Properties

Label 150.2.l.a.17.5
Level 150
Weight 2
Character 150.17
Analytic conductor 1.198
Analytic rank 0
Dimension 80
CM No

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 150 = 2 \cdot 3 \cdot 5^{2} \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 150.l (of order \(20\) and degree \(8\))

Newform invariants

Self dual: No
Analytic conductor: \(1.19775603032\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{20})\)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 17.5
Character \(\chi\) = 150.17
Dual form 150.2.l.a.53.5

$q$-expansion

\(f(q)\) \(=\) \(q\)\(+(-0.891007 - 0.453990i) q^{2}\) \(+(1.71953 + 0.207905i) q^{3}\) \(+(0.587785 + 0.809017i) q^{4}\) \(+(-1.62298 + 1.53816i) q^{5}\) \(+(-1.43772 - 0.965894i) q^{6}\) \(+(2.58285 + 2.58285i) q^{7}\) \(+(-0.156434 - 0.987688i) q^{8}\) \(+(2.91355 + 0.714995i) q^{9}\) \(+O(q^{10})\) \(q\)\(+(-0.891007 - 0.453990i) q^{2}\) \(+(1.71953 + 0.207905i) q^{3}\) \(+(0.587785 + 0.809017i) q^{4}\) \(+(-1.62298 + 1.53816i) q^{5}\) \(+(-1.43772 - 0.965894i) q^{6}\) \(+(2.58285 + 2.58285i) q^{7}\) \(+(-0.156434 - 0.987688i) q^{8}\) \(+(2.91355 + 0.714995i) q^{9}\) \(+(2.14440 - 0.633691i) q^{10}\) \(+(-1.45719 + 0.473470i) q^{11}\) \(+(0.842515 + 1.51333i) q^{12}\) \(+(-2.28489 - 4.48435i) q^{13}\) \(+(-1.12875 - 3.47393i) q^{14}\) \(+(-3.11055 + 2.30748i) q^{15}\) \(+(-0.309017 + 0.951057i) q^{16}\) \(+(5.09363 - 0.806752i) q^{17}\) \(+(-2.27139 - 1.95979i) q^{18}\) \(+(-1.27450 + 1.75421i) q^{19}\) \(+(-2.19836 - 0.408913i) q^{20}\) \(+(3.90430 + 4.97827i) q^{21}\) \(+(1.51332 + 0.239686i) q^{22}\) \(+(2.88760 - 5.66723i) q^{23}\) \(+(-0.0636485 - 1.73088i) q^{24}\) \(+(0.268140 - 4.99280i) q^{25}\) \(+5.03290i q^{26}\) \(+(4.86128 + 1.83520i) q^{27}\) \(+(-0.571409 + 3.60774i) q^{28}\) \(+(-5.64831 + 4.10373i) q^{29}\) \(+(3.81910 - 0.643819i) q^{30}\) \(+(-5.95310 - 4.32518i) q^{31}\) \(+(0.707107 - 0.707107i) q^{32}\) \(+(-2.60412 + 0.511188i) q^{33}\) \(+(-4.90472 - 1.59364i) q^{34}\) \(+(-8.16476 - 0.219087i) q^{35}\) \(+(1.13410 + 2.77738i) q^{36}\) \(+(-6.84089 + 3.48561i) q^{37}\) \(+(1.93198 - 0.984395i) q^{38}\) \(+(-2.99661 - 8.18600i) q^{39}\) \(+(1.77311 + 1.36238i) q^{40}\) \(+(-2.85939 - 0.929072i) q^{41}\) \(+(-1.21867 - 6.20819i) q^{42}\) \(+(3.24693 - 3.24693i) q^{43}\) \(+(-1.23956 - 0.900593i) q^{44}\) \(+(-5.82842 + 3.32108i) q^{45}\) \(+(-5.14573 + 3.73859i) q^{46}\) \(+(0.446195 - 2.81716i) q^{47}\) \(+(-0.729092 + 1.57112i) q^{48}\) \(+6.34226i q^{49}\) \(+(-2.50560 + 4.32689i) q^{50}\) \(+(8.92637 - 0.328243i) q^{51}\) \(+(2.28489 - 4.48435i) q^{52}\) \(+(1.02055 + 0.161639i) q^{53}\) \(+(-3.49827 - 3.84215i) q^{54}\) \(+(1.63672 - 3.00982i) q^{55}\) \(+(2.14701 - 