Properties

Label 150.2.l.a.17.8
Level 150
Weight 2
Character 150.17
Analytic conductor 1.198
Analytic rank 0
Dimension 80
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.l (of order \(20\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{20})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 17.8
Character \(\chi\) = 150.17
Dual form 150.2.l.a.53.8

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(0.891007 + 0.453990i) q^{2}\) \(+(0.368756 + 1.69234i) q^{3}\) \(+(0.587785 + 0.809017i) q^{4}\) \(+(2.21391 - 0.314018i) q^{5}\) \(+(-0.439743 + 1.67530i) q^{6}\) \(+(-2.72680 - 2.72680i) q^{7}\) \(+(0.156434 + 0.987688i) q^{8}\) \(+(-2.72804 + 1.24812i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(0.891007 + 0.453990i) q^{2}\) \(+(0.368756 + 1.69234i) q^{3}\) \(+(0.587785 + 0.809017i) q^{4}\) \(+(2.21391 - 0.314018i) q^{5}\) \(+(-0.439743 + 1.67530i) q^{6}\) \(+(-2.72680 - 2.72680i) q^{7}\) \(+(0.156434 + 0.987688i) q^{8}\) \(+(-2.72804 + 1.24812i) q^{9}\) \(+(2.11517 + 0.725301i) q^{10}\) \(+(-0.335657 + 0.109061i) q^{11}\) \(+(-1.15238 + 1.29306i) q^{12}\) \(+(-1.12512 - 2.20817i) q^{13}\) \(+(-1.19166 - 3.66754i) q^{14}\) \(+(1.34782 + 3.63089i) q^{15}\) \(+(-0.309017 + 0.951057i) q^{16}\) \(+(3.49819 - 0.554059i) q^{17}\) \(+(-2.99734 - 0.126420i) q^{18}\) \(+(-3.84926 + 5.29805i) q^{19}\) \(+(1.55535 + 1.60651i) q^{20}\) \(+(3.60915 - 5.62020i) q^{21}\) \(+(-0.348585 - 0.0552105i) q^{22}\) \(+(3.55825 - 6.98347i) q^{23}\) \(+(-1.61382 + 0.628956i) q^{24}\) \(+(4.80279 - 1.39041i) q^{25}\) \(-2.47829i q^{26}\) \(+(-3.11823 - 4.15652i) q^{27}\) \(+(0.603255 - 3.80880i) q^{28}\) \(+(-5.05137 + 3.67003i) q^{29}\) \(+(-0.447477 + 3.84705i) q^{30}\) \(+(-3.39184 - 2.46432i) q^{31}\) \(+(-0.707107 + 0.707107i) q^{32}\) \(+(-0.308344 - 0.527829i) q^{33}\) \(+(3.36845 + 1.09448i) q^{34}\) \(+(-6.89315 - 5.18062i) q^{35}\) \(+(-2.61325 - 1.47340i) q^{36}\) \(+(4.33521 - 2.20890i) q^{37}\) \(+(-5.83498 + 2.97307i) q^{38}\) \(+(3.32209 - 2.71836i) q^{39}\) \(+(0.656484 + 2.13753i) q^{40}\) \(+(8.06531 + 2.62058i) q^{41}\) \(+(5.76730 - 3.36911i) q^{42}\) \(+(-5.16349 + 5.16349i) q^{43}\) \(+(-0.285527 - 0.207447i) q^{44}\) \(+(-5.64770 + 3.61988i) q^{45}\) \(+(6.34085 - 4.60690i) q^{46}\) \(+(-0.668895 + 4.22323i) q^{47}\) \(+(-1.72346 - 0.172255i) q^{48}\) \(+7.87088i q^{49}\) \(+(4.91055 + 0.941550i) q^{50}\) \(+(2.22763 + 5.71582i) q^{51}\) \(+(1.12512 - 2.20817i) q^{52}\) \(+(-4.34698 - 0.688494i) q^{53}\) \(+(-0.891339 - 5.11913i) q^{54}\) \(+(-0.708866 + 0.346854i) q^{55}\) \(+(2.26666 - 3.11979i) q^{56}\) \(+(-10.3855 - 4.56057i) q^{57}\) \(+(-6.16696 + 0.976751i) q^{58}\) \(+(0.713107 - 2.19472i) q^{59}\) \(+(-2.14523 + 3.22459i) q^{60}\) \(+(0.0451729 + 0.139028i) q^{61}\) \(+(-1.90338 - 3.73559i) q^{62}\) \(+(10.8422 + 4.03544i) q^{63}\) \(+(-0.951057 + 0.309017i) q^{64}\) \(+(-3.18432 - 4.53538i) q^{65}\) \(+(-0.0351078 - 0.610284i) q^{66}\) \(+(1.18445 + 7.47829i) q^{67}\) \(+(2.50443 + 2.50443i) q^{68}\) \(+(13.1305 + 3.44659i) q^{69}\) \(+(-3.78989 - 7.74539i) q^{70}\) \(+(3.62303 + 4.98667i) q^{71}\) \(+(-1.65951 - 2.49920i) q^{72}\) \(+(-9.30362 - 4.74043i) q^{73}\) \(+4.86552 q^{74}\) \(+(4.12411 + 7.61523i) q^{75}\) \(-6.54875 q^{76}\) \(+(1.21266 + 0.617880i) q^{77}\) \(+(4.19411 - 0.913883i) q^{78}\) \(+(0.803169 + 1.10547i) q^{79}\) \(+(-0.385487 + 2.20259i) q^{80}\) \(+(5.88439 - 6.80984i) q^{81}\) \(+(5.99652 + 5.99652i) q^{82}\) \(+(0.915181 + 5.77823i) q^{83}\) \(+(6.66824 - 0.383604i) q^{84}\) \(+(7.57069 - 2.32513i) q^{85}\) \(+(-6.94488 + 2.25653i) q^{86}\) \(+(-8.07367 - 7.19529i) q^{87}\) \(+(-0.160227 - 0.314463i) q^{88}\) \(+(0.633239 + 1.94891i) q^{89}\) \(+(-6.67553 + 0.661335i) q^{90}\) \(+(-2.95327 + 9.08922i) q^{91}\) \(+(7.74123 - 1.22609i) q^{92}\) \(+(2.91971 - 6.64888i) q^{93}\) \(+(-2.51330 + 3.45926i) q^{94}\) \(+(-6.85822 + 12.9381i) q^{95}\) \(+(-1.45742 - 0.935916i) q^{96}\) \(+(6.93926 + 1.09907i) q^{97}\) \(+(-3.57330 + 7.01300i) q^{98}\) \(+(0.779562 - 0.716464i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut -\mathstrut 4q^{10} \) \(\mathstrut -\mathstrut 4q^{12} \) \(\mathstrut -\mathstrut 8q^{15} \) \(\mathstrut +\mathstrut 20q^{16} \) \(\mathstrut -\mathstrut 8q^{18} \) \(\mathstrut -\mathstrut 40q^{19} \) \(\mathstrut -\mathstrut 36q^{22} \) \(\mathstrut -\mathstrut 104q^{25} \) \(\mathstrut +\mathstrut 4q^{27} \) \(\mathstrut -\mathstrut 16q^{28} \) \(\mathstrut +\mathstrut 12q^{30} \) \(\mathstrut +\mathstrut 4q^{33} \) \(\mathstrut -\mathstrut 40q^{34} \) \(\mathstrut -\mathstrut 24q^{37} \) \(\mathstrut -\mathstrut 40q^{39} \) \(\mathstrut -\mathstrut 8q^{40} \) \(\mathstrut -\mathstrut 4q^{42} \) \(\mathstrut -\mathstrut 24q^{43} \) \(\mathstrut -\mathstrut 72q^{45} \) \(\mathstrut -\mathstrut 4q^{48} \) \(\mathstrut -\mathstrut 12q^{55} \) \(\mathstrut -\mathstrut 64q^{57} \) \(\mathstrut +\mathstrut 20q^{58} \) \(\mathstrut +\mathstrut 24q^{60} \) \(\mathstrut +\mathstrut 64q^{63} \) \(\mathstrut +\mathstrut 96q^{67} \) \(\mathstrut +\mathstrut 140q^{69} \) \(\mathstrut +\mathstrut 76q^{70} \) \(\mathstrut +\mathstrut 8q^{72} \) \(\mathstrut +\mathstrut 100q^{73} \) \(\mathstrut +\mathstrut 132q^{75} \) \(\mathstrut +\mathstrut 100q^{78} \) \(\mathstrut +\mathstrut 80q^{79} \) \(\mathstrut -\mathstrut 40q^{81} \) \(\mathstrut +\mathstrut 96q^{82} \) \(\mathstrut +\mathstrut 60q^{84} \) \(\mathstrut +\mathstrut 32q^{85} \) \(\mathstrut +\mathstrut 80q^{87} \) \(\mathstrut +\mathstrut 4q^{88} \) \(\mathstrut +\mathstrut 52q^{90} \) \(\mathstrut +\mathstrut 12q^{93} \) \(\mathstrut -\mathstrut 32q^{97} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{13}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.891007 + 0.453990i 0.630037 + 0.321020i
\(3\) 0.368756 + 1.69234i 0.212901 + 0.977074i
\(4\) 0.587785 + 0.809017i 0.293893 + 0.404508i
\(5\) 2.21391 0.314018i 0.990090 0.140433i
\(6\) −0.439743 + 1.67530i −0.179524 + 0.683938i
\(7\) −2.72680 2.72680i −1.03063 1.03063i −0.999516 0.0311178i \(-0.990093\pi\)
−0.0311178 0.999516i \(-0.509907\pi\)
\(8\) 0.156434 + 0.987688i 0.0553079 + 0.349201i
\(9\) −2.72804 + 1.24812i −0.909346 + 0.416040i
\(10\) 2.11517 + 0.725301i 0.668875 + 0.229360i
\(11\) −0.335657 + 0.109061i −0.101204 + 0.0328833i −0.359181 0.933268i \(-0.616944\pi\)
0.257977 + 0.966151i \(0.416944\pi\)
