6.92579 + 3.52887i) q^{83}\) \(+(2.61389 + 0.502059i) q^{84}\) \(+(-4.95434 - 12.7376i) q^{85}\) \(+(-5.53335 - 7.61600i) q^{86}\) \(+(11.0001 - 7.45532i) q^{87}\) \(+(-0.429079 - 2.70910i) q^{88}\) \(+(8.12567 - 5.90364i) q^{89}\) \(+(5.39303 + 3.98939i) q^{90}\) \(+(-2.82319 - 2.05117i) q^{91}\) \(+(2.33630 - 4.58525i) q^{92}\) \(+(-3.53801 + 9.78829i) q^{93}\) \(+(2.29694 - 0.746320i) q^{94}\) \(+(3.83730 - 8.72245i) q^{95}\) \(+(0.214907 + 1.71867i) q^{96}\) \(+(5.51066 + 10.8153i) q^{97}\) \(+(0.725621 - 4.58139i) q^{98}\) \(+(-5.26115 + 6.32694i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut -\mathstrut 4q^{10} \) \(\mathstrut -\mathstrut 4q^{12} \) \(\mathstrut -\mathstrut 8q^{15} \) \(\mathstrut +\mathstrut 20q^{16} \) \(\mathstrut -\mathstrut 8q^{18} \) \(\mathstrut -\mathstrut 40q^{19} \) \(\mathstrut -\mathstrut 36q^{22} \) \(\mathstrut -\mathstrut 104q^{25} \) \(\mathstrut +\mathstrut 4q^{27} \) \(\mathstrut -\mathstrut 16q^{28} \) \(\mathstrut +\mathstrut 12q^{30} \) \(\mathstrut +\mathstrut 4q^{33} \) \(\mathstrut -\mathstrut 40q^{34} \) \(\mathstrut -\mathstrut 24q^{37} \) \(\mathstrut -\mathstrut 40q^{39} \) \(\mathstrut -\mathstrut 8q^{40} \) \(\mathstrut -\mathstrut 4q^{42} \) \(\mathstrut -\mathstrut 24q^{43} \) \(\mathstrut -\mathstrut 72q^{45} \) \(\mathstrut -\mathstrut 4q^{48} \) \(\mathstrut -\mathstrut 12q^{55} \) \(\mathstrut -\mathstrut 64q^{57} \) \(\mathstrut +\mathstrut 20q^{58} \) \(\mathstrut +\mathstrut 24q^{60} \) \(\mathstrut +\mathstrut 64q^{63} \) \(\mathstrut +\mathstrut 96q^{67} \) \(\mathstrut +\mathstrut 140q^{69} \) \(\mathstrut +\mathstrut 76q^{70} \) \(\mathstrut +\mathstrut 8q^{72} \) \(\mathstrut +\mathstrut 100q^{73} \) \(\mathstrut +\mathstrut 132q^{75} \) \(\mathstrut +\mathstrut 100q^{78} \) \(\mathstrut +\mathstrut 80q^{79} \) \(\mathstrut -\mathstrut 40q^{81} \) \(\mathstrut +\mathstrut 96q^{82} \) \(\mathstrut +\mathstrut 60q^{84} \) \(\mathstrut +\mathstrut 32q^{85} \) \(\mathstrut +\mathstrut 80q^{87} \) \(\mathstrut +\mathstrut 4q^{88} \) \(\mathstrut +\mathstrut 52q^{90} \) \(\mathstrut +\mathstrut 12q^{93} \) \(\mathstrut -\mathstrut 32q^{97} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.987688 0.156434i −0.698401 0.110616i
\(3\) −1.36724 1.06332i −0.789378 0.613907i
\(4\) 0.951057 + 0.309017i 0.475528 + 0.154508i
\(5\) −1.48885 + 1.66833i −0.665833 + 0.746100i
\(6\) 1.18407 + 1.26411i 0.483395 + 0.516071i
\(7\) −1.08662 + 1.08662i −0.410705 + 0.410705i −0.881984 0.471279i \(-0.843792\pi\)
0.471279 + 0.881984i \(0.343792\pi\)
\(8\) −0.891007 0.453990i −0.315018 0.160510i
\(9\) 0.738706 + 2.90763i 0.246235 + 0.969210i
\(10\) 1.73150 1.41488i 0.547549 0.447426i
\(11\) 1.61222 + 2.21903i 0.486102 + 0.669062i 0.979663 0.200649i \(-0.0643052\pi\)
−0.493561 + 0.869711i \(0.664305\pi\)
\(12\) −0.971742 1.43378i −0.280518 0.413896i
\(13\) 0.355240 + 2.24289i 0.0985257 + 0.622067i 0.986699 + 0.162558i \(0.0519745\pi\)
−0.888173 + 0.459509i \(0.848025\pi\)
\(14\) 1.24323 0.903260i 0.332267 0.241406i
\(15\) 3.80959 0.697893i 0.983631 0.180195i
\(16\) 0.809017 + 0.587785i 0.202254 + 0.146946i
\(17\) −2.77486 + 5.44598i −0.673003 + 1.32084i 0.261608 + 0.965174i \(0.415747\pi\)
−0.934612 + 0.355669i \(0.884253\pi\)
\(18\) −0.274758 2.98739i −0.0647610 0.704135i
\(19\) −4.05302 + 1.31690i −0.929826 + 0.302119i −0.734491 0.678618i \(-0.762579\pi\)
−0.195334 + 0.980737i \(0.562579\pi\)
\(20\) −1.93152 + 1.12660i −0.431901 + 0.251915i
\(21\) 2.64110 0.330251i 0.576336 0.0720666i
\(22\) −1.24524 2.44391i −0.265485 0.521044i
\(23\) 0.805034 5.08279i 0.167861 1.05983i −0.749566 0.661930i \(-0.769738\pi\)
0.917427 0.397904i \(-0.130262\pi\)
\(24\) 0.735486 + 1.56814i 0.150130 + 0.320095i
\(25\) −0.566658 4.96779i −0.113332 0.993557i
\(26\) 2.27085i 0.445351i
\(27\) 2.08175 4.76092i 0.400633 0.916239i
\(28\) −1.36922 + 0.697655i −0.258759 + 0.131844i
\(29\) −2.37081 + 7.29662i −0.440249 + 1.35495i 0.447361 + 0.894353i \(0.352364\pi\)
−0.887611 + 0.460595i \(0.847636\pi\)
\(30\) −3.87186 + 0.0933498i −0.706901 + 0.0170433i
\(31\) −1.85692 5.71500i −0.333512 1.02644i −0.967450 0.253061i \(-0.918563\pi\)
0.633938 0.773383i \(-0.281437\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) 0.155241 4.74825i 0.0270239 0.826564i
\(34\) 3.59264 4.94484i 0.616133 0.848034i
\(35\) −0.195030 3.43066i −0.0329660 0.579888i
\(36\) −0.195956 + 2.99359i −0.0326594 + 0.498932i
\(37\) −3.29028 + 0.521129i −0.540919 + 0.0856731i −0.420915 0.907100i \(-0.638291\pi\)
−0.120004 + 0.992773i \(0.538291\pi\)
\(38\) 4.20913 0.666660i 0.682810 0.108147i
\(39\) 1.89921 3.44431i 0.304118 0.551532i
\(40\) 2.08398 0.810571i 0.329506 0.128162i
\(41\) 5.36418 7.38316i 0.837744 1.15306i −0.148687 0.988884i \(-0.547505\pi\)
0.986432 0.164172i \(-0.0524952\pi\)
\(42\) −2.66025 0.0869750i −0.410486 0.0134205i
\(43\) 6.65663 + 6.65663i 1.01513 + 1.01513i 0.999884 + 0.0152431i \(0.00485222\pi\)
0.0152431 + 0.999884i \(0.495148\pi\)
\(44\) 0.847593 + 2.60862i 0.127779 + 0.393265i
\(45\) −5.95071 3.09662i −0.887080 0.461616i
\(46\) −1.59025 + 4.89427i −0.234469 + 0.721621i
\(47\) −2.15191 + 1.09645i −0.313888 + 0.159934i −0.603836 0.797108i \(-0.706362\pi\)
0.289948 + 0.957042i \(0.406362\pi\)
\(48\) −0.481119 1.66389i −0.0694436 0.240162i
\(49\) 4.63850i 0.662643i
\(50\) −0.217452 + 4.99527i −0.0307523 + 0.706438i
\(51\) 9.58472 4.49541i 1.34213 0.629483i
\(52\) −0.355240 + 2.24289i −0.0492629 + 0.311033i
\(53\) −0.199432 0.391408i −0.0273941 0.0537640i 0.876904 0.480666i \(-0.159605\pi\)
−0.904298 + 0.426902i \(0.859605\pi\)
\(54\) −2.80089 + 4.37664i −0.381153 + 0.595586i
\(55\) −6.10242 0.614083i −0.822850 0.0828029i
\(56\) 1.46150 0.474872i 0.195302 0.0634574i
\(57\) 6.94175 + 2.50912i 0.919457 + 0.332341i
\(58\) 3.48307 6.83591i 0.457349 0.897599i
\(59\) −5.86967 4.26457i −0.764166 0.555199i 0.136019 0.990706i \(-0.456569\pi\)