2.95510i) q^{56}\) \(+(-2.55625 + 2.75143i) q^{57}\) \(+(6.89573 - 1.09218i) q^{58}\) \(+(2.10801 - 6.48779i) q^{59}\) \(+(-3.69513 - 1.16019i) q^{60}\) \(+(1.78395 + 5.49044i) q^{61}\) \(+(3.34066 + 6.55641i) q^{62}\) \(+(5.67855 + 9.37200i) q^{63}\) \(+(-0.951057 + 0.309017i) q^{64}\) \(+(10.6060 + 3.76349i) q^{65}\) \(+(2.55236 + 0.726772i) q^{66}\) \(+(-0.527466 - 3.33029i) q^{67}\) \(+(3.64664 + 3.64664i) q^{68}\) \(+(6.14354 - 9.14461i) q^{69}\) \(+(7.17539 + 3.90193i) q^{70}\) \(+(2.18090 + 3.00175i) q^{71}\) \(+(0.250413 - 2.98953i) q^{72}\) \(+(-0.531390 - 0.270757i) q^{73}\) \(+7.67771 q^{74}\) \(+(1.49910 - 8.52952i) q^{75}\) \(-2.16832 q^{76}\) \(+(-4.98661 - 2.54081i) q^{77}\) \(+(-1.04636 + 8.65421i) q^{78}\) \(+(-0.782199 - 1.07660i) q^{79}\) \(+(-0.961346 - 2.01886i) q^{80}\) \(+(7.97756 + 4.16635i) q^{81}\) \(+(2.12595 + 2.12595i) q^{82}\) \(+(0.432953 + 2.73356i) q^{83}\) \(+(-1.73262 + 6.08480i) q^{84}\) \(+(-7.02596 + 9.14415i) q^{85}\) \(+(-4.36710 + 1.41896i) q^{86}\) \(+(-10.5656 + 5.88218i) q^{87}\) \(+(0.695596 + 1.36518i) q^{88}\) \(+(1.98939 + 6.12272i) q^{89}\) \(+(6.70090 - 0.313056i) q^{90}\) \(+(5.68088 - 17.4839i) q^{91}\) \(+(6.28217 - 0.994998i) q^{92}\) \(+(-9.33729 - 8.67494i) q^{93}\) \(+(-1.67653 + 2.30754i) q^{94}\) \(+(-0.629747 - 4.80743i) q^{95}\) \(+(1.36290 - 1.06888i) q^{96}\) \(+(13.5156 + 2.14067i) q^{97}\) \(+(2.87933 - 5.65100i) q^{98}\) \(+(-4.58413 + 0.337594i) q^{99}\) \(+O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut +\mathstrut O(q^{10}) \) \(80q \) \(\mathstrut +\mathstrut 4q^{3} \) \(\mathstrut +\mathstrut 4q^{7} \) \(\mathstrut -\mathstrut 4q^{10} \) \(\mathstrut -\mathstrut 4q^{12} \) \(\mathstrut -\mathstrut 8q^{15} \) \(\mathstrut +\mathstrut 20q^{16} \) \(\mathstrut -\mathstrut 8q^{18} \) \(\mathstrut -\mathstrut 40q^{19} \) \(\mathstrut -\mathstrut 36q^{22} \) \(\mathstrut -\mathstrut 104q^{25} \) \(\mathstrut +\mathstrut 4q^{27} \) \(\mathstrut -\mathstrut 16q^{28} \) \(\mathstrut +\mathstrut 12q^{30} \) \(\mathstrut +\mathstrut 4q^{33} \) \(\mathstrut -\mathstrut 40q^{34} \) \(\mathstrut -\mathstrut 24q^{37} \) \(\mathstrut -\mathstrut 40q^{39} \) \(\mathstrut -\mathstrut 8q^{40} \) \(\mathstrut -\mathstrut 4q^{42} \) \(\mathstrut -\mathstrut 24q^{43} \) \(\mathstrut -\mathstrut 72q^{45} \) \(\mathstrut -\mathstrut 4q^{48} \) \(\mathstrut -\mathstrut 12q^{55} \) \(\mathstrut -\mathstrut 64q^{57} \) \(\mathstrut +\mathstrut 20q^{58} \) \(\mathstrut +\mathstrut 24q^{60} \) \(\mathstrut +\mathstrut 64q^{63} \) \(\mathstrut +\mathstrut 96q^{67} \) \(\mathstrut +\mathstrut 140q^{69} \) \(\mathstrut +\mathstrut 76q^{70} \) \(\mathstrut +\mathstrut 8q^{72} \) \(\mathstrut +\mathstrut 100q^{73} \) \(\mathstrut +\mathstrut 132q^{75} \) \(\mathstrut +\mathstrut 100q^{78} \) \(\mathstrut +\mathstrut 80q^{79} \) \(\mathstrut -\mathstrut 40q^{81} \) \(\mathstrut +\mathstrut 96q^{82} \) \(\mathstrut +\mathstrut 60q^{84} \) \(\mathstrut +\mathstrut 32q^{85} \) \(\mathstrut +\mathstrut 80q^{87} \) \(\mathstrut +\mathstrut 4q^{88} \) \(\mathstrut +\mathstrut 52q^{90} \) \(\mathstrut +\mathstrut 12q^{93} \) \(\mathstrut -\mathstrut 32q^{97} \) \(\mathstrut +\mathstrut O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/150\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(-1\) \(e\left(\frac{13}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.891007 0.453990i −0.630037 0.321020i
\(3\) 1.71953 + 0.207905i 0.992770 + 0.120034i
\(4\) 0.587785 + 0.809017i 0.293893 + 0.404508i
\(5\) −1.62298 + 1.53816i −0.725820 + 0.687885i
\(6\) −1.43772 0.965894i −0.586948 0.394324i
\(7\) 2.58285 + 2.58285i 0.976227 + 0.976227i 0.999724 0.0234972i \(-0.00748007\pi\)
−0.0234972 + 0.999724i \(0.507480\pi\)
\(8\) −0.156434 0.987688i −0.0553079 0.349201i
\(9\) 2.91355 + 0.714995i 0.971184 + 0.238332i
\(10\) 2.14440 0.633691i 0.678118 0.200391i
\(11\) −1.45719 + 0.473470i −0.439360 + 0.142757i −0.520340 0.853959i \(-0.674195\pi\)
0.0809806 + 0.996716i \(0.474195\pi\)
\(12\) 0.842515 + 1.51333i 0.243213 + 0.436861i
\(13\) −2.28489 4.48435i −0.633714 1.24373i −0.954959 0.296738i \(-0.904101\pi\)
0.321245 0.946996i \(-0.395899\pi\)
\(14\) −1.12875 3.47393i −0.301671 0.928447i
\(15\) −3.11055 + 2.30748i −0.803141 + 0.595789i
\(16\) −0.309017 + 0.951057i −0.0772542 + 0.237764i
\(17\) 5.09363 0.806752i 1.23539 0.195666i 0.495626 0.868536i \(-0.334939\pi\)
0.739761 + 0.672870i \(0.234939\pi\)
\(18\) −2.27139 1.95979i −0.535372 0.461927i
\(19\) −1.27450 + 1.75421i −0.292391 + 0.402442i −0.929789 0.368093i \(-0.880011\pi\)
0.637398 + 0.770535i \(0.280011\pi\)
\(20\) −2.19836 0.408913i −0.491568 0.0914358i
\(21\) 3.90430 + 4.97827i 0.851988 + 1.08635i
\(22\) 1.51332 + 0.239686i 0.322640 + 0.0511012i
\(23\) 2.88760 5.66723i 0.602105 1.18170i −0.365873 0.930665i \(-0.619230\pi\)
0.967978 0.251034i \(-0.0807704\pi\)
\(24\) −0.0636485 1.73088i −0.0129922 0.353315i
\(25\) 0.268140 4.99280i 0.0536279 0.998561i
\(26\) 5.03290i 0.987033i
\(27\) 4.86128 + 1.83520i 0.935554 + 0.353183i
\(28\) −0.571409 + 3.60774i −0.107986 + 0.681798i
\(29\) −5.64831 + 4.10373i −1.04886 + 0.762044i −0.971996 0.234997i \(-0.924492\pi\)
−0.0768679 + 0.997041i \(0.524492\pi\)
\(30\) 3.81910 0.643819i 0.697268 0.117545i
\(31\) −5.95310 4.32518i −1.06921 0.776825i −0.0934378 0.995625i \(-0.529786\pi\)
−0.975770 + 0.218800i \(0.929786\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) −2.60412 + 0.511188i −0.453318 + 0.0889864i