\(12\) −1.15238 + 1.29306i −0.332665 + 0.373275i
\(13\) −1.12512 2.20817i −0.312052 0.612437i 0.680707 0.732555i \(-0.261673\pi\)
−0.992760 + 0.120119i \(0.961673\pi\)
\(14\) −1.19166 3.66754i −0.318483 0.980191i
\(15\) 1.34782 + 3.63089i 0.348005 + 0.937493i
\(16\) −0.309017 + 0.951057i −0.0772542 + 0.237764i
\(17\) 3.49819 0.554059i 0.848436 0.134379i 0.282948 0.959135i \(-0.408688\pi\)
0.565488 + 0.824756i \(0.308688\pi\)
\(18\) −2.99734 0.126420i −0.706479 0.0297975i
\(19\) −3.84926 + 5.29805i −0.883080 + 1.21546i 0.0924780 + 0.995715i \(0.470521\pi\)
−0.975558 + 0.219741i \(0.929479\pi\)
\(20\) 1.55535 + 1.60651i 0.347787 + 0.359228i
\(21\) 3.60915 5.62020i 0.787582 1.22643i
\(22\) −0.348585 0.0552105i −0.0743186 0.0117709i
\(23\) 3.55825 6.98347i 0.741947 1.45615i −0.142638 0.989775i \(-0.545559\pi\)
0.884585 0.466378i \(-0.154441\pi\)
\(24\) −1.61382 + 0.628956i −0.329420 + 0.128385i
\(25\) 4.80279 1.39041i 0.960557 0.278083i
\(26\) 2.47829i 0.486033i
\(27\) −3.11823 4.15652i −0.600103 0.799923i
\(28\) 0.603255 3.80880i 0.114004 0.719796i
\(29\) −5.05137 + 3.67003i −0.938015 + 0.681508i −0.947942 0.318443i \(-0.896840\pi\)
0.00992666 + 0.999951i \(0.496840\pi\)
\(30\) −0.447477 + 3.84705i −0.0816978 + 0.702371i
\(31\) −3.39184 2.46432i −0.609193 0.442604i 0.239937 0.970788i \(-0.422873\pi\)
−0.849130 + 0.528184i \(0.822873\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) −0.308344 0.527829i −0.0536759 0.0918832i
\(34\) 3.36845 + 1.09448i 0.577684 + 0.187701i
\(35\) −6.89315 5.18062i −1.16516 0.875685i
\(36\) −2.61325 1.47340i −0.435542 0.245567i
\(37\) 4.33521 2.20890i 0.712704 0.363141i −0.0597483 0.998213i \(-0.519030\pi\)
0.772452 + 0.635073i \(0.219030\pi\)
\(38\) −5.83498 + 2.97307i −0.946558 + 0.482296i
\(39\) 3.32209 2.71836i 0.531960 0.435286i
\(40\) 0.656484 + 2.13753i 0.103799 + 0.337973i
\(41\) 8.06531 + 2.62058i 1.25959 + 0.409265i 0.861348 0.508015i \(-0.169621\pi\)
0.398241 + 0.917281i \(0.369621\pi\)
\(42\) 5.76730 3.36911i 0.889913 0.519865i
\(43\) −5.16349 + 5.16349i −0.787425 + 0.787425i −0.981071 0.193647i \(-0.937969\pi\)
0.193647 + 0.981071i \(0.437969\pi\)
\(44\) −0.285527 0.207447i −0.0430448 0.0312738i
\(45\) −5.64770 + 3.61988i −0.841909 + 0.539620i
\(46\) 6.34085 4.60690i 0.934908 0.679250i
\(47\) −0.668895 + 4.22323i −0.0975683 + 0.616022i 0.889649 + 0.456644i \(0.150949\pi\)
−0.987218 + 0.159378i \(0.949051\pi\)
\(48\) −1.72346 0.172255i −0.248761 0.0248628i
\(49\) 7.87088i 1.12441i
\(50\) 4.91055 + 0.941550i 0.694456 + 0.133155i
\(51\) 2.22763 + 5.71582i 0.311931 + 0.800375i
\(52\) 1.12512 2.20817i 0.156026 0.306218i
\(53\) −4.34698 0.688494i −0.597103 0.0945719i −0.149435 0.988772i \(-0.547745\pi\)
−0.447668 + 0.894200i \(0.647745\pi\)
\(54\) −0.891339 5.11913i −0.121296 0.696626i
\(55\) −0.708866 + 0.346854i −0.0955835 + 0.0467698i
\(56\) 2.26666 3.11979i 0.302896 0.416900i
\(57\) −10.3855 4.56057i −1.37560 0.604063i
\(58\) −6.16696 + 0.976751i −0.809762 + 0.128254i
\(59\) 0.713107 2.19472i 0.0928386 0.285728i −0.893846 0.448375i \(-0.852003\pi\)
0.986684 + 0.162647i \(0.0520031\pi\)
\(60\) −2.14523 + 3.22459i −0.276948 + 0.416293i
\(61\) 0.0451729 + 0.139028i 0.00578380 + 0.0178007i 0.953907 0.300103i \(-0.0970211\pi\)
−0.948123 + 0.317904i \(0.897021\pi\)
\(62\) −1.90338 3.73559i −0.241729 0.474420i
\(63\) 10.8422 + 4.03544i 1.36599 + 0.508418i
\(64\) −0.951057 + 0.309017i −0.118882 + 0.0386271i
\(65\) −3.18432 4.53538i −0.394966 0.562545i
\(66\) −0.0351078 0.610284i −0.00432147 0.0751208i
\(67\) 1.18445 + 7.47829i 0.144703 + 0.913619i 0.948053 + 0.318112i \(0.103049\pi\)
−0.803350 + 0.595507i \(0.796951\pi\)
\(68\) 2.50443 + 2.50443i 0.303707 + 0.303707i
\(69\) 13.1305 + 3.44659i 1.58073 + 0.414920i
\(70\) −3.78989 7.74539i −0.452978 0.925752i
\(71\) 3.62303 + 4.98667i 0.429974 + 0.591809i 0.967947 0.251153i \(-0.0808098\pi\)
−0.537973 + 0.842962i \(0.680810\pi\)
\(72\) −1.65951 2.49920i −0.195576 0.294534i
\(73\) −9.30362 4.74043i −1.08891 0.554825i −0.185079 0.982724i \(-0.559254\pi\)
−0.903827 + 0.427898i \(0.859254\pi\)
\(74\) 4.86552 0.565605
\(75\) 4.12411 + 7.61523i 0.476211 + 0.879331i
\(76\) −6.54875 −0.751193
\(77\) 1.21266 + 0.617880i 0.138195 + 0.0704139i
\(78\) 4.19411 0.913883i 0.474890 0.103477i
\(79\) 0.803169 + 1.10547i 0.0903636 + 0.124375i 0.851805 0.523859i \(-0.175508\pi\)
−0.761442 + 0.648234i \(0.775508\pi\)
\(80\) −0.385487 + 2.20259i −0.0430987 + 0.246257i
\(81\) 5.88439 6.80984i 0.653821 0.756649i
\(82\) 5.99652 + 5.99652i 0.662205 + 0.662205i
\(83\) 0.915181 + 5.77823i 0.100454 + 0.634243i 0.985621 + 0.168969i \(0.0540439\pi\)
−0.885167 + 0.465273i \(0.845956\pi\)
\(84\) 6.66824 0.383604i 0.727565 0.0418546i
\(85\) 7.57069 2.32513i 0.821157 0.252196i
\(86\) −6.94488 + 2.25653i −0.748886 + 0.243328i
\(87\) −8.07367 7.19529i −0.865588 0.771416i
\(88\) −0.160227 0.314463i −0.0170803 0.0335219i
\(89\) 0.633239 + 1.94891i 0.0671232 + 0.206584i 0.978992 0.203897i \(-0.0653608\pi\)
−0.911869 + 0.410481i \(0.865361\pi\)
\(90\) −6.67553 + 0.661335i −0.703662 + 0.0697109i
\(91\) −2.95327 + 9.08922i −0.309587 + 0.952809i
\(92\) 7.74123 1.22609i 0.807079 0.127829i
\(93\) 2.91971 6.64888i 0.302759 0.689457i
\(94\) −2.51330 + 3.45926i −0.259227 + 0.356795i
\(95\) −6.85822 + 12.9381i −0.703639 + 1.32742i
\(96\) −1.45742 0.935916i −0.148747 0.0955216i
\(97\) 6.93926 + 1.09907i 0.704575 + 0.111594i 0.498433 0.866928i \(-0.333909\pi\)
0.206142 + 0.978522i \(0.433909\pi\)
\(98\) −3.57330 + 7.01300i −0.360958 + 0.708420i
\(99\) 0.779562 0.716464i 0.0783490 0.0720073i
\(100\) 3.94788 + 3.06827i 0.394788 + 0.306827i
\(101\) 9.58679i 0.953921i 0.878925 + 0.476961i \(0.158262\pi\)
−0.878925 + 0.476961i \(0.841738\pi\)
\(102\) −0.610091 + 6.10416i −0.0604081 + 0.604402i
\(103\) 1.04075 6.57102i 0.102548 0.647462i −0.881853 0.471524i \(-0.843704\pi\)
0.984401 0.175938i \(-0.0562959\pi\)
\(104\) 2.00498 1.45670i 0.196604 0.142841i
\(105\) 6.22549 13.5759i 0.607546 1.32488i
\(106\) −3.56062 2.58694i −0.345838 0.251266i
\(107\) −10.4337 + 10.4337i −1.00866 + 1.00866i −0.00870186 + 0.999962i \(0.502770\pi\)
−0.999962 + 0.00870186i \(0.997230\pi\)
\(108\) 1.52985 4.96584i 0.147210 0.477838i
\(109\) −10.5722 3.43511i −1.01263 0.329024i −0.244729 0.969592i \(-0.578699\pi\)
−0.767902 + 0.640568i \(0.778699\pi\)
\(110\) −0.789073 0.0127689i −0.0752351 0.00121747i