−0.900185 + 0.435507i \(0.856569\pi\)
\(60\) 3.83879 + 0.513492i 0.495586 + 0.0662915i
\(61\) −8.14808 + 5.91993i −1.04326 + 0.757969i −0.970918 0.239411i \(-0.923046\pi\)
−0.0723370 + 0.997380i \(0.523046\pi\)
\(62\) 0.940031 + 5.93512i 0.119384 + 0.753761i
\(63\) −3.96219 2.35680i −0.499189 0.296929i
\(64\) 0.587785 + 0.809017i 0.0734732 + 0.101127i
\(65\) −4.27079 2.74667i −0.529726 0.340683i
\(66\) −0.896119 + 4.66550i −0.110305 + 0.574284i
\(67\) 5.28646 + 2.69358i 0.645843 + 0.329074i 0.746047 0.665893i \(-0.231949\pi\)
−0.100204 + 0.994967i \(0.531949\pi\)
\(68\) −4.32195 + 4.32195i −0.524114 + 0.524114i
\(69\) −6.50530 + 6.09340i −0.783146 + 0.733559i
\(70\) −0.344046 + 3.41894i −0.0411213 + 0.408641i
\(71\) 5.89152 + 1.91427i 0.699195 + 0.227182i 0.636980 0.770880i \(-0.280183\pi\)
0.0622154 + 0.998063i \(0.480183\pi\)
\(72\) 0.661845 2.92608i 0.0779992 0.344842i
\(73\) 10.2696 + 1.62655i 1.20197 + 0.190373i 0.725126 0.688616i \(-0.241782\pi\)
0.476841 + 0.878989i \(0.341782\pi\)
\(74\) 3.33129 0.387255
\(75\) −4.50758 + 7.39471i −0.520491 + 0.853867i
\(76\) −4.26159 −0.488838
\(77\) −4.16312 0.659373i −0.474431 0.0751425i
\(78\) −2.41464 + 3.10481i −0.273404 + 0.351550i
\(79\) 6.06800 + 1.97161i 0.682703 + 0.221824i 0.629778 0.776775i \(-0.283146\pi\)
0.0529246 + 0.998599i \(0.483146\pi\)
\(80\) −2.18512 + 0.474585i −0.244304 + 0.0530602i
\(81\) −7.90863 + 4.29577i −0.878736 + 0.477307i
\(82\) −6.45312 + 6.45312i −0.712628 + 0.712628i
\(83\) 6.92579 + 3.52887i 0.760204 + 0.387343i 0.790710 0.612191i \(-0.209712\pi\)
−0.0305056 + 0.999535i \(0.509712\pi\)
\(84\) 2.61389 + 0.502059i 0.285199 + 0.0547791i
\(85\) −4.95434 12.7376i −0.537374 1.38159i
\(86\) −5.53335 7.61600i −0.596677 0.821255i
\(87\) 11.0001 7.45532i 1.17934 0.799294i
\(88\) −0.429079 2.70910i −0.0457400 0.288791i
\(89\) 8.12567 5.90364i 0.861319 0.625785i −0.0669245 0.997758i \(-0.521319\pi\)
0.928243 + 0.371973i \(0.121319\pi\)
\(90\) 5.39303 + 3.98939i 0.568475 + 0.420518i
\(91\) −2.82319 2.05117i −0.295951 0.215021i
\(92\) 2.33630 4.58525i 0.243576 0.478045i
\(93\) −3.53801 + 9.78829i −0.366875 + 1.01500i
\(94\) 2.29694 0.746320i 0.236911 0.0769770i
\(95\) 3.83730 8.72245i 0.393698 0.894904i
\(96\) 0.214907 + 1.71867i 0.0219338 + 0.175411i
\(97\) 5.51066 + 10.8153i 0.559523 + 1.09813i 0.981490 + 0.191514i \(0.0613398\pi\)
−0.421967 + 0.906611i \(0.638660\pi\)
\(98\) 0.725621 4.58139i 0.0732988 0.462791i
\(99\) −5.26115 + 6.32694i −0.528766 + 0.635881i
\(100\) 0.996207 4.89975i 0.0996207 0.489975i
\(101\) 3.53757i 0.352002i 0.984390 + 0.176001i \(0.0563161\pi\)
−0.984390 + 0.176001i \(0.943684\pi\)
\(102\) −10.1700 + 2.94068i −1.00698 + 0.291171i
\(103\) −14.6853 + 7.48254i −1.44699 + 0.737277i −0.988471 0.151409i \(-0.951619\pi\)
−0.458516 + 0.888686i \(0.651619\pi\)
\(104\) 0.701732 2.15971i 0.0688105 0.211777i
\(105\) −3.38124 + 4.89793i −0.329975 + 0.477989i
\(106\) 0.135747 + 0.417787i 0.0131849 + 0.0405791i
\(107\) −1.32720 1.32720i −0.128305 0.128305i 0.640038 0.768343i \(-0.278919\pi\)
−0.768343 + 0.640038i \(0.778919\pi\)
\(108\) 3.45106 3.88461i 0.332079 0.373796i
\(109\) 10.6696 14.6855i 1.02196 1.40661i 0.111147 0.993804i \(-0.464548\pi\)
0.910818 0.412809i \(-0.135452\pi\)
\(110\) 5.93122 + 1.56115i 0.565520 + 0.148850i
\(111\) 5.05274 + 2.78611i 0.479585 + 0.264446i
\(112\) −1.51780 + 0.240395i −0.143418 + 0.0227152i
\(113\) 6.54968 1.03737i 0.616142 0.0975873i 0.159441 0.987207i \(-0.449031\pi\)
0.456701 + 0.889620i \(0.349031\pi\)
\(114\) −6.46377 3.56416i −0.605388 0.333814i
\(115\) 7.28120 + 8.91056i 0.678975 + 0.830914i
\(116\) −4.50956 + 6.20687i −0.418702 + 0.576294i
\(117\) −6.25909 + 2.68974i −0.578653 + 0.248667i
\(118\) 5.13028 + 5.13028i 0.472281 + 0.472281i
\(119\) −2.90249 8.93296i −0.266071 0.818883i
\(120\) −3.71120 1.10769i −0.338785 0.101118i
\(121\) 1.07435 3.30652i 0.0976685 0.300593i
\(122\) 8.97385 4.57240i 0.812454 0.413966i
\(123\) −15.1848 + 4.39074i −1.36917 + 0.395900i
\(124\) 6.00911i 0.539634i
\(125\) 9.13158 + 6.45091i 0.816753 + 0.576987i
\(126\) 3.54473 + 2.94761i 0.315789 + 0.262594i
\(127\) 1.37095 8.65582i 0.121652 0.768080i −0.849142 0.528165i \(-0.822880\pi\)
0.970794 0.239915i \(-0.0771197\pi\)
\(128\) −0.453990 0.891007i −0.0401275 0.0787546i
\(129\) −2.02311 16.1794i −0.178125 1.42451i
\(130\) 3.78853 + 3.38096i 0.332276 + 0.296529i
\(131\) −11.0161 + 3.57935i −0.962481 + 0.312729i −0.747777 0.663950i \(-0.768879\pi\)
−0.214704 + 0.976679i \(0.568879\pi\)
\(132\) 1.61493 4.46788i 0.140562 0.388879i
\(133\) 2.97312 5.83508i 0.257802 0.505966i
\(134\) −4.80000 3.48741i −0.414657 0.301266i
\(135\) 4.84338 + 10.5613i 0.416852 + 0.908975i
\(136\) 4.94484 3.59264i 0.424017 0.308066i
\(137\) −1.14803 7.24839i −0.0980830 0.619272i −0.986940 0.161087i \(-0.948500\pi\)
0.888857 0.458184i \(-0.151500\pi\)
\(138\) 7.37843 5.00072i 0.628093 0.425690i
\(139\) −5.12432 7.05302i −0.434639 0.598230i 0.534371 0.845250i \(-0.320549\pi\)
−0.969010 + 0.247020i \(0.920549\pi\)
\(140\) 0.874649 3.32302i 0.0739214 0.280847i
\(141\) 4.10806 + 0.789048i 0.345961 + 0.0664499i
\(142\) −5.51953 2.81234i −0.463189 0.236007i
\(143\) −4.40432 + 4.40432i −0.368308 + 0.368308i
\(144\) −1.11144 + 2.78652i −0.0926197 + 0.232210i
\(145\) −8.64339 14.8189i −0.717794 1.23064i
\(146\) −9.88873 3.21304i −0.818397 0.265913i
\(147\) 4.93221 6.34196i 0.406801 0.523076i
\(148\) −3.29028 0.521129i −0.270459 0.0428366i
\(149\) −0.907025 −0.0743064 −0.0371532 0.999310i \(-0.511829\pi\)
−0.0371532 + 0.999310i \(0.511829\pi\)
\(150\) 5.60887 6.59853i 0.457963 0.538767i
\(151\) −7.07775 −0.575979 −0.287989 0.957634i \(-0.592987\pi\)
−0.287989 + 0.957634i \(0.592987\pi\)
\(152\) 4.20913 + 0.666660i 0.341405 + 0.0540733i
\(153\) −17.8847 4.04530i −1.44589 0.327043i
\(154\) 4.00871 + 1.30251i 0.323031 + 0.104959i
\(155\) 12.2992 + 5.41082i 0.987894 + 0.434608i