\(34\) −4.90472 1.59364i −0.841152 0.273307i
\(35\) −8.16476 0.219087i −1.38010 0.0370325i
\(36\) 1.13410 + 2.77738i 0.189017 + 0.462896i
\(37\) −6.84089 + 3.48561i −1.12464 + 0.573031i −0.914477 0.404637i \(-0.867398\pi\)
−0.210158 + 0.977667i \(0.567398\pi\)
\(38\) 1.93198 0.984395i 0.313409 0.159690i
\(39\) −2.99661 8.18600i −0.479842 1.31081i
\(40\) 1.77311 + 1.36238i 0.280353 + 0.215411i
\(41\) −2.85939 0.929072i −0.446562 0.145097i 0.0770993 0.997023i \(-0.475434\pi\)
−0.523661 + 0.851927i \(0.675434\pi\)
\(42\) −1.21867 6.20819i −0.188045 0.957945i
\(43\) 3.24693 3.24693i 0.495151 0.495151i −0.414773 0.909925i \(-0.636139\pi\)
0.909925 + 0.414773i \(0.136139\pi\)
\(44\) −1.23956 0.900593i −0.186871 0.135770i
\(45\) −5.82842 + 3.32108i −0.868849 + 0.495077i
\(46\) −5.14573 + 3.73859i −0.758697 + 0.551226i
\(47\) 0.446195 2.81716i 0.0650842 0.410925i −0.933539 0.358475i \(-0.883297\pi\)
0.998624 0.0524505i \(-0.0167032\pi\)
\(48\) −0.729092 + 1.57112i −0.105235 + 0.226772i
\(49\) 6.34226i 0.906037i
\(50\) −2.50560 + 4.32689i −0.354345 + 0.611914i
\(51\) 8.92637 0.328243i 1.24994 0.0459632i
\(52\) 2.28489 4.48435i 0.316857 0.621867i
\(53\) 1.02055 + 0.161639i 0.140183 + 0.0222028i 0.226131 0.974097i \(-0.427392\pi\)
−0.0859487 + 0.996300i \(0.527392\pi\)
\(54\) −3.49827 3.84215i −0.476055 0.522850i
\(55\) 1.63672 3.00982i 0.220696 0.405844i
\(56\) 2.14701 2.95510i 0.286906 0.394892i
\(57\) −2.55625 + 2.75143i −0.338584 + 0.364436i
\(58\) 6.89573 1.09218i 0.905454 0.143410i
\(59\) 2.10801 6.48779i 0.274439 0.844638i −0.714928 0.699198i \(-0.753540\pi\)
0.989367 0.145439i \(-0.0464596\pi\)
\(60\) −3.69513 1.16019i −0.477039 0.149779i
\(61\) 1.78395 + 5.49044i 0.228412 + 0.702979i 0.997927 + 0.0643507i \(0.0204976\pi\)
−0.769516 + 0.638628i \(0.779502\pi\)
\(62\) 3.34066 + 6.55641i 0.424264 + 0.832665i
\(63\) 5.67855 + 9.37200i 0.715430 + 1.18076i
\(64\) −0.951057 + 0.309017i −0.118882 + 0.0386271i
\(65\) 10.6060 + 3.76349i 1.31551 + 0.466804i
\(66\) 2.55236 + 0.726772i 0.314174 + 0.0894595i
\(67\) −0.527466 3.33029i −0.0644402 0.406859i −0.998732 0.0503493i \(-0.983967\pi\)
0.934291 0.356510i \(-0.116033\pi\)
\(68\) 3.64664 + 3.64664i 0.442220 + 0.442220i
\(69\) 6.14354 9.14461i 0.739596 1.10088i
\(70\) 7.17539 + 3.90193i 0.857623 + 0.466370i
\(71\) 2.18090 + 3.00175i 0.258825 + 0.356242i 0.918578 0.395241i \(-0.129339\pi\)
−0.659752 + 0.751483i \(0.729339\pi\)
\(72\) 0.250413 2.98953i 0.0295114 0.352320i
\(73\) −0.531390 0.270757i −0.0621945 0.0316897i 0.422617 0.906309i \(-0.361112\pi\)
−0.484811 + 0.874619i \(0.661112\pi\)
\(74\) 7.67771 0.892516
\(75\) 1.49910 8.52952i 0.173101 0.984904i
\(76\) −2.16832 −0.248723
\(77\) −4.98661 2.54081i −0.568277 0.289552i