\(111\) 5.33685 + 6.52211i 0.506551 + 0.619051i
\(112\) 3.43597 1.75071i 0.324668 0.165427i
\(113\) −1.56816 + 0.799015i −0.147520 + 0.0751650i −0.526192 0.850366i \(-0.676381\pi\)
0.378672 + 0.925531i \(0.376381\pi\)
\(114\) −7.18313 8.77844i −0.672762 0.822176i
\(115\) 5.68471 16.5781i 0.530102 1.54592i
\(116\) −5.93824 1.92945i −0.551352 0.179145i
\(117\) 5.82544 + 4.61969i 0.538562 + 0.427091i
\(118\) 1.63176 1.63176i 0.150216 0.150216i
\(119\) −11.0497 8.02806i −1.01292 0.735931i
\(120\) −3.37535 + 1.89922i −0.308126 + 0.173374i
\(121\) −8.79842 + 6.39242i −0.799856 + 0.581129i
\(122\) −0.0228680 + 0.144383i −0.00207037 + 0.0130718i
\(123\) −1.46078 + 14.6156i −0.131714 + 1.31784i
\(124\) 4.19255i 0.376502i
\(125\) 10.1963 4.58641i 0.911986 0.410221i
\(126\) 7.82841 + 8.51786i 0.697410 + 0.758831i
\(127\) 2.44874 4.80592i 0.217290 0.426457i −0.756471 0.654027i \(-0.773078\pi\)
0.973762 + 0.227571i \(0.0730782\pi\)
\(128\) −0.987688 0.156434i −0.0873001 0.0138270i
\(129\) −10.6425 6.83432i −0.937016 0.601728i
\(130\) −0.778228 5.48671i −0.0682551 0.481216i
\(131\) 10.2354 14.0878i 0.894273 1.23086i −0.0779865 0.996954i \(-0.524849\pi\)
0.972259 0.233906i \(-0.0751509\pi\)
\(132\) 0.245782 0.559706i 0.0213926 0.0487161i
\(133\) 24.9429 3.95056i 2.16282 0.342557i
\(134\) −2.33973 + 7.20094i −0.202122 + 0.622066i
\(135\) −8.20869 8.22298i −0.706492 0.707721i
\(136\) 1.09448 + 3.36845i 0.0938505 + 0.288842i
\(137\) −8.13848 15.9727i −0.695317 1.36464i −0.920663 0.390358i \(-0.872351\pi\)
0.225346 0.974279i \(-0.427649\pi\)
\(138\) 10.1347 + 9.03207i 0.862721 + 0.768861i
\(139\) 17.1405 5.56927i 1.45383 0.472379i 0.527654 0.849459i \(-0.323072\pi\)
0.926181 + 0.377080i \(0.123072\pi\)
\(140\) 0.139519 8.62177i 0.0117915 0.728673i
\(141\) −7.39381 + 0.425343i −0.622671 + 0.0358204i
\(142\) 0.964240 + 6.08797i 0.0809172 + 0.510891i
\(143\) 0.618480 + 0.618480i 0.0517199 + 0.0517199i
\(144\) −0.344023 2.98021i −0.0286686 0.248351i
\(145\) −10.0308 + 9.71134i −0.833014 + 0.806483i
\(146\) −6.13747 8.44751i −0.507941 0.699121i
\(147\) −13.3202 + 2.90243i −1.09863 + 0.239388i
\(148\) 4.33521 + 2.20890i 0.356352 + 0.181570i
\(149\) 4.64891 0.380854 0.190427 0.981701i \(-0.439013\pi\)
0.190427 + 0.981701i \(0.439013\pi\)
\(150\) 0.217368 + 8.65753i 0.0177480 + 0.706884i
\(151\) −14.6548 −1.19259 −0.596295 0.802765i \(-0.703361\pi\)
−0.596295 + 0.802765i \(0.703361\pi\)
\(152\) −5.83498 2.97307i −0.473279 0.241148i
\(153\) −8.85167 + 5.87766i −0.715615 + 0.475181i
\(154\) 0.799974 + 1.10107i 0.0644637 + 0.0887267i
\(155\) −8.28307 4.39067i −0.665312 0.352667i
\(156\) 4.15188 + 1.08981i 0.332416 + 0.0872547i
\(157\) 3.17235 + 3.17235i 0.253181 + 0.253181i 0.822273 0.569093i \(-0.192705\pi\)
−0.569093 + 0.822273i \(0.692705\pi\)
\(158\) 0.213757 + 1.34961i 0.0170056 + 0.107369i
\(159\) −0.437806 7.61046i −0.0347203 0.603548i
\(160\) −1.34343 + 1.78751i −0.106207 + 0.141315i
\(161\) −28.7452 + 9.33987i −2.26544 + 0.736085i
\(162\) 8.33463 3.39616i 0.654831 0.266827i
\(163\) −4.91227 9.64088i −0.384759 0.755132i 0.614675 0.788781i \(-0.289287\pi\)
−0.999434 + 0.0336487i \(0.989287\pi\)
\(164\) 2.62058 + 8.06531i 0.204633 + 0.629795i
\(165\) −0.848394 1.07174i −0.0660474 0.0834347i
\(166\) −1.80783 + 5.56392i −0.140315 + 0.431844i
\(167\) 16.5871 2.62714i 1.28355 0.203295i 0.522866 0.852415i \(-0.324863\pi\)
0.760686 + 0.649120i \(0.224863\pi\)
\(168\) 6.11560 + 2.68553i 0.471829 + 0.207193i
\(169\) 4.03108 5.54830i 0.310083 0.426793i
\(170\) 7.80112 + 1.36531i 0.598319 + 0.104715i
\(171\) 3.88832 19.2576i 0.297347 1.47267i
\(172\) −7.21237 1.14233i −0.549938 0.0871017i
\(173\) 7.90821 15.5207i 0.601250 1.18002i −0.367043 0.930204i \(-0.619630\pi\)
0.968293 0.249816i \(-0.0803702\pi\)
\(174\) −3.92710 10.0764i −0.297713 0.763892i
\(175\) −16.8876 9.30485i −1.27658 0.703381i
\(176\) 0.352930i 0.0266031i
\(177\) 3.97717 + 0.397506i 0.298943 + 0.0298784i
\(178\) −0.320566 + 2.02397i −0.0240274 + 0.151703i
\(179\) 5.94519 4.31943i 0.444364 0.322849i −0.343002 0.939334i \(-0.611444\pi\)
0.787367 + 0.616485i \(0.211444\pi\)
\(180\) −6.24818 2.44137i −0.465712 0.181969i
\(181\) −0.543117 0.394597i −0.0403695 0.0293302i 0.567418 0.823430i \(-0.307943\pi\)
−0.607787 + 0.794100i \(0.707943\pi\)
\(182\) −6.75780 + 6.75780i −0.500922 + 0.500922i
\(183\) −0.218625 + 0.127715i −0.0161612 + 0.00944098i
\(184\) 7.45412 + 2.42199i 0.549525 + 0.178552i
\(185\) 8.90413 6.25164i 0.654644 0.459630i
\(186\) 5.62001 4.59868i 0.412079 0.337192i
\(187\) −1.11376 + 0.567491i −0.0814465 + 0.0414991i
\(188\) −3.80983 + 1.94121i −0.277861 + 0.141577i
\(189\) −2.83122 + 19.8368i −0.205941 + 1.44291i
\(190\) −11.9845 + 8.41439i −0.869448 + 0.610444i
\(191\) 13.4008 + 4.35419i 0.969650 + 0.315058i 0.750675 0.660672i \(-0.229729\pi\)
0.218975 + 0.975730i \(0.429729\pi\)
\(192\) −0.873670 1.49556i −0.0630517 0.107933i
\(193\) −2.89340 + 2.89340i −0.208271 + 0.208271i −0.803532 0.595261i \(-0.797049\pi\)
0.595261 + 0.803532i \(0.297049\pi\)
\(194\) 5.68396 + 4.12964i 0.408085 + 0.296491i
\(195\) 6.50118 7.06140i 0.465559 0.505678i
\(196\) −6.36767 + 4.62638i −0.454834 + 0.330456i
\(197\) −3.55739 + 22.4605i −0.253454 + 1.60024i 0.452353 + 0.891839i \(0.350585\pi\)
−0.705806 + 0.708405i \(0.749415\pi\)
\(198\) 1.01986 0.284460i 0.0724785 0.0202157i
\(199\) 6.31867i 0.447919i −0.974598 0.223959i \(-0.928102\pi\)
0.974598 0.223959i \(-0.0718983\pi\)
\(200\) 2.12462 + 4.52615i 0.150233 + 0.320047i
\(201\) −12.2191 + 4.76215i −0.861866 + 0.335896i
\(202\) −4.35231 + 8.54189i −0.306228 + 0.601006i
\(203\) 23.7815 + 3.76662i 1.66914 + 0.264365i
\(204\) −3.31483 + 5.16187i −0.232084 + 0.361403i
\(205\) 18.6788 + 3.26907i 1.30458 + 0.228321i
\(206\) 3.91049 5.38233i 0.272457 0.375005i
\(207\) −0.990845 + 23.4923i −0.0688685 + 1.63283i
\(208\) 2.44778 0.387690i 0.169723 0.0268815i
\(209\) 0.714216 2.19813i 0.0494033 0.152048i
\(210\) 11.7103 9.26994i 0.808088 0.639687i
\(211\) −1.28435 3.95283i −0.0884185 0.272124i 0.897064 0.441900i \(-0.145696\pi\)
−0.985483 + 0.169776i \(0.945696\pi\)
\(212\) −1.99809 3.92147i −0.137229 0.269327i
\(213\) −7.10313 + 7.97026i −0.486699 + 0.546113i
\(214\) −14.0333 + 4.55969i −0.959296 + 0.311694i
\(215\) −9.81007 + 13.0529i −0.669041 + 0.890202i
\(216\) 3.61755 3.73006i 0.246143 0.253798i