\(156\) 2.87061 2.68885i 0.229833 0.215280i
\(157\) −3.09020 + 3.09020i −0.246625 + 0.246625i −0.819584 0.572959i \(-0.805795\pi\)
0.572959 + 0.819584i \(0.305795\pi\)
\(158\) −5.68486 2.89658i −0.452263 0.230440i
\(159\) −0.143519 + 0.747210i −0.0113818 + 0.0592576i
\(160\) 2.23246 0.126913i 0.176492 0.0100334i
\(161\) 4.64830 + 6.39784i 0.366338 + 0.504221i
\(162\) 8.48327 3.00570i 0.666508 0.236150i
\(163\) −1.19195 7.52570i −0.0933610 0.589458i −0.989370 0.145422i \(-0.953546\pi\)
0.896009 0.444036i \(-0.146454\pi\)
\(164\) 7.38316 5.36418i 0.576528 0.418872i
\(165\) 7.69052 + 7.32842i 0.598706 + 0.570516i
\(166\) −6.28849 4.56885i −0.488081 0.354612i
\(167\) 7.13033 13.9941i 0.551761 1.08289i −0.431741 0.901998i \(-0.642101\pi\)
0.983502 0.180895i \(-0.0578995\pi\)
\(168\) −2.50317 0.904781i −0.193124 0.0698053i
\(169\) 7.45935 2.42369i 0.573797 0.186438i
\(170\) 2.90074 + 13.3558i 0.222477 + 1.02435i
\(171\) −6.82306 10.8119i −0.521772 0.826804i
\(172\) 4.27382 + 8.38785i 0.325876 + 0.639567i
\(173\) −2.95227 + 18.6399i −0.224457 + 1.41717i 0.575840 + 0.817562i \(0.304675\pi\)
−0.800297 + 0.599603i \(0.795325\pi\)
\(174\) −12.0309 + 5.64273i −0.912064 + 0.427774i
\(175\) 6.01385 + 4.78237i 0.454605 + 0.361513i
\(176\) 2.74287i 0.206751i
\(177\) 3.49067 + 12.0720i 0.262375 + 0.907389i
\(178\) −8.94916 + 4.55982i −0.670768 + 0.341773i
\(179\) −8.00048 + 24.6229i −0.597984 + 1.84040i −0.0587089 + 0.998275i \(0.518698\pi\)
−0.539275 + 0.842130i \(0.681302\pi\)
\(180\) −4.70256 4.78393i −0.350508 0.356573i
\(181\) −2.63278 8.10287i −0.195693 0.602282i −0.999968 0.00802385i \(-0.997446\pi\)
0.804275 0.594258i \(-0.202554\pi\)
\(182\) 2.46756 + 2.46756i 0.182908 + 0.182908i
\(183\) 17.4352 + 0.570031i 1.28885 + 0.0421379i
\(184\) −3.02483 + 4.16332i −0.222993 + 0.306924i
\(185\) 4.02931 6.26516i 0.296241 0.460624i
\(186\) 5.02568 9.11431i 0.368501 0.668293i
\(187\) −16.5585 + 2.62260i −1.21087 + 0.191784i
\(188\) −2.38541 + 0.377811i −0.173974 + 0.0275547i
\(189\) 2.91125 + 7.43540i 0.211762 + 0.540845i
\(190\) −5.15454 + 8.01477i −0.373950 + 0.581453i
\(191\) −5.15251 + 7.09182i −0.372822 + 0.513146i −0.953665 0.300870i \(-0.902723\pi\)
0.580843 + 0.814016i \(0.302723\pi\)
\(192\) 0.0565979 1.73113i 0.00408460 0.124933i
\(193\) 16.8199 + 16.8199i 1.21072 + 1.21072i 0.970790 + 0.239930i \(0.0771245\pi\)
0.239930 + 0.970790i \(0.422875\pi\)
\(194\) −3.75093 11.5442i −0.269301 0.828824i
\(195\) 2.91862 + 8.29658i 0.209006 + 0.594130i
\(196\) −1.43338 + 4.41148i −0.102384 + 0.315105i
\(197\) −6.24937 + 3.18421i −0.445249 + 0.226866i −0.662216 0.749313i \(-0.730384\pi\)
0.216966 + 0.976179i \(0.430384\pi\)
\(198\) 6.18613 5.42602i 0.439629 0.385610i
\(199\) 18.4867i 1.31048i 0.755419 + 0.655242i \(0.227433\pi\)
−0.755419 + 0.655242i \(0.772567\pi\)
\(200\) −1.75043 + 4.68359i −0.123774 + 0.331180i
\(201\) −4.36373 9.30397i −0.307794 0.656252i
\(202\) 0.553398 3.49402i 0.0389370 0.245838i
\(203\) −5.35249 10.5049i −0.375671 0.737296i
\(204\) 10.5048 1.31354i 0.735481 0.0919665i
\(205\) 4.33110 + 19.9416i 0.302497 + 1.39278i
\(206\) 15.6750 5.09313i 1.09213 0.354855i
\(207\) 15.3735 1.41394i 1.06854 0.0982757i
\(208\) −1.03095 + 2.02334i −0.0714832 + 0.140294i
\(209\) −9.45659 6.87061i −0.654126 0.475250i
\(210\) 4.10581 4.30869i 0.283328 0.297328i
\(211\) 12.6782 9.21124i 0.872802 0.634128i −0.0585355 0.998285i \(-0.518643\pi\)
0.931337 + 0.364158i \(0.118643\pi\)
\(212\) −0.0687197 0.433879i −0.00471969 0.0297989i
\(213\) −6.01966 8.88184i −0.412460 0.608574i
\(214\) 1.10324 + 1.51848i 0.0754158 + 0.103801i
\(215\) −21.0162 + 1.19475i −1.43329 + 0.0814811i
\(216\) −4.01626 + 3.29691i −0.273272 + 0.224327i
\(217\) 8.22782 + 4.19228i 0.558541 + 0.284591i
\(218\) −12.8356 + 12.8356i −0.869335 + 0.869335i
\(219\) −12.3115 13.1438i −0.831935 0.888173i
\(220\) −5.61398 2.46978i −0.378495 0.166512i
\(221\) −13.2005 4.28910i −0.887961 0.288516i
\(222\) −4.55469 3.54223i −0.305691 0.237739i
\(223\) −24.2212 3.83626i −1.62197 0.256895i −0.721695 0.692211i \(-0.756637\pi\)
−0.900278 + 0.435316i \(0.856637\pi\)
\(224\) 1.53672 0.102676
\(225\) 14.0259 5.31736i 0.935059 0.354491i
\(226\) −6.63132 −0.441109
\(227\) 21.5518 + 3.41347i 1.43044 + 0.226560i 0.823107 0.567886i \(-0.192239\pi\)
0.607335 + 0.794446i \(0.292239\pi\)
\(228\) 5.82663 + 4.53143i 0.385878 + 0.300102i
\(229\) 14.1502 + 4.59767i 0.935070 + 0.303823i 0.736634 0.676291i \(-0.236414\pi\)
0.198436 + 0.980114i \(0.436414\pi\)
\(230\) −5.79763 9.93989i −0.382285 0.655417i
\(231\) 4.99087 + 5.32824i 0.328375 + 0.350573i
\(232\) 5.42501 5.42501i 0.356169 0.356169i
\(233\) 8.91074 + 4.54025i 0.583762 + 0.297442i 0.720821 0.693121i \(-0.243765\pi\)
−0.137059 + 0.990563i \(0.543765\pi\)
\(234\) 6.60280 1.67749i 0.431638 0.109661i
\(235\) 1.37462 5.22255i 0.0896704 0.340681i
\(236\) −4.26457 5.86967i −0.277600 0.382083i
\(237\) −6.19997 9.14789i −0.402731 0.594219i
\(238\) 1.46934 + 9.27703i 0.0952429 + 0.601340i
\(239\) −5.42628 + 3.94243i −0.350997 + 0.255014i −0.749287 0.662245i \(-0.769604\pi\)
0.398290 + 0.917260i \(0.369604\pi\)
\(240\) 3.49223 + 1.67461i 0.225423 + 0.108096i
\(241\) 7.73169 + 5.61740i 0.498042 + 0.361849i 0.808269 0.588814i \(-0.200405\pi\)
−0.310227 + 0.950663i \(0.600405\pi\)
\(242\) −1.57838 + 3.09774i −0.101462 + 0.199131i
\(243\) 15.3808 + 2.53604i 0.986678 + 0.162687i
\(244\) −9.57865 + 3.11229i −0.613210 + 0.199244i
\(245\) −7.73856 6.90603i −0.494398 0.441210i
\(246\) 15.6847 1.96126i 1.00002 0.125045i
\(247\) −4.39347 8.62267i −0.279550 0.548647i
\(248\) −0.940031 + 5.93512i −0.0596920 + 0.376881i
\(249\) −5.71693 12.1891i −0.362295 0.772455i
\(250\) −8.01001 7.79998i −0.506598 0.493314i
\(251\) 14.1774i 0.894872i 0.894316 + 0.447436i \(0.147663\pi\)
−0.894316 + 0.447436i \(0.852337\pi\)
\(252\) −3.03998 3.46584i −0.191501 0.218327i
\(253\) 12.5767 6.40816i 0.790692 0.402878i