\(78\) −1.04636 + 8.65421i −0.118477 + 0.979897i
\(79\) −0.782199 1.07660i −0.0880042 0.121127i 0.762745 0.646700i \(-0.223851\pi\)
−0.850749 + 0.525572i \(0.823851\pi\)
\(80\) −0.961346 2.01886i −0.107482 0.225716i
\(81\) 7.97756 + 4.16635i 0.886396 + 0.462928i
\(82\) 2.12595 + 2.12595i 0.234771 + 0.234771i
\(83\) 0.432953 + 2.73356i 0.0475228 + 0.300047i 0.999989 0.00459575i \(-0.00146288\pi\)
−0.952467 + 0.304643i \(0.901463\pi\)
\(84\) −1.73262 + 6.08480i −0.189044 + 0.663906i
\(85\) −7.02596 + 9.14415i −0.762072 + 0.991823i
\(86\) −4.36710 + 1.41896i −0.470917 + 0.153010i
\(87\) −10.5656 + 5.88218i −1.13275 + 0.630635i
\(88\) 0.695596 + 1.36518i 0.0741507 + 0.145529i
\(89\) 1.98939 + 6.12272i 0.210875 + 0.649007i 0.999421 + 0.0340306i \(0.0108344\pi\)
−0.788546 + 0.614976i \(0.789166\pi\)
\(90\) 6.70090 0.313056i 0.706336 0.0329990i
\(91\) 5.68088 17.4839i 0.595518 1.83282i
\(92\) 6.28217 0.994998i 0.654961 0.103736i
\(93\) −9.33729 8.67494i −0.968232 0.899549i
\(94\) −1.67653 + 2.30754i −0.172921 + 0.238005i
\(95\) −0.629747 4.80743i −0.0646107 0.493232i
\(96\) 1.36290 1.06888i 0.139100 0.109092i
\(97\) 13.5156 + 2.14067i 1.37230 + 0.217352i 0.798675 0.601763i \(-0.205535\pi\)
0.573630 + 0.819114i \(0.305535\pi\)
\(98\) 2.87933 5.65100i 0.290856 0.570837i
\(99\) −4.58413 + 0.337594i −0.460722 + 0.0339295i
\(100\) 4.19687 2.71777i 0.419687 0.271777i
\(101\) 0.146560i 0.0145833i 0.999973 + 0.00729163i \(0.00232102\pi\)
−0.999973 + 0.00729163i \(0.997679\pi\)
\(102\) −8.10247 3.76002i −0.802264 0.372297i
\(103\) 2.44405 15.4311i 0.240819 1.52047i −0.510120 0.860103i \(-0.670399\pi\)
0.750939 0.660371i \(-0.229601\pi\)
\(104\) −4.07170 + 2.95827i −0.399263 + 0.290082i
\(105\) −13.9940 2.07422i −1.36567 0.202423i
\(106\) −0.835930 0.607339i −0.0811927 0.0589900i
\(107\) −1.77141 + 1.77141i −0.171249 + 0.171249i −0.787528 0.616279i \(-0.788639\pi\)
0.616279 + 0.787528i \(0.288639\pi\)
\(108\) 1.37269 + 5.01156i 0.132087 + 0.482238i
\(109\) 7.65945 + 2.48870i 0.733642 + 0.238375i 0.651928 0.758281i \(-0.273961\pi\)
0.0817142 + 0.996656i \(0.473961\pi\)
\(110\) −2.82476 + 1.93872i −0.269330 + 0.184849i
\(111\) −12.4878 + 4.57135i −1.18529 + 0.433893i
\(112\) −3.25458 + 1.65829i −0.307529 + 0.156694i
\(113\) −9.66667 + 4.92541i −0.909364 + 0.463344i −0.845112 0.534590i \(-0.820466\pi\)
−0.0642521 + 0.997934i \(0.520466\pi\)
\(114\) 3.52676 1.29103i 0.330311 0.120916i
\(115\) 4.03057 + 13.6394i 0.375853 + 1.27188i
\(116\) −6.63998 2.15746i −0.616507 0.200315i
\(117\) −3.45085 14.6991i −0.319032 1.35893i
\(118\) −4.82364 + 4.82364i −0.444052 + 0.444052i
\(119\) 15.2398 + 11.0724i 1.39703 + 1.01500i
\(120\) 2.76567 + 2.71129i 0.252470 + 0.247505i
\(121\) −6.99996 + 5.08577i −0.636360 + 0.462342i