\(217\) 2.52917 + 15.9686i 0.171691 + 1.08402i
\(218\) −7.86037 7.86037i −0.532371 0.532371i
\(219\) 4.59166 17.4930i 0.310276 1.18206i
\(220\) −0.697272 0.369609i −0.0470101 0.0249190i
\(221\) −5.15934 7.10123i −0.347055 0.477680i
\(222\) 1.79419 + 8.23412i 0.120418 + 0.552638i
\(223\) 13.6942 + 6.97753i 0.917030 + 0.467250i 0.847779 0.530349i \(-0.177939\pi\)
0.0692509 + 0.997599i \(0.477939\pi\)
\(224\) 3.85628 0.257658
\(225\) −11.3668 + 9.78756i −0.757785 + 0.652504i
\(226\) −1.75998 −0.117072
\(227\) 12.4969 + 6.36747i 0.829445 + 0.422624i 0.816537 0.577293i \(-0.195891\pi\)
0.0129084 + 0.999917i \(0.495891\pi\)
\(228\) −2.41489 11.0827i −0.159930 0.733971i
\(229\) 10.1878 + 14.0224i 0.673232 + 0.926624i 0.999828 0.0185396i \(-0.00590167\pi\)
−0.326596 + 0.945164i \(0.605902\pi\)
\(230\) 12.5914 12.1904i 0.830254 0.803811i
\(231\) −0.598489 + 2.28008i −0.0393777 + 0.150018i
\(232\) −4.41506 4.41506i −0.289863 0.289863i
\(233\) −0.384884 2.43006i −0.0252146 0.159199i 0.971868 0.235525i \(-0.0756809\pi\)
−0.997083 + 0.0763263i \(0.975681\pi\)
\(234\) 3.09320 + 6.76087i 0.202209 + 0.441972i
\(235\) −0.154700 + 9.55990i −0.0100915 + 0.623619i
\(236\) 2.19472 0.713107i 0.142864 0.0464193i
\(237\) −1.57466 + 1.76688i −0.102285 + 0.114771i
\(238\) −6.20067 12.1695i −0.401930 0.788831i
\(239\) 0.751883 + 2.31406i 0.0486352 + 0.149684i 0.972425 0.233217i \(-0.0749252\pi\)
−0.923790 + 0.382901i \(0.874925\pi\)
\(240\) −3.86968 + 0.159842i −0.249787 + 0.0103178i
\(241\) 0.500207 1.53948i 0.0322212 0.0991666i −0.933653 0.358180i \(-0.883397\pi\)
0.965874 + 0.259013i \(0.0833974\pi\)
\(242\) −10.7415 + 1.70129i −0.690493 + 0.109363i
\(243\) 13.6945 + 7.44723i 0.878501 + 0.477740i
\(244\) −0.0859239 + 0.118264i −0.00550072 + 0.00757109i
\(245\) 2.47160 + 17.4254i 0.157905 + 1.11327i
\(246\) −7.93691 + 12.3594i −0.506039 + 0.788008i
\(247\) 16.0299 + 2.53888i 1.01996 + 0.161545i
\(248\) 1.90338 3.73559i 0.120865 0.237210i
\(249\) −9.44125 + 3.67955i −0.598315 + 0.233182i
\(250\) 11.1672 + 0.542505i 0.706274 + 0.0343110i
\(251\) 24.7263i 1.56071i −0.625335 0.780357i \(-0.715038\pi\)
0.625335 0.780357i \(-0.284962\pi\)
\(252\) 3.10814 + 11.1435i 0.195794 + 0.701974i
\(253\) −0.432724 + 2.73211i −0.0272052 + 0.171767i
\(254\) 4.36369 3.17040i 0.273802 0.198929i
\(255\) 6.72665 + 11.9548i 0.421239 + 0.748638i
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) 20.2470 20.2470i 1.26297 1.26297i 0.313326 0.949646i \(-0.398557\pi\)
0.949646 0.313326i \(-0.101443\pi\)
\(258\) −6.37978 10.9210i −0.397188 0.679912i
\(259\) −17.8445 5.79802i −1.10880 0.360272i
\(260\) 1.79751 5.24200i 0.111477 0.325095i
\(261\) 9.19968 16.3167i 0.569446 1.00998i
\(262\) 15.5156 7.90558i 0.958555 0.488408i
\(263\) 2.68232 1.36671i 0.165399 0.0842750i −0.369331 0.929298i \(-0.620413\pi\)
0.534730 + 0.845023i \(0.320413\pi\)
\(264\) 0.473094 0.387119i 0.0291169 0.0238255i
\(265\) −9.84001 0.159232i −0.604467 0.00978157i
\(266\) 24.0178 + 7.80385i 1.47262 + 0.478485i
\(267\) −3.06471 + 1.79033i −0.187557 + 0.109566i
\(268\) −5.35387 + 5.35387i −0.327039 + 0.327039i
\(269\) 10.4918 + 7.62274i 0.639697 + 0.464767i 0.859746 0.510722i \(-0.170622\pi\)
−0.220049 + 0.975489i \(0.570622\pi\)
\(270\) −3.58084 11.0534i −0.217923 0.672688i
\(271\) 13.7784 10.0106i 0.836981 0.608102i −0.0845447 0.996420i \(-0.526944\pi\)
0.921526 + 0.388317i \(0.126944\pi\)
\(272\) −0.554059 + 3.49819i −0.0335948 + 0.212109i
\(273\) −16.4711 1.64623i −0.996876 0.0996347i
\(274\) 17.9265i 1.08298i
\(275\) −1.46045 + 0.990501i −0.0880682 + 0.0597294i
\(276\) 4.92959 + 12.6487i 0.296726 + 0.761361i
\(277\) −4.82425 + 9.46812i −0.289861 + 0.568884i −0.989315 0.145793i \(-0.953427\pi\)
0.699454 + 0.714677i \(0.253427\pi\)
\(278\) 17.8007 + 2.81935i 1.06761 + 0.169093i
\(279\) 12.3288 + 2.48932i 0.738108 + 0.149032i
\(280\) 4.03851 7.61871i 0.241347 0.455305i
\(281\) −16.4932 + 22.7009i −0.983902 + 1.35422i −0.0492011 + 0.998789i \(0.515668\pi\)
−0.934701 + 0.355436i \(0.884332\pi\)
\(282\) −6.78104 2.97774i −0.403805 0.177322i
\(283\) −25.3567 + 4.01611i −1.50730 + 0.238733i −0.854761 0.519022i \(-0.826296\pi\)
−0.652539 + 0.757755i \(0.726296\pi\)
\(284\) −1.90474 + 5.86218i −0.113025 + 0.347856i
\(285\) −24.4247 6.83544i −1.44680 0.404897i
\(286\) 0.270286 + 0.831854i 0.0159823 + 0.0491886i
\(287\) −14.8467 29.1383i −0.876372 1.71998i
\(288\) 1.04646 2.81157i 0.0616632 0.165673i
\(289\) −4.23760 + 1.37688i −0.249271 + 0.0809930i
\(290\) −13.3464 + 4.09898i −0.783726 + 0.240700i
\(291\) 0.698888 + 12.1489i 0.0409696 + 0.712181i
\(292\) −1.63344 10.3131i −0.0955899 0.603531i
\(293\) −24.1559 24.1559i −1.41120 1.41120i −0.751709 0.659495i \(-0.770770\pi\)
−0.659495 0.751709i \(-0.729230\pi\)
\(294\) −13.1861 3.46116i −0.769027 0.201859i
\(295\) 0.889572 5.08283i 0.0517929 0.295934i
\(296\) 2.85988 + 3.93629i 0.166227 + 0.228792i
\(297\) 1.49997 + 1.05509i 0.0870370 + 0.0612223i
\(298\) 4.14221 + 2.11056i 0.239952 + 0.122262i
\(299\) −19.4242 −1.12333
\(300\) −3.73676 + 7.81259i −0.215742 + 0.451060i
\(301\) 28.1596 1.62309
\(302\) −13.0575 6.65314i −0.751376 0.382845i
\(303\) −16.2241 + 3.53518i −0.932051 + 0.203091i
\(304\) −3.84926 5.29805i −0.220770 0.303864i
\(305\) 0.143666 + 0.293610i 0.00822629 + 0.0168121i
\(306\) −10.5553 + 1.21846i −0.603406 + 0.0696547i
\(307\) −12.8970 12.8970i −0.736071 0.736071i 0.235744 0.971815i \(-0.424247\pi\)
−0.971815 + 0.235744i \(0.924247\pi\)
\(308\) 0.212907 + 1.34424i 0.0121315 + 0.0765952i
\(309\) 11.5042 0.661801i 0.654451 0.0376485i
\(310\) −5.38694 7.67255i −0.305958 0.435772i
\(311\) −15.4255 + 5.01205i −0.874699 + 0.284207i −0.711755 0.702428i \(-0.752099\pi\)
−0.162945 + 0.986635i \(0.552099\pi\)
\(312\) 3.20458 + 2.85594i 0.181424 + 0.161686i
\(313\) 2.45198 + 4.81228i 0.138594 + 0.272006i 0.949863 0.312668i \(-0.101223\pi\)
−0.811269 + 0.584674i \(0.801223\pi\)
\(314\) 1.38637 + 4.26680i 0.0782372 + 0.240789i
\(315\) 25.2708 + 5.52945i 1.42385 + 0.311549i
\(316\) −0.422251 + 1.29956i −0.0237535 + 0.0731057i
\(317\) 8.47316 1.34202i 0.475900 0.0753752i 0.0861233 0.996284i \(-0.472552\pi\)
0.389777 + 0.920909i \(0.372552\pi\)
\(318\) 3.06499 6.97973i 0.171876 0.391404i
\(319\) 1.29527 1.78278i 0.0725210 0.0998166i
\(320\) −2.00852 + 0.982784i −0.112279 + 0.0549393i
\(321\) −21.5049 13.8099i −1.20028 0.770793i
\(322\) −29.8523 4.72815i −1.66361 0.263489i