\(254\) −2.70814 + 8.33479i −0.169924 + 0.522971i
\(255\) −6.77038 + 22.6835i −0.423977 + 1.42049i
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) −13.7580 13.7580i −0.858198 0.858198i 0.132928 0.991126i \(-0.457562\pi\)
−0.991126 + 0.132928i \(0.957562\pi\)
\(258\) −0.532807 + 16.2966i −0.0331711 + 1.01458i
\(259\) 3.00902 4.14157i 0.186972 0.257344i
\(260\) −3.21299 3.93199i −0.199261 0.243852i
\(261\) −22.9672 1.50340i −1.42163 0.0930581i
\(262\) 11.4404 1.81198i 0.706791 0.111945i
\(263\) −11.7698 + 1.86416i −0.725759 + 0.114949i −0.508373 0.861137i \(-0.669753\pi\)
−0.217386 + 0.976086i \(0.569753\pi\)
\(264\) −2.29398 + 4.16024i −0.141185 + 0.256045i
\(265\) 0.949923 + 0.250028i 0.0583533 + 0.0153591i
\(266\) −3.84933 + 5.29814i −0.236017 + 0.324850i
\(267\) −17.3872 0.568462i −1.06408 0.0347893i
\(268\) 4.19536 + 4.19536i 0.256272 + 0.256272i
\(269\) 4.78303 + 14.7206i 0.291626 + 0.897534i 0.984334 + 0.176315i \(0.0564178\pi\)
−0.692707 + 0.721219i \(0.743582\pi\)
\(270\) −3.13159 11.1890i −0.190583 0.680939i
\(271\) −1.58590 + 4.88090i −0.0963366 + 0.296494i −0.987600 0.156993i \(-0.949820\pi\)
0.891263 + 0.453487i \(0.149820\pi\)
\(272\) −5.44598 + 2.77486i −0.330211 + 0.168251i
\(273\) 1.67894 + 5.80640i 0.101614 + 0.351419i
\(274\) 7.33874i 0.443350i
\(275\) 10.1101 9.26658i 0.609660 0.558796i
\(276\) −8.06987 + 3.78491i −0.485749 + 0.227825i
\(277\) −0.610374 + 3.85375i −0.0366738 + 0.231549i −0.999216 0.0395814i \(-0.987398\pi\)
0.962543 + 0.271131i \(0.0873976\pi\)
\(278\) 3.95790 + 7.76781i 0.237379 + 0.465882i
\(279\) 15.2454 9.62093i 0.912718 0.575990i
\(280\) −1.38372 + 3.14529i −0.0826929 + 0.187967i
\(281\) 2.23510 0.726229i 0.133335 0.0433232i −0.241589 0.970379i \(-0.577669\pi\)
0.374924 + 0.927055i \(0.377669\pi\)
\(282\) −3.93405 1.42198i −0.234269 0.0846774i
\(283\) 1.55470 3.05128i 0.0924175 0.181380i −0.840170 0.542322i \(-0.817545\pi\)
0.932588 + 0.360943i \(0.117545\pi\)
\(284\) 5.01163 + 3.64116i 0.297386 + 0.216063i
\(285\) −14.5213 + 7.84543i −0.860165 + 0.464723i
\(286\) 5.03908 3.66111i 0.297967 0.216486i
\(287\) 2.19387 + 13.8516i 0.129500 + 0.817631i
\(288\) 1.53366 2.57835i 0.0903719 0.151931i
\(289\) −11.9665 16.4704i −0.703909 0.968848i
\(290\) 6.21879 + 15.9885i 0.365180 + 0.938880i
\(291\) 3.96568 20.6467i 0.232472 1.21033i
\(292\) 9.26435 + 4.72042i 0.542155 + 0.276242i
\(293\) 13.9865 13.9865i 0.817101 0.817101i −0.168586 0.985687i \(-0.553920\pi\)
0.985687 + 0.168586i \(0.0539201\pi\)
\(294\) −5.86358 + 5.49231i −0.341971 + 0.320318i
\(295\) 15.8538 3.44326i 0.923042 0.200474i
\(296\) 3.16825 + 1.02943i 0.184151 + 0.0598342i
\(297\) 13.9208 3.05618i 0.807768 0.177337i
\(298\) 0.895858 + 0.141890i 0.0518957 + 0.00821947i
\(299\) 11.6861 0.675827
\(300\) −6.57206 + 5.63987i −0.379438 + 0.325618i
\(301\) −14.4665 −0.833835
\(302\) 6.99061 + 1.10720i 0.402264 + 0.0637124i
\(303\) 3.76157 4.83672i 0.216096 0.277862i
\(304\) −4.05302 1.31690i −0.232456 0.0755297i
\(305\) 2.25486 22.4076i 0.129113 1.28305i
\(306\) 17.0317 + 6.79328i 0.973636 + 0.388346i
\(307\) −0.108217 + 0.108217i −0.00617628 + 0.00617628i −0.710188 0.704012i \(-0.751390\pi\)
0.704012 + 0.710188i \(0.251390\pi\)
\(308\) −3.75560 1.91357i −0.213995 0.109036i
\(309\) 28.0347 + 5.38472i 1.59484 + 0.306326i
\(310\) −11.3013 7.26822i −0.641872 0.412807i
\(311\) 9.64088 + 13.2695i 0.546684 + 0.752446i 0.989558 0.144138i \(-0.0460410\pi\)
−0.442874 + 0.896584i \(0.646041\pi\)
\(312\) −3.25590 + 2.20668i −0.184329 + 0.124929i
\(313\) −3.64820 23.0338i −0.206208 1.30195i −0.845911 0.533325i \(-0.820942\pi\)
0.639702 0.768623i \(-0.279058\pi\)
\(314\) 3.53557 2.56874i 0.199523 0.144962i
\(315\) 9.83103 3.10133i 0.553916 0.174740i
\(316\) 5.16175 + 3.75023i 0.290371 + 0.210967i
\(317\) 3.25049 6.37945i 0.182566 0.358305i −0.781527 0.623872i \(-0.785559\pi\)
0.964093 + 0.265566i \(0.0855589\pi\)
\(318\) 0.258641 0.715559i 0.0145039 0.0401266i
\(319\) −20.0137 + 6.50283i −1.12055 + 0.364089i
\(320\) −2.22483 0.223884i −0.124372 0.0125155i
\(321\) 0.403367 + 3.22583i 0.0225137 + 0.180049i
\(322\) −3.59023 7.04623i −0.200076 0.392671i
\(323\) 4.07474 25.7269i 0.226724 1.43148i
\(324\) −8.84902 + 1.64162i −0.491612 + 0.0912009i
\(325\) 10.9409 3.03571i 0.606893 0.168391i
\(326\) 7.61951i 0.422005i
\(327\) −30.2033 + 8.73340i −1.67025 + 0.482958i
\(328\) −8.13141 + 4.14316i −0.448982 + 0.228768i
\(329\) 1.14688 3.52974i 0.0632297 0.194601i
\(330\) −6.44942 8.44125i −0.355029 0.464676i
\(331\) 5.06152 + 15.5778i 0.278206 + 0.856231i 0.988353 + 0.152177i \(0.0486285\pi\)
−0.710147 + 0.704054i \(0.751371\pi\)
\(332\) 5.49634 + 5.49634i 0.301651 + 0.301651i
\(333\) −3.94580 9.18196i −0.216229 0.503168i
\(334\) −9.23170 + 12.7063i −0.505136 + 0.695260i
\(335\) −12.3645 + 4.80922i −0.675546 + 0.262756i
\(336\) 2.33081 + 1.28522i 0.127156 + 0.0701147i
\(337\) 9.30661 1.47402i 0.506963 0.0802951i 0.102287 0.994755i \(-0.467384\pi\)
0.404677 + 0.914460i \(0.367384\pi\)
\(338\) −7.74667 + 1.22695i −0.421363 + 0.0667374i
\(339\) −10.0581 5.54606i −0.546278 0.301221i
\(340\) −0.775714 13.6452i −0.0420690 0.740014i
\(341\) 9.68798 13.3344i 0.524634 0.722096i
\(342\) 5.04771 + 11.7461i 0.272949 + 0.635157i
\(343\) −12.6467 12.6467i −0.682856 0.682856i
\(344\) −2.90906 8.95315i −0.156846 0.482722i
\(345\) −0.480392 19.9251i −0.0258634 1.07273i
\(346\) 5.83185 17.9486i 0.313522 0.964922i
\(347\) −21.2743 + 10.8398i −1.14207 + 0.581912i −0.919533 0.393013i \(-0.871433\pi\)
−0.222533 + 0.974925i \(0.571433\pi\)
\(348\) 12.7655 3.69121i 0.684305 0.197869i
\(349\) 21.3598i 1.14336i −0.820476 0.571681i \(-0.806292\pi\)
0.820476 0.571681i \(-0.193708\pi\)
\(350\) −5.19169 5.66426i −0.277507 0.302768i
\(351\) 11.4178 + 2.97788i 0.609435 + 0.158947i
\(352\) 0.429079 2.70910i 0.0228700 0.144395i
\(353\) −5.39943 10.5970i −0.287383 0.564020i 0.701509 0.712661i \(-0.252510\pi\)