\(122\) 0.903094 5.70191i 0.0817623 0.516227i
\(123\) −4.72364 2.19205i −0.425916 0.197650i
\(124\) 7.35843i 0.660807i
\(125\) 7.24454 + 8.51567i 0.647971 + 0.761665i
\(126\) −0.804822 10.9285i −0.0716992 0.973590i
\(127\) −8.38871 + 16.4638i −0.744378 + 1.46092i 0.138025 + 0.990429i \(0.455925\pi\)
−0.882403 + 0.470495i \(0.844075\pi\)
\(128\) 0.987688 + 0.156434i 0.0873001 + 0.0138270i
\(129\) 6.25823 4.90813i 0.551006 0.432137i
\(130\) −7.74140 8.16831i −0.678965 0.716408i
\(131\) 7.79711 10.7318i 0.681236 0.937641i −0.318712 0.947852i \(-0.603250\pi\)
0.999948 + 0.0102104i \(0.00325012\pi\)
\(132\) −1.94422 1.80631i −0.169223 0.157219i
\(133\) −7.82271 + 1.23900i −0.678315 + 0.107435i
\(134\) −1.04194 + 3.20677i −0.0900102 + 0.277023i
\(135\) −10.7126 + 4.49893i −0.921993 + 0.387206i
\(136\) −1.59364 4.90472i −0.136653 0.420576i
\(137\) −4.43133 8.69698i −0.378594 0.743033i 0.620560 0.784159i \(-0.286905\pi\)
−0.999154 + 0.0411262i \(0.986905\pi\)
\(138\) −9.62550 + 5.35879i −0.819377 + 0.456171i
\(139\) −4.61980 + 1.50106i −0.391846 + 0.127319i −0.498312 0.866998i \(-0.666047\pi\)
0.106466 + 0.994316i \(0.466047\pi\)
\(140\) −4.62188 6.73421i −0.390620 0.569144i
\(141\) 1.35295 4.75142i 0.113939 0.400142i
\(142\) −0.580430 3.66469i −0.0487086 0.307534i
\(143\) 5.45272 + 5.45272i 0.455980 + 0.455980i
\(144\) −1.58034 + 2.55001i −0.131695 + 0.212501i
\(145\) 2.85491 15.3483i 0.237087 1.27460i
\(146\) 0.350551 + 0.482492i 0.0290118 + 0.0399313i
\(147\) −1.31859 + 10.9057i −0.108755 + 0.899486i
\(148\) −6.84089 3.48561i −0.562318 0.286515i
\(149\) −6.55688 −0.537160 −0.268580 0.963257i \(-0.586554\pi\)
−0.268580 + 0.963257i \(0.586554\pi\)
\(150\) −5.20803 + 6.91928i −0.425234 + 0.564957i
\(151\) 1.06618 0.0867647 0.0433824 0.999059i \(-0.486187\pi\)
0.0433824 + 0.999059i \(0.486187\pi\)
\(152\) 1.93198 + 0.984395i 0.156705 + 0.0798450i
\(153\) 15.4174 + 1.29141i 1.24642 + 0.104404i
\(154\) 3.28960 + 4.52775i 0.265084 + 0.364856i
\(155\) 16.3146 2.13712i 1.31042 0.171657i
\(156\) 4.86125 7.23592i 0.389211 0.579337i
\(157\) 15.3342 + 15.3342i 1.22380 + 1.22380i 0.966271 + 0.257528i \(0.0829078\pi\)
0.257528 + 0.966271i \(0.417092\pi\)
\(158\) 0.208176 + 1.31437i 0.0165616 + 0.104566i
\(159\) 1.72125 + 0.490118i 0.136504 + 0.0388689i
\(160\) −0.0599794 + 2.23526i −0.00474179 + 0.176713i
\(161\) 22.0958 7.17938i 1.74140 0.565814i
\(162\) −5.21658 7.33398i −0.409853 0.576212i
\(163\) −4.66780 9.16108i −0.365610 0.717551i 0.632776 0.774335i \(-0.281915\pi\)
−0.998386 + 0.0567839i \(0.981915\pi\)
\(164\) −0.929072 2.85939i −0.0725483 0.223281i
\(165\) 3.44015 4.83519i 0.267815 0.376419i
\(166\) 0.855246 2.63218i 0.0663800 0.204297i