\(323\) −10.5300 + 20.6663i −0.585905 + 1.14990i
\(324\) 8.96804 + 0.757846i 0.498224 + 0.0421025i
\(325\) −8.47399 9.04099i −0.470052 0.501504i
\(326\) 10.8202i 0.599276i
\(327\) 1.91483 19.1584i 0.105890 1.05946i
\(328\) −1.32662 + 8.37596i −0.0732504 + 0.462485i
\(329\) 13.3399 9.69197i 0.735450 0.534336i
\(330\) −0.269366 1.34009i −0.0148281 0.0737695i
\(331\) 22.9895 + 16.7029i 1.26362 + 0.918073i 0.998929 0.0462607i \(-0.0147305\pi\)
0.264690 + 0.964334i \(0.414731\pi\)
\(332\) −4.13675 + 4.13675i −0.227034 + 0.227034i
\(333\) −9.06965 + 11.4368i −0.497014 + 0.626734i
\(334\) 15.9719 + 5.18960i 0.873946 + 0.283962i
\(335\) 4.97057 + 16.1843i 0.271571 + 0.884244i
\(336\) 4.22984 + 5.16925i 0.230757 + 0.282005i
\(337\) −4.22871 + 2.15464i −0.230353 + 0.117371i −0.565358 0.824846i \(-0.691262\pi\)
0.335005 + 0.942216i \(0.391262\pi\)
\(338\) 6.11059 3.11350i 0.332372 0.169352i
\(339\) −1.93047 2.35921i −0.104849 0.128135i
\(340\) 6.33101 + 4.75814i 0.343347 + 0.258046i
\(341\) 1.40726 + 0.457245i 0.0762072 + 0.0247612i
\(342\) 12.2073 15.3934i 0.660095 0.832380i
\(343\) 2.37470 2.37470i 0.128222 0.128222i
\(344\) −5.90767 4.29217i −0.318520 0.231418i
\(345\) 30.1521 + 3.50721i 1.62333 + 0.188822i
\(346\) 14.0925 10.2388i 0.757620 0.550443i
\(347\) 1.25574 7.92843i 0.0674116 0.425620i −0.930784 0.365570i \(-0.880874\pi\)
0.998195 0.0600500i \(-0.0191260\pi\)
\(348\) 1.07553 10.7610i 0.0576545 0.576851i
\(349\) 18.9234i 1.01295i 0.862256 + 0.506474i \(0.169051\pi\)
−0.862256 + 0.506474i \(0.830949\pi\)
\(350\) −10.8227 15.9575i −0.578496 0.852964i
\(351\) −5.66994 + 11.5622i −0.302639 + 0.617143i
\(352\) 0.160227 0.314463i 0.00854013 0.0167609i
\(353\) −4.66620 0.739053i −0.248357 0.0393358i 0.0310149 0.999519i \(-0.490126\pi\)
−0.279371 + 0.960183i \(0.590126\pi\)
\(354\) 3.36322 + 2.15978i 0.178753 + 0.114791i
\(355\) 9.58695 + 9.90233i 0.508823 + 0.525561i
\(356\) −1.20449 + 1.65784i −0.0638379 + 0.0878654i
\(357\) 9.51159 21.6602i 0.503406 1.14638i
\(358\) 7.25818 1.14958i 0.383607 0.0607573i
\(359\) 4.67561 14.3900i 0.246769 0.759478i −0.748571 0.663054i \(-0.769260\pi\)
0.995340 0.0964232i \(-0.0307402\pi\)
\(360\) −4.45881 5.01189i −0.235000 0.264150i
\(361\) −7.38121 22.7170i −0.388485 1.19563i
\(362\) −0.304777 0.598158i −0.0160187 0.0314385i
\(363\) −14.0626 12.5327i −0.738097 0.657795i
\(364\) −9.08922 + 2.95327i −0.476405 + 0.154793i
\(365\) −22.0859 7.57338i −1.15603 0.396409i
\(366\) −0.252778 + 0.0145415i −0.0132129 + 0.000760098i
\(367\) −5.73021 36.1791i −0.299114 1.88853i −0.439193 0.898393i \(-0.644735\pi\)
0.140078 0.990140i \(-0.455265\pi\)
\(368\) 5.54211 + 5.54211i 0.288902 + 0.288902i
\(369\) −25.2733 + 2.91744i −1.31567 + 0.151876i
\(370\) 10.7718 1.52786i 0.560000 0.0794297i
\(371\) 9.97595 + 13.7307i 0.517926 + 0.712864i
\(372\) 7.09522 1.54603i 0.367870 0.0801577i
\(373\) −1.97517 1.00640i −0.102270 0.0521093i 0.402107 0.915593i \(-0.368278\pi\)
−0.504377 + 0.863483i \(0.668278\pi\)
\(374\) −1.25001 −0.0646363
\(375\) 11.5217 + 15.5644i 0.594979 + 0.803741i
\(376\) −4.27588 −0.220512
\(377\) 13.7875 + 7.02506i 0.710090 + 0.361809i
\(378\) −11.5283 + 16.3894i −0.592954 + 0.842977i
\(379\) 4.15559 + 5.71968i 0.213458 + 0.293800i 0.902297 0.431114i \(-0.141879\pi\)
−0.688839 + 0.724914i \(0.741879\pi\)
\(380\) −14.4983 + 2.05643i −0.743749 + 0.105492i
\(381\) 9.03625 + 2.37189i 0.462941 + 0.121516i
\(382\) 9.96347 + 9.96347i 0.509775 + 0.509775i
\(383\) 2.17700 + 13.7450i 0.111240 + 0.702339i 0.978771 + 0.204957i \(0.0657053\pi\)
−0.867532 + 0.497382i \(0.834295\pi\)
\(384\) −0.0994751 1.72919i −0.00507632 0.0882425i
\(385\) 2.87874 + 0.987133i 0.146714 + 0.0503090i
\(386\) −3.89161 + 1.26446i −0.198078 + 0.0643593i
\(387\) 7.64154 20.5309i 0.388441 1.04364i
\(388\) 3.18963 + 6.26000i 0.161929 + 0.317803i
\(389\) −4.65972 14.3411i −0.236257 0.727125i −0.996952 0.0780155i \(-0.975142\pi\)
0.760695 0.649110i \(-0.224858\pi\)
\(390\) 8.99841 3.34028i 0.455652 0.169142i
\(391\) 8.57820 26.4010i 0.433818 1.33515i
\(392\) −7.77397 + 1.23128i −0.392645 + 0.0621888i
\(393\) 27.6158 + 12.1268i 1.39303 + 0.611719i
\(394\) −13.3665 + 18.3974i −0.673395 + 0.926849i
\(395\) 2.12528 + 2.19519i 0.106934 + 0.110452i
\(396\) 1.03785 + 0.209552i 0.0521538 + 0.0105304i
\(397\) −13.6256 2.15808i −0.683849 0.108311i −0.195163 0.980771i \(-0.562524\pi\)
−0.488686 + 0.872460i \(0.662524\pi\)
\(398\) 2.86862 5.62998i 0.143791 0.282205i
\(399\) 15.8835 + 40.7551i 0.795171 + 2.04031i
\(400\) −0.161779 + 4.99738i −0.00808895 + 0.249869i
\(401\) 15.8196i 0.789991i 0.918683 + 0.394995i \(0.129254\pi\)
−0.918683 + 0.394995i \(0.870746\pi\)
\(402\) −13.0492 1.30423i −0.650836 0.0650490i
\(403\) −1.62541 + 10.2624i −0.0809674 + 0.511208i
\(404\) −7.75588 + 5.63497i −0.385869 + 0.280350i
\(405\) 10.8891 16.9242i 0.541083 0.840969i
\(406\) 19.4795 + 14.1527i 0.966750 + 0.702385i
\(407\) −1.21424 + 1.21424i −0.0601875 + 0.0601875i
\(408\) −5.29697 + 3.09436i −0.262239 + 0.153194i
\(409\) −5.65867 1.83861i −0.279803 0.0909136i 0.165754 0.986167i \(-0.446994\pi\)
−0.445557 + 0.895254i \(0.646994\pi\)
\(410\) 15.1588 + 11.3927i 0.748638 + 0.562647i
\(411\) 24.0301 19.6631i 1.18532 0.969909i
\(412\) 5.92780 3.02037i 0.292042 0.148803i
\(413\) −7.92905 + 4.04005i −0.390163 + 0.198798i
\(414\) −11.5481 + 20.4820i −0.567559 + 1.00663i
\(415\) 3.84060 + 12.5051i 0.188527 + 0.613850i
\(416\) 2.35699 + 0.765834i 0.115561 + 0.0375481i
\(417\) 15.7457 + 26.9538i 0.771073 + 1.31993i
\(418\) 1.63430 1.63430i 0.0799363 0.0799363i
\(419\) −3.49605 2.54003i −0.170793 0.124088i 0.499105 0.866542i \(-0.333662\pi\)
−0.669898 + 0.742453i \(0.733662\pi\)
\(420\) 14.6424 2.94321i 0.714477 0.143614i
\(421\) −20.2471 + 14.7103i −0.986781 + 0.716939i −0.959214 0.282681i \(-0.908776\pi\)
−0.0275674 + 0.999620i \(0.508776\pi\)
\(422\) 0.650182 4.10508i 0.0316503 0.199832i
\(423\) −3.44634 12.3560i −0.167567 0.600770i
\(424\) 4.40116i 0.213739i
\(425\) 16.0307 7.52496i 0.777603 0.365014i
\(426\) −9.94736 + 3.87680i −0.481951 + 0.187831i
\(427\) 0.255924 0.502279i 0.0123850 0.0243070i
\(428\) −14.5738 2.30827i −0.704452 0.111574i
\(429\) −0.818612 + 1.27475i −0.0395230 + 0.0615454i
\(430\) −14.6667 + 7.17656i −0.707293 + 0.346085i
\(431\) 4.11469 5.66339i 0.198198 0.272796i −0.698337 0.715769i \(-0.746076\pi\)