−0.988891 + 0.148641i \(0.952510\pi\)
\(354\) −1.55921 12.4695i −0.0828713 0.662745i
\(355\) −11.9652 + 6.97895i −0.635048 + 0.370404i
\(356\) 9.55229 3.10373i 0.506271 0.164497i
\(357\) −5.53017 + 15.2998i −0.292687 + 0.809751i
\(358\) 11.7539 23.0682i 0.621211 1.21919i
\(359\) 25.6736 + 18.6530i 1.35500 + 0.984467i 0.998745 + 0.0500792i \(0.0159474\pi\)
0.356257 + 0.934388i \(0.384053\pi\)
\(360\) 3.89629 + 5.46067i 0.205352 + 0.287803i
\(361\) −0.678618 + 0.493045i −0.0357167 + 0.0259497i
\(362\) 1.33280 + 8.41497i 0.0700504 + 0.442281i
\(363\) −4.98479 + 3.37843i −0.261633 + 0.177322i
\(364\) −2.05117 2.82319i −0.107510 0.147975i
\(365\) −18.0035 + 14.7114i −0.942347 + 0.770032i
\(366\) −17.1314 3.29048i −0.895470 0.171996i
\(367\) −7.10027 3.61777i −0.370631 0.188846i 0.258747 0.965945i \(-0.416690\pi\)
−0.629378 + 0.777099i \(0.716690\pi\)
\(368\) 3.63887 3.63887i 0.189689 0.189689i
\(369\) 25.4301 + 10.1431i 1.32384 + 0.528027i
\(370\) −4.95979 + 5.55770i −0.257847 + 0.288931i
\(371\) 0.642021 + 0.208605i 0.0333320 + 0.0108302i
\(372\) −6.38960 + 8.21591i −0.331285 + 0.425975i
\(373\) 6.60991 + 1.04691i 0.342248 + 0.0542068i 0.325193 0.945648i \(-0.394571\pi\)
0.0170555 + 0.999855i \(0.494571\pi\)
\(374\) 16.7649 0.866890
\(375\) −5.62571 18.5297i −0.290511 0.956872i
\(376\) 2.41514 0.124551
\(377\) −17.2077 2.72544i −0.886244 0.140367i
\(378\) −1.71225 7.79927i −0.0880687 0.401151i
\(379\) −2.68053 0.870958i −0.137690 0.0447381i 0.239361 0.970931i \(-0.423062\pi\)
−0.377051 + 0.926192i \(0.623062\pi\)
\(380\) 6.34487 7.10975i 0.325485 0.364722i
\(381\) −11.0783 + 10.3769i −0.567560 + 0.531623i
\(382\) 6.19848 6.19848i 0.317142 0.317142i
\(383\) 4.98907 + 2.54206i 0.254930 + 0.129893i 0.576786 0.816895i \(-0.304307\pi\)
−0.321856 + 0.946789i \(0.604307\pi\)
\(384\) −0.326709 + 1.70096i −0.0166723 + 0.0868017i
\(385\) 7.29830 5.96375i 0.371956 0.303941i
\(386\) −13.9816 19.2440i −0.711643 0.979493i
\(387\) −14.4377 + 24.2723i −0.733911 + 1.23383i
\(388\) 1.89884 + 11.9888i 0.0963992 + 0.608641i
\(389\) 4.72410 3.43226i 0.239521 0.174022i −0.461549 0.887115i \(-0.652706\pi\)
0.701070 + 0.713092i \(0.252706\pi\)
\(390\) −1.58481 8.65101i −0.0802500 0.438061i
\(391\) 25.4469 + 18.4882i 1.28690 + 0.934991i
\(392\) 2.10584 4.13293i 0.106361 0.208745i
\(393\) 18.8677 + 6.81979i 0.951748 + 0.344013i
\(394\) 6.67055 2.16739i 0.336058 0.109192i
\(395\) −12.3236 + 7.18800i −0.620069 + 0.361667i
\(396\) −6.95879 + 4.39149i −0.349692 + 0.220681i
\(397\) −2.73792 5.37347i −0.137412 0.269687i 0.812038 0.583605i \(-0.198358\pi\)
−0.949450 + 0.313918i \(0.898358\pi\)
\(398\) 2.89195 18.2591i 0.144960 0.915244i
\(399\) −10.2695 + 4.81659i −0.514120 + 0.241131i
\(400\) 2.46156 4.35210i 0.123078 0.217605i
\(401\) 21.8156i 1.08942i −0.838626 0.544708i \(-0.816640\pi\)
0.838626 0.544708i \(-0.183360\pi\)
\(402\) 2.85454 + 9.87206i 0.142372 + 0.492374i
\(403\) 12.1585 6.19506i 0.605658 0.308598i
\(404\) −1.09317 + 3.36443i −0.0543872 + 0.167387i
\(405\) 4.60799 19.5900i 0.228973 0.973433i
\(406\) 3.64327 + 11.2128i 0.180812 + 0.556484i
\(407\) −6.46105 6.46105i −0.320262 0.320262i
\(408\) −10.5809 0.345936i −0.523834 0.0171264i
\(409\) −10.2656 + 14.1294i −0.507603 + 0.698656i −0.983513 0.180838i \(-0.942119\pi\)
0.475910 + 0.879494i \(0.342119\pi\)
\(410\) −1.15822 20.3737i −0.0572004 1.00618i
\(411\) −6.13771 + 11.1310i −0.302751 + 0.549053i
\(412\) −16.2788 + 2.57831i −0.801999 + 0.127024i
\(413\) 11.0121 1.74414i 0.541870 0.0858237i
\(414\) −15.4055 1.00842i −0.757137 0.0495611i
\(415\) −16.1988 + 6.30056i −0.795166 + 0.309282i
\(416\) 1.33477 1.83716i 0.0654427 0.0900741i
\(417\) −0.493421 + 15.0920i −0.0241630 + 0.739058i
\(418\) 8.26536 + 8.26536i 0.404272 + 0.404272i
\(419\) −2.70937 8.33859i −0.132361 0.407367i 0.862809 0.505530i \(-0.168703\pi\)
−0.995170 + 0.0981637i \(0.968703\pi\)
\(420\) −4.72929 + 3.61335i −0.230766 + 0.176313i
\(421\) −10.5794 + 32.5601i −0.515610 + 1.58688i 0.266560 + 0.963818i \(0.414113\pi\)
−0.782170 + 0.623065i \(0.785887\pi\)
\(422\) −13.9630 + 7.11453i −0.679710 + 0.346330i
\(423\) −4.77770 5.44700i −0.232300 0.264842i
\(424\) 0.439287i 0.0213337i
\(425\) 28.6269 + 10.6989i 1.38861 + 0.518974i
\(426\) 4.55612 + 9.71418i 0.220745 + 0.470653i
\(427\) 2.42116 15.2866i 0.117168 0.739772i
\(428\) −0.852113 1.67237i −0.0411884 0.0808369i
\(429\) 10.7050 1.33858i 0.516841 0.0646271i
\(430\) 20.9443 + 2.10762i 1.01003 + 0.101638i
\(431\) 2.50367 0.813491i 0.120597 0.0391845i −0.248097 0.968735i \(-0.579805\pi\)
0.368694 + 0.929551i \(0.379805\pi\)
\(432\) 4.48257 2.62804i 0.215668 0.126442i
\(433\) −17.1431 + 33.6451i −0.823843 + 1.61688i −0.0373338 + 0.999303i \(0.511886\pi\)
−0.786509 + 0.617579i \(0.788114\pi\)
\(434\) −7.47070 5.42778i −0.358605 0.260542i
\(435\) −3.93957 + 29.4517i −0.188888 + 1.41210i
\(436\) 14.6855 10.6696i 0.703307 0.510982i
\(437\) 3.43073 + 21.6608i 0.164114 + 1.03618i
\(438\) 10.1038 + 14.9079i 0.482778 + 0.712326i
\(439\) 1.73789 + 2.39200i 0.0829451 + 0.114164i 0.848473 0.529238i \(-0.177522\pi\)
−0.765528 + 0.643402i \(0.777522\pi\)
\(440\) 5.15851 + 3.31759i 0.245922 + 0.158160i
\(441\) −13.4870 + 3.42649i −0.642240 + 0.163166i
\(442\) 12.3670 + 6.30131i 0.588239 + 0.299723i
\(443\) 8.33207 8.33207i 0.395869 0.395869i −0.480904 0.876773i \(-0.659692\pi\)
0.876773 + 0.480904i \(0.159692\pi\)
\(444\) 3.94449 + 4.21113i 0.187197 + 0.199851i
\(445\) −2.24866 + 22.3459i −0.106597 + 1.05930i
\(446\) 23.3229 + 7.57807i 1.10437 + 0.358832i
\(447\) 1.24012 + 0.964457i 0.0586558 + 0.0456172i
\(448\) −1.51780 0.240395i −0.0717092 0.0113576i
\(449\) 11.1961 0.528377 0.264188 0.964471i \(-0.414896\pi\)
0.264188 + 0.964471i \(0.414896\pi\)
\(450\) −14.6850 + 3.05777i −0.692259 + 0.144144i
\(451\) 25.0317 1.17869
\(452\) 6.54968 + 1.03737i 0.308071 + 0.0487936i
\(453\) 9.67700 + 7.52590i 0.454665 + 0.353598i