\(167\) −23.8000 + 3.76955i −1.84170 + 0.291697i −0.977419 0.211311i \(-0.932227\pi\)
−0.864282 + 0.503008i \(0.832227\pi\)
\(168\) 4.30622 4.63501i 0.332232 0.357598i
\(169\) −7.24745 + 9.97526i −0.557496 + 0.767327i
\(170\) 10.4115 4.95778i 0.798528 0.380244i
\(171\) −4.96758 + 4.19970i −0.379881 + 0.321159i
\(172\) 4.53531 + 0.718323i 0.345814 + 0.0547716i
\(173\) −10.9010 + 21.3945i −0.828791 + 1.62659i −0.0504717 + 0.998725i \(0.516072\pi\)
−0.778319 + 0.627869i \(0.783928\pi\)
\(174\) 12.0845 0.444374i 0.916122 0.0336879i
\(175\) 13.5882 12.2031i 1.02717 0.922469i
\(176\) 1.53218i 0.115492i
\(177\) 4.97362 10.7177i 0.373840 0.805589i
\(178\) 1.00709 6.35855i 0.0754849 0.476593i
\(179\) 3.64757 2.65012i 0.272632 0.198079i −0.443065 0.896489i \(-0.646109\pi\)
0.715697 + 0.698410i \(0.246109\pi\)
\(180\) −6.11267 2.76321i −0.455611 0.205957i
\(181\) −11.4405 8.31202i −0.850367 0.617828i 0.0748802 0.997193i \(-0.476143\pi\)
−0.925247 + 0.379365i \(0.876143\pi\)
\(182\) −12.9992 + 12.9992i −0.963568 + 0.963568i
\(183\) 1.92607 + 9.81185i 0.142379 + 0.725313i
\(184\) −6.04917 1.96550i −0.445951 0.144898i
\(185\) 5.74123 16.1795i 0.422103 1.18954i
\(186\) 4.38125 + 11.9685i 0.321249 + 0.877571i
\(187\) −7.04042 + 3.58727i −0.514846 + 0.262327i
\(188\) 2.54140 1.29491i 0.185351 0.0944409i
\(189\) 7.81594 + 17.2960i 0.568526 + 1.25810i
\(190\) −1.62142 + 4.56935i −0.117630 + 0.331496i
\(191\) −12.1952 3.96247i −0.882416 0.286714i −0.167456 0.985880i \(-0.553555\pi\)
−0.714960 + 0.699165i \(0.753555\pi\)
\(192\) −1.69961 + 0.333634i −0.122659 + 0.0240780i
\(193\) −9.89879 + 9.89879i −0.712531 + 0.712531i −0.967064 0.254533i \(-0.918078\pi\)
0.254533 + 0.967064i \(0.418078\pi\)
\(194\) −11.0707 8.04332i −0.794828 0.577477i
\(195\) 17.4548 + 8.67646i 1.24996 + 0.621334i
\(196\) −5.13100 + 3.72789i −0.366500 + 0.266278i
\(197\) −1.06492 + 6.72363i −0.0758723 + 0.479039i 0.920270 + 0.391284i \(0.127969\pi\)
−0.996142 + 0.0877545i \(0.972031\pi\)
\(198\) 4.23775 + 1.78035i 0.301164 + 0.126524i
\(199\) 5.40490i 0.383143i −0.981479 0.191572i \(-0.938642\pi\)
0.981479 0.191572i \(-0.0613585\pi\)
\(200\) −4.97328 + 0.516208i −0.351664 + 0.0365014i
\(201\) −0.214610 5.83618i −0.0151374 0.411653i
\(202\) 0.0665368 0.130586i 0.00468151 0.00918799i
\(203\) −25.1881 3.98940i −1.76786 0.280001i
\(204\) 5.51234 + 7.02865i 0.385941 + 0.492104i
\(205\) 6.06980 2.89033i 0.423933 0.201869i
\(206\) −9.18325 + 12.6397i −0.639827 + 0.880647i
\(207\) 12.4652 14.4471i 0.866391 1.00415i
\(208\) 4.97094 0.787319i 0.344673 0.0545908i
\(209\) 1.02663 3.15965i 0.0710137 0.218558i
\(210\) 11.5271 + 8.20128i 0.795442 + 0.565942i
\(211\) 3.95464 + 12.1711i 0.272249 + 0.837896i 0.989934 + 0.141529i \(0.0452017\pi\)