0.896535 + 0.442973i \(0.146076\pi\)
\(432\) 4.91667 1.68117i 0.236553 0.0808855i
\(433\) −9.74698 + 1.54377i −0.468410 + 0.0741889i −0.386178 0.922424i \(-0.626205\pi\)
−0.0822322 + 0.996613i \(0.526205\pi\)
\(434\) −4.99607 + 15.3763i −0.239819 + 0.738087i
\(435\) −20.1338 13.3944i −0.965343 0.642215i
\(436\) −3.43511 10.5722i −0.164512 0.506315i
\(437\) 23.3021 + 45.7330i 1.11469 + 2.18770i
\(438\) 12.0328 13.5018i 0.574951 0.645139i
\(439\) −0.555271 + 0.180419i −0.0265016 + 0.00861091i −0.322238 0.946659i \(-0.604435\pi\)
0.295736 + 0.955270i \(0.404435\pi\)
\(440\) −0.453475 0.645879i −0.0216186 0.0307911i
\(441\) −9.82380 21.4721i −0.467800 1.02248i
\(442\) −1.37312 8.66953i −0.0653126 0.412368i
\(443\) 6.33032 + 6.33032i 0.300763 + 0.300763i 0.841312 0.540549i \(-0.181784\pi\)
−0.540549 + 0.841312i \(0.681784\pi\)
\(444\) −2.13958 + 8.15120i −0.101540 + 0.386839i
\(445\) 2.01393 + 4.11586i 0.0954692 + 0.195110i
\(446\) 9.03387 + 12.4341i 0.427766 + 0.588770i
\(447\) 1.71431 + 7.86754i 0.0810842 + 0.372122i
\(448\) 3.43597 + 1.75071i 0.162334 + 0.0827134i
\(449\) −18.3782 −0.867322 −0.433661 0.901076i \(-0.642779\pi\)
−0.433661 + 0.901076i \(0.642779\pi\)
\(450\) −14.5713 + 3.56037i −0.686899 + 0.167838i
\(451\) −2.99298 −0.140934
\(452\) −1.56816 0.799015i −0.0737598 0.0375825i
\(453\) −5.40404 24.8009i −0.253904 1.16525i
\(454\) 8.24401 + 11.3469i 0.386911 + 0.532537i
\(455\) −3.68408 + 21.0501i −0.172713 + 0.986843i
\(456\) 2.87977 10.9711i 0.134857 0.513769i
\(457\) −24.7918 24.7918i −1.15971 1.15971i −0.984537 0.175174i \(-0.943951\pi\)
−0.175174 0.984537i \(-0.556049\pi\)
\(458\) 2.71142 + 17.1192i 0.126696 + 0.799928i
\(459\) −13.2111 12.8126i −0.616642 0.598042i
\(460\) 16.7534 5.14534i 0.781130 0.239903i
\(461\) 0.133994 0.0435374i 0.00624074 0.00202774i −0.305895 0.952065i \(-0.598956\pi\)
0.312136 + 0.950038i \(0.398956\pi\)
\(462\) −1.56839 + 1.75985i −0.0729681 + 0.0818758i
\(463\) −4.02806 7.90552i −0.187200 0.367401i 0.778264 0.627937i \(-0.216101\pi\)
−0.965464 + 0.260537i \(0.916101\pi\)
\(464\) −1.92945 5.93824i −0.0895725 0.275676i
\(465\) 4.37609 15.6369i 0.202936 0.725142i
\(466\) 0.760291 2.33993i 0.0352198 0.108395i
\(467\) −4.81480 + 0.762590i −0.222803 + 0.0352885i −0.266838 0.963742i \(-0.585979\pi\)
0.0440349 + 0.999030i \(0.485979\pi\)
\(468\) −0.313305 + 7.42827i −0.0144825 + 0.343372i
\(469\) 17.1621 23.6216i 0.792470 1.09074i
\(470\) −4.47794 + 8.44770i −0.206552 + 0.389663i
\(471\) −4.19887 + 6.53851i −0.193474 + 0.301279i
\(472\) 2.27925 + 0.360998i 0.104911 + 0.0166163i
\(473\) 1.17002 2.29630i 0.0537977 0.105584i
\(474\) −2.20518 + 0.859427i −0.101287 + 0.0394748i
\(475\) −11.1207 + 30.7975i −0.510251 + 1.41308i
\(476\) 13.6581i 0.626020i
\(477\) 12.7180 3.54732i 0.582319 0.162420i
\(478\) −0.380627 + 2.40319i −0.0174095 + 0.109919i
\(479\) −11.5308 + 8.37759i −0.526854 + 0.382782i −0.819180 0.573537i \(-0.805571\pi\)
0.292326 + 0.956319i \(0.405571\pi\)
\(480\) −3.52048 1.61438i −0.160687 0.0736860i
\(481\) −9.75526 7.08761i −0.444802 0.323167i
\(482\) 1.14460 1.14460i 0.0521349 0.0521349i
\(483\) −26.4062 45.2025i −1.20152 2.05678i
\(484\) −10.3432 3.36070i −0.470144 0.152759i
\(485\) 15.7080 + 0.254189i 0.713265 + 0.0115421i
\(486\) 8.82090 + 12.8527i 0.400124 + 0.583010i
\(487\) −31.0777 + 15.8349i −1.40827 + 0.717547i −0.982321 0.187202i \(-0.940058\pi\)
−0.425945 + 0.904749i \(0.640058\pi\)
\(488\) −0.130250 + 0.0663655i −0.00589612 + 0.00300422i
\(489\) 14.5042 11.8684i 0.655904 0.536706i
\(490\) −5.70876 + 16.6482i −0.257895 + 0.752090i
\(491\) −5.09165 1.65438i −0.229783 0.0746610i 0.191862 0.981422i \(-0.438547\pi\)
−0.421645 + 0.906761i \(0.638547\pi\)
\(492\) −12.6829 + 7.40904i −0.571789 + 0.334025i
\(493\) −15.6372 + 15.6372i −0.704266 + 0.704266i
\(494\) 13.1301 + 9.53958i 0.590751 + 0.429206i
\(495\) 1.50090 1.83098i 0.0674603 0.0822965i
\(496\) 3.39184 2.46432i 0.152298 0.110651i
\(497\) 3.71838 23.4769i 0.166792 1.05308i
\(498\) −10.0827 1.00773i −0.451817 0.0451576i
\(499\) 8.93736i 0.400091i −0.979787 0.200046i \(-0.935891\pi\)
0.979787 0.200046i \(-0.0641090\pi\)
\(500\) 9.70373 + 5.55316i 0.433964 + 0.248345i
\(501\) 10.5626 + 27.1023i 0.471903 + 1.21084i
\(502\) 11.2255 22.0313i 0.501020 0.983307i
\(503\) 2.88408 + 0.456793i 0.128595 + 0.0203674i 0.220400 0.975410i \(-0.429264\pi\)
−0.0918053 + 0.995777i \(0.529264\pi\)
\(504\) −2.28966 + 11.3400i −0.101990 + 0.505123i
\(505\) 3.01043 + 21.2243i 0.133962 + 0.944468i
\(506\) −1.62591 + 2.23788i −0.0722807 + 0.0994859i
\(507\) 10.8761 + 4.77599i 0.483025 + 0.212109i
\(508\) 5.32741 0.843778i 0.236365 0.0374366i
\(509\) −3.24395 + 9.98385i −0.143786 + 0.442527i −0.996853 0.0792745i \(-0.974740\pi\)
0.853067 + 0.521801i \(0.174740\pi\)
\(510\) 0.566129 + 13.7056i 0.0250686 + 0.606895i
\(511\) 12.4429 + 38.2953i 0.550441 + 1.69408i
\(512\) −0.453990 0.891007i −0.0200637 0.0393773i
\(513\) 34.0243 0.520992i 1.50221 0.0230023i
\(514\) 27.2321 8.84825i 1.20116 0.390280i
\(515\) 0.240701 14.8745i 0.0106065 0.655447i
\(516\) −0.726395 12.6270i −0.0319777 0.555874i
\(517\) −0.236073 1.49051i −0.0103825 0.0655524i
\(518\) −13.2673 13.2673i −0.582932 0.582932i
\(519\) 29.1826 + 7.66004i 1.28097 + 0.336238i
\(520\) 3.98141 3.85461i 0.174596 0.169036i
\(521\) 11.1471 + 15.3427i 0.488364 + 0.672175i 0.980085 0.198578i \(-0.0636322\pi\)
−0.491722 + 0.870753i \(0.663632\pi\)
\(522\) 15.6046 10.3617i 0.682995 0.453520i
\(523\) 21.7058 + 11.0596i 0.949127 + 0.483604i 0.858802 0.512308i \(-0.171209\pi\)
0.0903250 + 0.995912i \(0.471209\pi\)
\(524\) 17.4135 0.760714
\(525\) 9.51958 32.0108i 0.415469 1.39707i
\(526\) 3.01044 0.131261
\(527\) −13.2307 6.74137i −0.576338 0.293659i
\(528\) 0.597278 0.130145i 0.0259932 0.00566383i
\(529\) −22.5886 31.0905i −0.982111 1.35176i
\(530\) −8.69523 4.60915i −0.377696 0.200209i
\(531\) 0.793889 + 6.87732i 0.0344518 + 0.298450i
\(532\) 17.8571 + 17.8571i 0.774205 + 0.774205i
\(533\) −3.28775 20.7580i −0.142408 0.899131i
\(534\) −3.54347 + 0.203845i −0.153341 + 0.00882122i
\(535\) −19.8229 + 26.3756i −0.857018 + 1.14032i
\(536\) −7.20094 + 2.33973i −0.311033 + 0.101061i
\(537\) 9.50227 + 8.46847i 0.410053 + 0.365441i
\(538\) 5.88761 + 11.5551i 0.253833 + 0.498175i
\(539\) −0.858409 2.64191i −0.0369743 0.113795i
\(540\) 1.82758 11.4743i 0.0786466 0.493776i