\(454\) −20.7525 6.74288i −0.973961 0.316459i
\(455\) 7.62534 1.65614i 0.357481 0.0776410i
\(456\) −5.04603 5.38713i −0.236302 0.252275i
\(457\) −7.27927 + 7.27927i −0.340510 + 0.340510i −0.856559 0.516049i \(-0.827402\pi\)
0.516049 + 0.856559i \(0.327402\pi\)
\(458\) −13.2567 6.75464i −0.619446 0.315624i
\(459\) 20.1513 + 24.5480i 0.940581 + 1.14580i
\(460\) 4.17131 + 10.7245i 0.194488 + 0.500031i
\(461\) 11.8441 + 16.3020i 0.551633 + 0.759258i 0.990233 0.139425i \(-0.0445253\pi\)
−0.438600 + 0.898683i \(0.644525\pi\)
\(462\) −4.09590 6.04339i −0.190559 0.281164i
\(463\) −0.0186291 0.117620i −0.000865770 0.00546626i 0.987252 0.159167i \(-0.0508808\pi\)
−0.988117 + 0.153701i \(0.950881\pi\)
\(464\) −6.20687 + 4.50956i −0.288147 + 0.209351i
\(465\) −11.0625 20.4759i −0.513013 0.949545i
\(466\) −8.09078 5.87830i −0.374798 0.272307i
\(467\) 7.83859 15.3841i 0.362727 0.711892i −0.635457 0.772136i \(-0.719188\pi\)
0.998184 + 0.0602449i \(0.0191882\pi\)
\(468\) −6.78393 + 0.623934i −0.313587 + 0.0288413i
\(469\) −8.67129 + 2.81747i −0.400403 + 0.130099i
\(470\) −2.17468 + 4.94321i −0.100311 + 0.228013i
\(471\) 7.51091 0.939185i 0.346085 0.0432754i
\(472\) 3.29384 + 6.46453i 0.151611 + 0.297554i
\(473\) −4.03931 + 25.5032i −0.185728 + 1.17264i
\(474\) 4.69260 + 10.0052i 0.215538 + 0.459552i
\(475\) 8.83878 + 19.3883i 0.405551 + 0.889596i
\(476\) 9.39267i 0.430512i
\(477\) 0.990748 0.869011i 0.0453632 0.0397893i
\(478\) 5.97621 3.04503i 0.273345 0.139276i
\(479\) −6.64843 + 20.4618i −0.303775 + 0.934922i 0.676357 + 0.736574i \(0.263558\pi\)
−0.980132 + 0.198348i \(0.936442\pi\)
\(480\) −3.18727 2.20030i −0.145478 0.100429i
\(481\) −2.33768 7.19463i −0.106589 0.328047i
\(482\) −6.75775 6.75775i −0.307807 0.307807i
\(483\) 0.447586 13.6900i 0.0203659 0.622918i
\(484\) 2.04354 2.81269i 0.0928882 0.127850i
\(485\) −26.2480 6.90871i −1.19186 0.313708i
\(486\) −14.7947 4.91090i −0.671101 0.222763i
\(487\) 2.58759 0.409833i 0.117255 0.0185713i −0.0975313 0.995232i \(-0.531095\pi\)
0.214786 + 0.976661i \(0.431095\pi\)
\(488\) 9.94759 1.57554i 0.450306 0.0713215i
\(489\) −6.37253 + 11.5569i −0.288176 + 0.522620i
\(490\) 6.56294 + 8.03158i 0.296483 + 0.362830i
\(491\) 4.48442 6.17227i 0.202379 0.278551i −0.695749 0.718285i \(-0.744927\pi\)
0.898128 + 0.439734i \(0.144927\pi\)
\(492\) −15.7984 0.516518i −0.712247 0.0232864i
\(493\) −33.1585 33.1585i −1.49338 1.49338i
\(494\) 2.99050 + 9.20380i 0.134549 + 0.414099i
\(495\) −2.72237 18.1972i −0.122361 0.817903i
\(496\) 1.85692 5.71500i 0.0833780 0.256611i
\(497\) −8.48196 + 4.32177i −0.380468 + 0.193858i
\(498\) 3.73974 + 12.9334i 0.167582 + 0.579559i
\(499\) 26.6590i 1.19342i 0.802456 + 0.596711i \(0.203526\pi\)
−0.802456 + 0.596711i \(0.796474\pi\)
\(500\) 6.69121 + 8.95699i 0.299240 + 0.400569i
\(501\) −24.6290 + 11.5515i −1.10034 + 0.516081i
\(502\) 2.21784 14.0029i 0.0989870 0.624979i
\(503\) −7.87808 15.4616i −0.351266 0.689399i 0.645996 0.763340i \(-0.276442\pi\)
−0.997263 + 0.0739419i \(0.976442\pi\)
\(504\) 2.46037 + 3.89872i 0.109594 + 0.173663i
\(505\) −5.90184 5.26691i −0.262629 0.234374i
\(506\) −13.4243 + 4.36183i −0.596785 + 0.193907i
\(507\) −12.7759 4.61790i −0.567398 0.205088i
\(508\) 3.97865 7.80853i 0.176524 0.346448i
\(509\) −33.7904 24.5502i −1.49773 1.08817i −0.971273 0.237969i \(-0.923518\pi\)
−0.526461 0.850199i \(-0.676482\pi\)
\(510\) 10.2355 21.3451i 0.453236 0.945176i
\(511\) −12.9266 + 9.39175i −0.571841 + 0.415467i
\(512\) −0.156434 0.987688i −0.00691349 0.0436501i
\(513\) −2.16769 + 22.0375i −0.0957056 + 0.972981i
\(514\) 11.4364 + 15.7408i 0.504436 + 0.694297i
\(515\) 9.38086 35.6403i 0.413370 1.57050i
\(516\) 3.07560 16.0127i 0.135396 0.704918i
\(517\) −5.90240 3.00742i −0.259587 0.132266i
\(518\) −3.61986 + 3.61986i −0.159048 + 0.159048i
\(519\) 23.8566 22.3461i 1.04719 0.980884i
\(520\) 2.55834 + 4.38620i 0.112190 + 0.192348i
\(521\) 16.9663 + 5.51270i 0.743309 + 0.241516i 0.656099 0.754674i \(-0.272205\pi\)
0.0872091 + 0.996190i \(0.472205\pi\)
\(522\) 22.4493 + 5.07775i 0.982577 + 0.222247i
\(523\) 5.49799 + 0.870797i 0.240410 + 0.0380773i 0.275477 0.961308i \(-0.411164\pi\)
−0.0350664 + 0.999385i \(0.511164\pi\)
\(524\) −11.5830 −0.506006
\(525\) −3.13722 12.9333i −0.136919 0.564456i
\(526\) 11.9165 0.519586
\(527\) 36.2764 + 5.74562i 1.58023 + 0.250283i
\(528\) 2.91654 3.75017i 0.126926 0.163205i
\(529\) −3.31234 1.07624i −0.144015 0.0467932i
\(530\) −0.899114 0.395551i −0.0390550 0.0171816i
\(531\) 8.06382 20.2171i 0.349940 0.877347i
\(532\) 4.63075 4.63075i 0.200768 0.200768i
\(533\) 18.4652 + 9.40850i 0.799818 + 0.407527i
\(534\) 17.0842 + 3.28142i 0.739307 + 0.142001i
\(535\) 4.19020 0.238208i 0.181158 0.0102986i
\(536\) −3.48741 4.80000i −0.150633 0.207328i
\(537\) 37.1206 25.1585i 1.60187 1.08567i
\(538\) −2.42133 15.2876i −0.104391 0.659097i
\(539\) −10.2930 + 7.47827i −0.443349 + 0.322112i
\(540\) 1.34269 + 11.5411i 0.0577804 + 0.496650i
\(541\) −11.9935 8.71377i −0.515640 0.374634i 0.299319 0.954153i \(-0.403241\pi\)
−0.814959 + 0.579519i \(0.803241\pi\)
\(542\) 2.32992 4.57272i 0.100079 0.196415i
\(543\) −5.01628 + 13.8781i −0.215269 + 0.595565i
\(544\) 5.81301 1.88876i 0.249231 0.0809800i
\(545\) 8.61478 + 39.6649i 0.369017 + 1.69906i
\(546\) −0.749951 5.99756i −0.0320949 0.256672i
\(547\) −16.7685 32.9101i −0.716970 1.40713i −0.905191 0.425006i \(-0.860272\pi\)
0.188221 0.982127i \(-0.439728\pi\)
\(548\) 1.14803 7.24839i 0.0490415 0.309636i
\(549\) −23.2320 19.3185i −0.991518 0.824495i
\(550\) −11.4352 + 7.57093i −0.487599 + 0.322825i
\(551\) 32.6954i 1.39287i
\(552\) 8.56261 2.47591i 0.364449 0.105382i
\(553\) −8.73602 + 4.45123i −0.371493 + 0.189285i
\(554\) 1.20572 3.71082i 0.0512261 0.157658i
\(555\) −12.1709 + 4.28155i −0.516627 + 0.181742i
\(556\) −2.69402 8.29133i −0.114252 0.351631i
\(557\) −7.87026 7.87026i −0.333474 0.333474i 0.520430 0.853904i \(-0.325772\pi\)