\(541\) 8.94591 27.5327i 0.384615 1.18372i −0.552144 0.833749i \(-0.686190\pi\)
0.936759 0.349974i \(-0.113810\pi\)
\(542\) 16.8214 2.66425i 0.722542 0.114439i
\(543\) 0.467516 1.06465i 0.0200630 0.0456884i
\(544\) −2.08182 + 2.86537i −0.0892571 + 0.122852i
\(545\) −24.4845 4.28516i −1.04880 0.183556i
\(546\) −13.9285 8.94453i −0.596084 0.382790i
\(547\) 12.9801 + 2.05584i 0.554988 + 0.0879014i 0.427627 0.903955i \(-0.359350\pi\)
0.127360 + 0.991857i \(0.459350\pi\)
\(548\) 8.13848 15.9727i 0.347659 0.682319i
\(549\) −0.296757 0.322892i −0.0126653 0.0137807i
\(550\) −1.75094 + 0.219514i −0.0746605 + 0.00936011i
\(551\) 40.8893i 1.74194i
\(552\) −1.35009 + 13.5080i −0.0574635 + 0.574940i
\(553\) 0.824307 5.20447i 0.0350531 0.221317i
\(554\) −8.59687 + 6.24599i −0.365246 + 0.265367i
\(555\) 13.8634 + 12.7635i 0.588466 + 0.541780i
\(556\) 14.5805 + 10.5934i 0.618353 + 0.449260i
\(557\) −24.6270 + 24.6270i −1.04348 + 1.04348i −0.0444707 + 0.999011i \(0.514160\pi\)
−0.999011 + 0.0444707i \(0.985840\pi\)
\(558\) 9.85495 + 7.81518i 0.417193 + 0.330843i
\(559\) 17.2114 + 5.59233i 0.727966 + 0.236530i
\(560\) 7.05717 4.95488i 0.298220 0.209382i
\(561\) −1.37110 1.67560i −0.0578877 0.0707441i
\(562\) −25.0016 + 12.7389i −1.05463 + 0.537359i
\(563\) −8.71723 + 4.44165i −0.367388 + 0.187193i −0.627931 0.778269i \(-0.716098\pi\)
0.260544 + 0.965462i \(0.416098\pi\)
\(564\) −4.69008 5.73171i −0.197488 0.241348i
\(565\) −3.22085 + 2.26138i −0.135502 + 0.0951368i
\(566\) −24.4163 7.93332i −1.02629 0.333462i
\(567\) −34.6146 + 2.52353i −1.45368 + 0.105978i
\(568\) −4.35851 + 4.35851i −0.182879 + 0.182879i
\(569\) 8.66014 + 6.29196i 0.363052 + 0.263773i 0.754324 0.656502i \(-0.227965\pi\)
−0.391272 + 0.920275i \(0.627965\pi\)
\(570\) −18.6594 17.1790i −0.781555 0.719550i
\(571\) 12.5798 9.13980i 0.526450 0.382489i −0.292578 0.956242i \(-0.594513\pi\)
0.819028 + 0.573753i \(0.194513\pi\)
\(572\) −0.136828 + 0.863895i −0.00572105 + 0.0361213i
\(573\) −2.42715 + 24.2844i −0.101396 + 1.01450i
\(574\) 32.7026i 1.36498i
\(575\) 7.37961 38.4875i 0.307751 1.60504i
\(576\) 2.20883 2.03004i 0.0920345 0.0845852i
\(577\) −6.76199 + 13.2712i −0.281505 + 0.552485i −0.987855 0.155378i \(-0.950341\pi\)
0.706350 + 0.707863i \(0.250341\pi\)
\(578\) −4.40082 0.697022i −0.183050 0.0289923i
\(579\) −5.96357 3.82966i −0.247837 0.159155i
\(580\) −13.7526 2.40691i −0.571046 0.0999417i
\(581\) 13.2606 18.2516i 0.550140 0.757203i
\(582\) −4.89277 + 11.1420i −0.202812 + 0.461852i
\(583\) 1.53418 0.242990i 0.0635392 0.0100636i
\(584\) 3.22666 9.93064i 0.133520 0.410933i
\(585\) 14.3477 + 8.39829i 0.593202 + 0.347227i
\(586\) −10.5565 32.4896i −0.436086 1.34213i
\(587\) 11.6079 + 22.7817i 0.479108 + 0.940302i 0.996423 + 0.0845070i \(0.0269315\pi\)
−0.517315 + 0.855795i \(0.673068\pi\)
\(588\) −10.1775 9.07027i −0.419715 0.374052i
\(589\) 26.1121 8.48435i 1.07593 0.349592i
\(590\) 3.10017 4.12498i 0.127632 0.169823i
\(591\) −39.3226 + 2.26211i −1.61752 + 0.0930508i
\(592\) 0.761135 + 4.80562i 0.0312825 + 0.197510i
\(593\) −5.46116 5.46116i −0.224263 0.224263i 0.586028 0.810291i \(-0.300691\pi\)
−0.810291 + 0.586028i \(0.800691\pi\)
\(594\) 0.857484 + 1.62106i 0.0351830 + 0.0665129i
\(595\) −26.9839 14.3036i −1.10623 0.586390i
\(596\) 2.73256 + 3.76105i 0.111930 + 0.154058i
\(597\) 10.6933 2.33005i 0.437650 0.0953624i
\(598\) −17.3071 8.81838i −0.707738 0.360611i
\(599\) −20.6409 −0.843363 −0.421681 0.906744i \(-0.638560\pi\)
−0.421681 + 0.906744i \(0.638560\pi\)
\(600\) −6.87632 + 5.26462i −0.280725 + 0.214927i
\(601\) 17.9854 0.733642 0.366821 0.930292i \(-0.380446\pi\)
0.366821 + 0.930292i \(0.380446\pi\)
\(602\) 25.0904 + 12.7842i 1.02261 + 0.521045i
\(603\) −12.5650 18.9227i −0.511687 0.770594i
\(604\) −8.61387 11.8560i −0.350494 0.482413i
\(605\) −17.4716 + 16.9151i −0.710320 + 0.687697i
\(606\) −16.0607 4.21573i −0.652423 0.171252i
\(607\) 5.54524 + 5.54524i 0.225074 + 0.225074i 0.810631 0.585557i \(-0.199124\pi\)
−0.585557 + 0.810631i \(0.699124\pi\)
\(608\) −1.02445 6.46812i −0.0415469 0.262317i
\(609\) 2.39516 + 41.6354i 0.0970567 + 1.68715i
\(610\) −0.00528883 + 0.326831i −0.000214138 + 0.0132330i
\(611\) 10.0782 3.27461i 0.407721 0.132477i
\(612\) −9.95800 3.70635i −0.402528 0.149820i
\(613\) −2.13588 4.19191i −0.0862676 0.169310i 0.843842 0.536592i \(-0.180288\pi\)
−0.930110 + 0.367282i \(0.880288\pi\)
\(614\) −5.63620 17.3464i −0.227459 0.700045i
\(615\) 1.35552 + 32.8163i 0.0546599 + 1.32328i
\(616\) −0.420571 + 1.29439i −0.0169453 + 0.0521523i
\(617\) −40.5328 + 6.41977i −1.63179 + 0.258450i −0.904058 0.427410i \(-0.859426\pi\)
−0.727733 + 0.685861i \(0.759426\pi\)
\(618\) 10.5508 + 4.63313i 0.424414 + 0.186372i
\(619\) −10.1486 + 13.9684i −0.407908 + 0.561438i −0.962707 0.270547i \(-0.912795\pi\)
0.554798 + 0.831985i \(0.312795\pi\)
\(620\) −1.31654 9.28192i −0.0528733 0.372771i
\(621\) −40.1224 + 6.98607i −1.61005 + 0.280341i
\(622\) −16.0196 2.53726i −0.642329 0.101735i
\(623\) 3.58757 7.04100i 0.143733 0.282092i
\(624\) 1.55874 + 3.99951i 0.0623994 + 0.160109i
\(625\) 21.1335 13.3557i 0.845340 0.534229i
\(626\) 5.40095i 0.215865i
\(627\) 3.98336 + 0.398124i 0.159080 + 0.0158995i
\(628\) −0.701824 + 4.43114i −0.0280058 + 0.176822i
\(629\) 13.9415 10.1291i 0.555885 0.403874i
\(630\) 20.0062 + 16.3995i 0.797064 + 0.653371i
\(631\) −29.4746 21.4146i −1.17337 0.852501i −0.181959 0.983306i \(-0.558244\pi\)
−0.991408 + 0.130805i \(0.958244\pi\)
\(632\) −0.966214 + 0.966214i −0.0384339 + 0.0384339i
\(633\) 6.21593 3.63119i 0.247061 0.144327i
\(634\) 8.15891 + 2.65099i 0.324032 + 0.105284i
\(635\) 3.91214 11.4088i 0.155249 0.452745i
\(636\) 5.89965 4.82751i 0.233936 0.191423i
\(637\) 17.3803 8.85568i 0.688631 0.350875i
\(638\) 1.96346 1.00043i 0.0777340 0.0396074i
\(639\) −16.1077 9.08185i −0.637212 0.359272i
\(640\) −2.23578 0.0361796i −0.0883768 0.00143013i
\(641\) 28.1775 + 9.15543i 1.11294 + 0.361618i 0.807071 0.590454i \(-0.201051\pi\)
0.305874 + 0.952072i \(0.401051\pi\)
\(642\) −12.8914 22.0677i −0.508784 0.870943i
\(643\) 16.2471 16.2471i 0.640721 0.640721i −0.310012 0.950733i \(-0.600333\pi\)
0.950733 + 0.310012i \(0.100333\pi\)
\(644\) −24.4521 17.7655i −0.963547 0.700058i
\(645\) −25.7075 11.7886i −1.01223 0.464177i
\(646\) −18.7646 + 13.6333i −0.738284 + 0.536394i
\(647\) 0.280589 1.77157i 0.0110311 0.0696477i −0.981559 0.191161i \(-0.938775\pi\)
0.992590 + 0.121513i \(0.0387747\pi\)
\(648\) 7.64652 + 4.74665i 0.300384 + 0.186466i
\(649\) 0.814444i 0.0319697i
\(650\) −3.44585 11.9027i −0.135157 0.466862i
\(651\) −26.0916 + 10.1687i −1.02261 + 0.398544i
\(652\) 4.91227 9.64088i 0.192379 0.377566i
\(653\) 26.3159 + 4.16803i 1.02982 + 0.163107i 0.648404 0.761296i \(-0.275437\pi\)
0.381416 + 0.924404i \(0.375437\pi\)
\(654\) 10.4039 16.2010i 0.406824 0.633509i
\(655\) 18.2364 34.4033i 0.712557 1.34425i
\(656\) −4.98463 + 6.86076i −0.194617 + 0.267868i
\(657\) 31.2973 + 1.32004i 1.22102 + 0.0514996i
\(658\) 16.2860 2.57944i 0.634893 0.100557i
\(659\) −2.02081 + 6.21940i −0.0787195 + 0.242274i −0.982670 0.185363i \(-0.940654\pi\)
0.903951 + 0.427637i \(0.140654\pi\)
\(660\) 0.368381 1.31632i 0.0143392 0.0512376i
\(661\) 5.97584 + 18.3917i 0.232433 + 0.715356i 0.997452 + 0.0713473i \(0.0227299\pi\)
−0.765018 + 0.644008i \(0.777270\pi\)
\(662\) 12.9009 + 25.3194i 0.501407 + 0.984066i
\(663\) 10.1152 11.3500i 0.392840 0.440797i
\(664\) −5.56392 + 1.80783i −0.215922 + 0.0701573i
\(665\) 53.9807 16.5787i 2.09328 0.642894i
\(666\) −13.2733 + 6.07276i −0.514331 + 0.235315i
\(667\) 7.65551 + 48.3350i 0.296422 + 1.87154i
\(668\) 11.8751 + 11.8751i 0.459461 + 0.459461i
\(669\) −6.75856 + 25.7482i −0.261301 + 0.995484i
\(670\) −2.91872 + 16.6769i −0.112760 + 0.644286i
\(671\) −0.0303252 0.0417390i −0.00117069 0.00161132i
\(672\) 1.42202 + 6.52614i 0.0548558 + 0.251751i
\(673\) 39.1978 + 19.9723i 1.51096 + 0.769874i 0.996170 0.0874407i \(-0.0278688\pi\)
0.514793 + 0.857315i \(0.327869\pi\)
\(674\) −4.74599 −0.182809
\(675\) −20.7555 15.6273i −0.798878 0.601493i
\(676\) 6.85808 0.263772
\(677\) −33.3683 17.0020i −1.28245 0.653440i −0.326008 0.945367i \(-0.605704\pi\)
−0.956441 + 0.291927i \(0.905704\pi\)
\(678\) −0.649003 2.97849i −0.0249248 0.114388i
\(679\) −15.9250 21.9189i −0.611147 0.841171i
\(680\) 3.48082 + 7.11375i 0.133483 + 0.272800i
\(681\) −6.16764 + 23.4970i −0.236344 + 0.900406i
\(682\) 1.04629 + 1.04629i 0.0400645 + 0.0400645i
\(683\) 5.33840 + 33.7054i 0.204268 + 1.28970i 0.850263 + 0.526358i \(0.176443\pi\)
−0.645995 + 0.763342i \(0.723557\pi\)
\(684\) 17.8652 8.17363i 0.683094 0.312526i
\(685\) −23.0336 32.8064i −0.880067 1.25347i
\(686\) 3.19397 1.03778i 0.121946 0.0396228i
\(687\) −19.9738 + 22.4121i −0.762049 + 0.855077i
\(688\) −3.31516 6.50638i −0.126389 0.248053i
\(689\) 3.37056 + 10.3735i 0.128408 + 0.395199i
\(690\) 25.2735 + 16.8137i 0.962145 + 0.640087i
\(691\) −9.75674 + 30.0282i −0.371164 + 1.14232i 0.574867 + 0.818247i \(0.305054\pi\)
−0.946030 + 0.324078i \(0.894946\pi\)
\(692\) 17.2049 2.72498i 0.654031 0.103588i
\(693\) −4.07936 0.172057i −0.154962 0.00653591i
\(694\) 4.71830 6.49419i 0.179104 0.246516i
\(695\) 36.1986 17.7123i 1.37309 0.671865i
\(696\) 5.84371 9.09986i 0.221505 0.344929i
\(697\) 29.6659 + 4.69862i 1.12368 + 0.177973i
\(698\) −8.59105 + 16.8609i −0.325176 + 0.638194i
\(699\) 3.97056 1.54745i 0.150181 0.0585301i
\(700\) −2.39851 19.1316i −0.0906552 0.723107i
\(701\) 41.1349i 1.55364i −0.629720 0.776822i \(-0.716830\pi\)
0.629720 0.776822i \(-0.283170\pi\)
\(702\) −10.3011 + 7.72787i −0.388789 + 0.291670i
\(703\) −4.98448 + 31.4708i −0.187993 + 1.18694i
\(704\) 0.285527 0.207447i 0.0107612 0.00781846i
\(705\) −16.2357 + 3.26346i −0.611470 + 0.122909i
\(706\) −3.82209 2.77691i −0.143846 0.104510i
\(707\) 26.1413 26.1413i 0.983143 0.983143i
\(708\) 2.01613 + 3.45125i 0.0757710 + 0.129706i
\(709\) −48.5191 15.7648i −1.82217 0.592060i −0.999731 0.0232123i \(-0.992611\pi\)
−0.822443 0.568848i \(-0.807389\pi\)
\(710\) 4.04647 + 13.1754i 0.151861 + 0.494465i
\(711\) −3.57083 2.01331i −0.133917 0.0755049i
\(712\) −1.82585 + 0.930319i −0.0684268 + 0.0348652i
\(713\) −29.2785 + 14.9181i −1.09649 + 0.558689i
\(714\) 18.3084 14.9812i 0.685175 0.560658i
\(715\) 1.56347 + 1.17505i 0.0584706 + 0.0439442i
\(716\) 6.98899 + 2.27086i 0.261191 + 0.0848660i
\(717\) −3.63891 + 2.12576i −0.135898 + 0.0793881i
\(718\) 10.6989 10.6989i 0.399281 0.399281i
\(719\) 29.8994 + 21.7232i 1.11506 + 0.810138i 0.983453 0.181164i \(-0.0579866\pi\)
0.131606 + 0.991302i \(0.457987\pi\)
\(720\) −1.69748 6.48988i −0.0632612 0.241864i
\(721\) −20.7558 + 15.0800i −0.772985 + 0.561607i
\(722\) 3.73661 23.5920i 0.139062 0.878004i
\(723\) 2.78978 + 0.278830i 0.103753 + 0.0103698i
\(724\) 0.671329i 0.0249497i
\(725\) −19.1578 + 24.6499i −0.711502 + 0.915474i
\(726\) −6.84017 17.5510i −0.253863 0.651379i
\(727\) 8.55075 16.7818i 0.317130 0.622402i −0.676328 0.736600i \(-0.736430\pi\)
0.993458 + 0.114198i \(0.0364299\pi\)
\(728\) −9.43931 1.49504i −0.349844 0.0554099i
\(729\) −7.55333 + 25.9219i −0.279753 + 0.960072i
\(730\) −16.2405 16.7747i −0.601087 0.620861i
\(731\) −15.2020 + 20.9238i −0.562266 + 0.773893i
\(732\) −0.231828 0.101802i −0.00856862 0.00376271i
\(733\) 34.3095 5.43410i 1.26725 0.200713i 0.513625 0.858015i \(-0.328302\pi\)
0.753627 + 0.657302i \(0.228302\pi\)
\(734\) 11.3193 34.8373i 0.417804 1.28587i
\(735\) −28.5783 + 10.6085i −1.05413 + 0.391300i
\(736\) 2.42199 + 7.45412i 0.0892758 + 0.274763i
\(737\) −1.21316 2.38096i −0.0446873 0.0877038i
\(738\) −23.8431 8.87436i −0.877678 0.326670i
\(739\) 2.70309 0.878288i 0.0994348 0.0323083i −0.258877 0.965910i \(-0.583352\pi\)
0.358312 + 0.933602i \(0.383352\pi\)
\(740\) 10.2914 + 3.52897i 0.378319 + 0.129727i
\(741\) 1.61445 + 28.0643i 0.0593083 + 1.03097i
\(742\) 2.65502 + 16.7632i 0.0974689 + 0.615395i
\(743\) 19.3245 + 19.3245i 0.708947 + 0.708947i 0.966314 0.257367i \(-0.0828549\pi\)
−0.257367 + 0.966314i \(0.582855\pi\)
\(744\) 7.02377 + 1.84364i 0.257504 + 0.0675913i
\(745\) 10.2923 1.45984i 0.377079 0.0534845i
\(746\) −1.30299 1.79341i −0.0477059 0.0656615i
\(747\) −9.70857 14.6210i −0.355218 0.534953i
\(748\) −1.11376 0.567491i −0.0407233 0.0207495i
\(749\) 56.9012 2.07913
\(750\) 3.19985 + 19.0987i 0.116842 + 0.697386i
\(751\) 13.6596 0.498445 0.249222 0.968446i \(-0.419825\pi\)
0.249222 + 0.968446i \(0.419825\pi\)
\(752\) −3.80983 1.94121i −0.138930 0.0707886i
\(753\) 41.8454 9.11798i 1.52493 0.332278i
\(754\) 9.09541 + 12.5188i 0.331235 + 0.455906i
\(755\) −32.4444 + 4.60187i −1.18077 + 0.167479i
\(756\) −17.7124 + 9.36926i −0.644195 + 0.340757i
\(757\) −11.1659 11.1659i −0.405833 0.405833i 0.474450 0.880283i \(-0.342647\pi\)
−0.880283 + 0.474450i \(0.842647\pi\)