−0.853904 + 0.520430i \(0.825772\pi\)
\(558\) −16.5627 + 7.11757i −0.701157 + 0.301311i
\(559\) −12.5654 + 17.2948i −0.531461 + 0.731493i
\(560\) 1.85871 2.89010i 0.0785449 0.122129i
\(561\) 25.4281 + 14.0212i 1.07357 + 0.591975i
\(562\) −2.32119 + 0.367641i −0.0979136 + 0.0155080i
\(563\) −3.65971 + 0.579641i −0.154238 + 0.0244289i −0.233076 0.972459i \(-0.574879\pi\)
0.0788377 + 0.996887i \(0.474879\pi\)
\(564\) 3.66317 + 2.01989i 0.154247 + 0.0850527i
\(565\) −8.02081 + 12.4715i −0.337438 + 0.524681i
\(566\) −2.01289 + 2.77050i −0.0846079 + 0.116453i
\(567\) 3.92582 13.2616i 0.164869 0.556934i
\(568\) −4.38033 4.38033i −0.183794 0.183794i
\(569\) −1.23085 3.78815i −0.0515998 0.158808i 0.921936 0.387342i \(-0.126607\pi\)
−0.973536 + 0.228534i \(0.926607\pi\)
\(570\) 15.5698 5.47722i 0.652146 0.229415i
\(571\) 9.70723 29.8758i 0.406235 1.25026i −0.513625 0.858015i \(-0.671698\pi\)
0.919860 0.392248i \(-0.128302\pi\)
\(572\) −5.54976 + 2.82775i −0.232047 + 0.118234i
\(573\) 14.5856 4.21748i 0.609322 0.176188i
\(574\) 14.0242i 0.585359i
\(575\) −25.7064 1.11904i −1.07203 0.0466671i
\(576\) −1.91812 + 2.30669i −0.0799217 + 0.0961120i
\(577\) 2.77556 17.5242i 0.115548 0.729541i −0.860088 0.510145i \(-0.829592\pi\)
0.975636 0.219395i \(-0.0704084\pi\)
\(578\) 9.24259 + 18.1396i 0.384441 + 0.754508i
\(579\) −5.11196 40.8817i −0.212446 1.69899i
\(580\) −3.64107 16.7645i −0.151187 0.696109i
\(581\) −11.3603 + 3.69118i −0.471303 + 0.153136i
\(582\) −7.14671 + 19.7721i −0.296241 + 0.819582i
\(583\) 0.547016 1.07358i 0.0226551 0.0444631i
\(584\) −8.41185 6.11157i −0.348085 0.252899i
\(585\) 4.83145 14.4469i 0.199756 0.597304i
\(586\) −16.0023 + 11.6263i −0.661049 + 0.480280i
\(587\) 0.244573 + 1.54417i 0.0100946 + 0.0637349i 0.992221 0.124486i \(-0.0397280\pi\)
−0.982127 + 0.188220i \(0.939728\pi\)
\(588\) 6.65058 4.50742i 0.274265 0.185883i
\(589\) 15.0522 + 20.7176i 0.620216 + 0.853654i
\(590\) −16.1972 + 0.920794i −0.666829 + 0.0379085i
\(591\) 11.9302 + 2.29148i 0.490745 + 0.0942590i
\(592\) −2.96821 1.51238i −0.121992 0.0621583i
\(593\) −10.2180 + 10.2180i −0.419603 + 0.419603i −0.885067 0.465464i \(-0.845887\pi\)
0.465464 + 0.885067i \(0.345887\pi\)
\(594\) −14.2275 + 0.840853i −0.583763 + 0.0345006i
\(595\) 19.2245 + 8.45750i 0.788128 + 0.346724i
\(596\) −0.862632 0.280286i −0.0353348 0.0114810i
\(597\) 19.6572 25.2757i 0.804516 1.03447i
\(598\) −11.5423 1.82811i −0.471998 0.0747571i
\(599\) 22.7078 0.927816 0.463908 0.885883i \(-0.346447\pi\)
0.463908 + 0.885883i \(0.346447\pi\)
\(600\) 7.37341 4.54233i 0.301018 0.185440i
\(601\) 30.2561 1.23417 0.617087 0.786895i \(-0.288313\pi\)
0.617087 + 0.786895i \(0.288313\pi\)
\(602\) 14.2884 + 2.26306i 0.582351 + 0.0922354i
\(603\) −3.92681 + 17.3608i −0.159912 + 0.706987i
\(604\) −6.73134 2.18714i −0.273894 0.0889936i
\(605\) 3.91682 + 6.71528i 0.159241 + 0.273015i
\(606\) −4.47189 + 4.18873i −0.181658 + 0.170156i
\(607\) 18.2359 18.2359i 0.740173 0.740173i −0.232438 0.972611i \(-0.574670\pi\)
0.972611 + 0.232438i \(0.0746703\pi\)
\(608\) 3.79711 + 1.93472i 0.153993 + 0.0784634i
\(609\) −3.85186 + 20.0541i −0.156085 + 0.812633i
\(610\) −5.73242 + 21.7790i −0.232099 + 0.881805i
\(611\) −3.22367 4.43700i −0.130416 0.179502i
\(612\) −15.7593 9.37399i −0.637032 0.378921i
\(613\) −0.0961939 0.607344i −0.00388524 0.0245304i 0.985670 0.168688i \(-0.0539529\pi\)
−0.989555 + 0.144157i \(0.953953\pi\)
\(614\) 0.123814 0.0899560i 0.00499672 0.00363033i
\(615\) 15.2827 31.8704i 0.616256 1.28514i
\(616\) 3.41002 + 2.47752i 0.137393 + 0.0998222i
\(617\) −5.39346 + 10.5853i −0.217133 + 0.426147i −0.973721 0.227745i \(-0.926865\pi\)
0.756588 + 0.653892i \(0.226865\pi\)
\(618\) −26.8472 9.70402i −1.07995 0.390353i
\(619\) 17.4319 5.66397i 0.700647 0.227654i 0.0630348 0.998011i \(-0.479922\pi\)
0.637613 + 0.770357i \(0.279922\pi\)
\(620\) 10.0252 + 8.94665i 0.402621 + 0.359306i
\(621\) −22.5228 14.4138i −0.903811 0.578405i
\(622\) −7.44637 14.6143i −0.298572 0.585981i
\(623\) −2.41450 + 15.2446i −0.0967350 + 0.610761i
\(624\) 3.56101 1.67018i 0.142555 0.0668607i
\(625\) −24.3578 + 5.63007i −0.974312 + 0.225203i
\(626\) 23.3209i 0.932092i
\(627\) 5.62380 + 19.4492i 0.224593 + 0.776725i
\(628\) −3.89388 + 1.98403i −0.155383 + 0.0791714i
\(629\) 6.29202 19.3649i 0.250879 0.772127i
\(630\) −10.1952 + 1.52523i −0.406185 + 0.0607666i
\(631\) −10.2915 31.6740i −0.409698 1.26092i −0.916908 0.399098i \(-0.869323\pi\)
0.507210 0.861822i \(-0.330677\pi\)
\(632\) −4.51153 4.51153i −0.179459 0.179459i
\(633\) −27.1286 0.886951i −1.07827 0.0352531i
\(634\) −4.20844 + 5.79242i −0.167138 + 0.230046i
\(635\) 12.3996 + 15.1744i 0.492065 + 0.602178i
\(636\) −0.367395 + 0.666289i −0.0145682 + 0.0264201i
\(637\) −10.4037 + 1.64778i −0.412208 + 0.0652874i
\(638\) 20.7845 3.29194i 0.822867 0.130329i
\(639\) −1.21389 + 18.5445i −0.0480209 + 0.733607i
\(640\) 2.16242 + 0.569168i 0.0854770 + 0.0224983i
\(641\) −5.38356 + 7.40984i −0.212638 + 0.292671i −0.901991 0.431754i \(-0.857895\pi\)
0.689353 + 0.724425i \(0.257895\pi\)
\(642\) 0.106231 3.24922i 0.00419260 0.128236i
\(643\) −10.3369 10.3369i −0.407649 0.407649i 0.473269 0.880918i \(-0.343074\pi\)
−0.880918 + 0.473269i \(0.843074\pi\)
\(644\) 2.44376 + 7.52111i 0.0962975 + 0.296373i
\(645\) 30.0046 + 20.7134i 1.18143 + 0.815589i
\(646\) −8.04914 + 24.7727i −0.316689 + 0.974669i
\(647\) 9.67805 4.93122i 0.380484 0.193866i −0.253280 0.967393i \(-0.581509\pi\)
0.633763 + 0.773527i \(0.281509\pi\)
\(648\) 8.99688 0.237114i 0.353431 0.00931473i
\(649\) 19.9004i 0.781157i
\(650\) −11.2811 + 1.28680i −0.442481 + 0.0504723i
\(651\) −6.79169 14.4807i −0.266187 0.567542i
\(652\) 1.19195 7.52570i 0.0466805 0.294729i
\(653\) 14.0273 + 27.5300i 0.548929 + 1.07733i 0.984204 + 0.177036i \(0.0566509\pi\)
−0.435276 + 0.900297i \(0.643349\pi\)
\(654\) 31.1977 3.90104i 1.21992 0.152543i
\(655\) 10.4298 23.7076i 0.407525 0.926333i
\(656\) 8.67943 2.82012i 0.338875 0.110107i
\(657\) 2.85683 + 31.0618i 0.111455 + 1.21184i
\(658\) −1.68494 + 3.30687i −0.0656856 + 0.128915i
\(659\) −32.9364 23.9297i −1.28302 0.932169i −0.283381 0.959007i \(-0.591456\pi\)
−0.999640 + 0.0268379i \(0.991456\pi\)
\(660\) 5.04951 + 9.34624i 0.196552 + 0.363802i
\(661\) 0.749210 0.544333i 0.0291409 0.0211721i −0.573119 0.819472i \(-0.694267\pi\)
0.602260 + 0.798300i \(0.294267\pi\)
\(662\) −2.56231 16.1778i −0.0995869 0.628767i
\(663\) 13.4876 + 19.9006i 0.523815 + 0.772874i
\(664\) −4.56885 6.28849i −0.177306 0.244041i
\(665\) 5.30832 + 13.6477i 0.205848 + 0.529235i
\(666\) 2.46085 + 9.68617i 0.0953559 + 0.375332i
\(667\) 35.1786 + 17.9244i 1.36212 + 0.694034i
\(668\) 11.1057 11.1057i 0.429694 0.429694i
\(669\) 29.0371 + 31.0000i 1.12264 + 1.19853i
\(670\) 12.9646 2.81577i 0.500867 0.108783i
\(671\) −26.2730 8.53660i −1.01426 0.329552i
\(672\) −2.10107 1.63402i −0.0810503 0.0630337i
\(673\) 9.13465 + 1.44679i 0.352115 + 0.0557695i 0.329987 0.943986i \(-0.392956\pi\)
0.0221284 + 0.999755i \(0.492956\pi\)
\(674\) −9.42262 −0.362946
\(675\) −24.8309 7.64387i −0.955740 0.294213i
\(676\) 7.84323 0.301663
\(677\) −23.3458 3.69762i −0.897253 0.142111i −0.309261 0.950977i \(-0.600082\pi\)
−0.587993 + 0.808866i \(0.700082\pi\)
\(678\) 9.06663 + 7.05121i 0.348202 + 0.270800i
\(679\) −17.7401 5.76412i −0.680804 0.221207i
\(680\) −1.36841 + 13.5985i −0.0524763 + 0.521480i
\(681\) −25.8369 27.5835i −0.990073 1.05700i
\(682\) −11.6547 + 11.6547i −0.446280 + 0.446280i
\(683\) −20.2551 10.3205i −0.775041 0.394903i 0.0212830 0.999773i \(-0.493225\pi\)
−0.796324 + 0.604870i \(0.793225\pi\)
\(684\) −3.14806 12.3911i −0.120369 0.473787i
\(685\) 13.8020 + 8.87646i 0.527346 + 0.339152i
\(686\) 10.5126 + 14.4693i 0.401372 + 0.552442i
\(687\) −14.4579 21.3323i −0.551605 0.813877i
\(688\) 1.47266 + 9.29800i 0.0561446 + 0.354483i
\(689\) 0.807040 0.586349i 0.0307458 0.0223381i
\(690\) −2.64250 + 19.7550i −0.100598 + 0.752059i
\(691\) 13.7351 + 9.97910i 0.522506 + 0.379623i 0.817547 0.575862i \(-0.195333\pi\)
−0.295041 + 0.955485i \(0.595333\pi\)
\(692\) −8.56782 + 16.8153i −0.325700 + 0.639222i
\(693\) −1.15811 12.5919i −0.0439928 0.478326i
\(694\) 22.7081 7.37832i 0.861989 0.280077i
\(695\) 19.3961 + 1.95182i 0.735737 + 0.0740368i
\(696\) −13.1858 + 1.64879i −0.499807 + 0.0624972i
\(697\) 25.3237 + 49.7005i 0.959202 + 1.88254i
\(698\) −3.34140 + 21.0968i −0.126474 + 0.798525i
\(699\) −7.35541 15.6826i −0.278207 0.593170i
\(700\) 4.24168 + 6.40668i 0.160321 + 0.242150i
\(701\) 6.88173i 0.259920i −0.991519 0.129960i \(-0.958515\pi\)
0.991519 0.129960i \(-0.0414848\pi\)
\(702\) −10.8113 4.72734i −0.408048 0.178422i
\(703\) 12.6493 6.44513i 0.477077 0.243083i
\(704\) −0.847593 + 2.60862i −0.0319448 + 0.0983161i
\(705\) −7.43267 + 5.67883i −0.279931 + 0.213877i
\(706\) 3.67522 + 11.3112i 0.138319 + 0.425701i
\(707\) −3.84401 3.84401i −0.144569 0.144569i
\(708\) −0.410636 + 12.5599i −0.0154326 + 0.472028i
\(709\) 5.55483 7.64557i 0.208616 0.287135i −0.691868 0.722024i \(-0.743212\pi\)
0.900484 + 0.434888i \(0.143212\pi\)
\(710\) 12.9097 5.02126i 0.484491 0.188444i
\(711\) −1.25025 + 19.0999i −0.0468882 + 0.716303i
\(712\) −9.92022 + 1.57121i −0.371776 + 0.0588835i
\(713\) −30.5430 + 4.83754i −1.14384 + 0.181167i
\(714\) 7.85550 14.2463i 0.293985 0.533155i
\(715\) −0.790497 13.9052i −0.0295629 0.520026i
\(716\) −15.2178 + 20.9455i −0.568716 + 0.782771i
\(717\) 11.6111 + 0.379617i 0.433625 + 0.0141770i
\(718\) −22.4396 22.4396i −0.837438 0.837438i
\(719\) −11.9133 36.6654i −0.444292 1.36739i −0.883259 0.468886i \(-0.844656\pi\)
0.438967 0.898503i \(-0.355344\pi\)
\(720\) −2.99408 6.00296i −0.111583 0.223717i
\(721\) 7.82670 24.0881i 0.291482 0.897088i
\(722\) 0.747392 0.380815i 0.0278151 0.0141725i
\(723\) −4.59801 15.9016i −0.171002 0.591387i
\(724\) 8.51986i 0.316638i
\(725\) 37.5915 + 7.64301i 1.39611 + 0.283854i
\(726\) 5.45192 2.55705i 0.202340 0.0949009i
\(727\) −5.82954 + 36.8063i −0.216206 + 1.36507i 0.605812 + 0.795608i \(0.292848\pi\)
−0.822018 + 0.569462i \(0.807152\pi\)
\(728\) 1.58427 + 3.10931i 0.0587170 + 0.115239i
\(729\) −18.3327 19.8221i −0.678987 0.734150i
\(730\) 20.0832 11.7139i 0.743314 0.433552i
\(731\) −54.7231 + 17.7806i −2.02401 + 0.657640i
\(732\) 16.4057 + 5.92990i 0.606372 + 0.219175i
\(733\) −11.2367 + 22.0534i −0.415039 + 0.814559i 0.584955 + 0.811066i \(0.301112\pi\)
−0.999994 + 0.00349370i \(0.998888\pi\)
\(734\) 6.44691 + 4.68395i 0.237960 + 0.172888i
\(735\) 3.23718 + 17.6708i 0.119405 + 0.651796i
\(736\) −4.16332 + 3.02483i −0.153462 + 0.111497i
\(737\) 2.54578 + 16.0734i 0.0937750 + 0.592072i
\(738\) −23.5302 13.9963i −0.866160 0.515212i
\(739\) −2.95524 4.06754i −0.108710 0.149627i 0.751195 0.660080i \(-0.229478\pi\)
−0.859906 + 0.510453i \(0.829478\pi\)
\(740\) 5.76815 4.71340i 0.212041 0.173268i
\(741\) −3.16171 + 16.4609i −0.116148 + 0.604708i
\(742\) −0.601483 0.306471i −0.0220811 0.0112509i
\(743\) 3.70154 3.70154i 0.135796 0.135796i −0.635941 0.771738i \(-0.719388\pi\)
0.771738 + 0.635941i \(0.219388\pi\)
\(744\) 7.59618 7.11520i 0.278489 0.260856i
\(745\) 1.35042 1.51322i 0.0494757 0.0554400i
\(746\) −6.36476 2.06804i −0.233030 0.0757162i
\(747\) −5.14452 + 22.7444i −0.188228 + 0.832175i
\(748\) −16.5585 2.62260i −0.605437 0.0958918i
\(749\) 2.88433 0.105391
\(750\) 2.65776 + 19.1817i 0.0970477 + 0.700415i
\(751\) −21.2996 −0.777232 −0.388616 0.921400i \(-0.627047\pi\)
−0.388616 + 0.921400i \(0.627047\pi\)
\(752\) −2.38541 0.377811i −0.0869869 0.0137774i
\(753\) 15.0751 19.3840i 0.549368 0.706392i
\(754\) 16.5695 + 5.38377i 0.603427 + 0.196065i
\(755\) 10.5377 11.8080i 0.383506 0.429738i
\(756\) 0.471096 + 7.97111i 0.0171336 + 0.289906i
\(757\) 21.7093 21.7093i 0.789039 0.789039i −0.192298 0.981337i \(-0.561594\pi\)
0.981337 + 0.192298i \(0.0615939\pi\)
\(758\)