−0.717685 + 0.696368i \(0.754798\pi\)
\(212\) 0.469093 + 0.920647i 0.0322175 + 0.0632303i
\(213\) 3.12604 + 5.61502i 0.214193 + 0.384735i
\(214\) 2.38255 0.774136i 0.162868 0.0529189i
\(215\) −0.275416 + 10.2640i −0.0187832 + 0.699998i
\(216\) 1.05213 5.08852i 0.0715883 0.346230i
\(217\) −4.20467 26.5473i −0.285432 1.80215i
\(218\) −5.69477 5.69477i −0.385698 0.385698i
\(219\) −0.857448 0.576052i −0.0579410 0.0389260i
\(220\) 3.39704 0.444993i 0.229028 0.0300014i
\(221\) −15.2561 20.9983i −1.02624 1.41250i
\(222\) 13.2020 + 1.59623i 0.886063 + 0.107132i
\(223\) 25.8694 + 13.1811i 1.73234 + 0.882673i 0.972611 + 0.232437i \(0.0746699\pi\)
0.759732 + 0.650236i \(0.225330\pi\)
\(224\) 3.65271 0.244057
\(225\) 4.35107 14.3551i 0.290071 0.957005i
\(226\) 10.8492 0.721675
\(227\) 3.52093 + 1.79400i 0.233692 + 0.119072i 0.566916 0.823776i \(-0.308136\pi\)
−0.333224 + 0.942848i \(0.608136\pi\)
\(228\) −3.72848 0.450803i −0.246925 0.0298552i
\(229\) 7.75981 + 10.6805i 0.512783 + 0.705785i 0.984386 0.176026i \(-0.0563243\pi\)
−0.471603 + 0.881811i \(0.656324\pi\)
\(230\) 2.60088 13.9826i 0.171497 0.921987i
\(231\) −8.04637 5.40573i −0.529413 0.355671i
\(232\) 4.93680 + 4.93680i 0.324117 + 0.324117i
\(233\) −1.37119 8.65736i −0.0898297 0.567163i −0.991017 0.133733i \(-0.957303\pi\)
0.901188 0.433429i \(-0.142697\pi\)
\(234\) −3.59850 + 14.6636i −0.235241 + 0.958591i
\(235\) 3.60908 + 5.25852i 0.235430 + 0.343028i
\(236\) 6.48779 2.10801i 0.422319 0.137220i
\(237\) −1.12118 2.01387i −0.0728285 0.130815i
\(238\) −8.55203 16.7843i −0.554345 1.08796i
\(239\) 5.85405 + 18.0169i 0.378667 + 1.16542i 0.940971 + 0.338486i \(0.109915\pi\)
−0.562305 + 0.826930i \(0.690085\pi\)
\(240\) −1.23333 3.67136i −0.0796111 0.236985i
\(241\) −7.26464 + 22.3583i −0.467957 + 1.44022i 0.387269 + 0.921967i \(0.373418\pi\)
−0.855226 + 0.518256i \(0.826582\pi\)
\(242\) 8.54590 1.35354i 0.549351 0.0870087i
\(243\) 12.8514 + 8.82273i 0.824420 + 0.565978i
\(244\) −3.39328 + 4.67045i −0.217232 + 0.298995i
\(245\) −9.75540 10.2934i −0.623250 0.657620i
\(246\) 3.21363 + 4.09762i 0.204893 + 0.261254i
\(247\) 10.7786 + 1.70716i 0.685824 + 0.108624i
\(248\) −3.34066 + 6.55641i −0.212132 + 0.416332i
\(249\) 0.176156 + 4.79044i 0.0111634 + 0.303582i
\(250\) −2.58890 10.8765i −0.163736 0.687888i
\(251\) 13.6488i 0.861504i 0.902470 + 0.430752i \(0.141752\pi\)
−0.902470 + 0.430752i \(0.858248\pi\)
\(252\) −4.24434 + 10.1028i −0.267369 + 0.636414i
\(253\) −1.52452 + 9.62542i −0.0958455 + 0.605145i
\(254\) 14.9488 10.8609i 0.937971 0.681476i
\(255\) −13.9824 + 14.2629i −0.875614 + 0.893177i
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) 14.2769 14.2769i 0.890571 0.890571i −0.104006 0.994577i \(-0.533166\pi\)
0.994577 + 0.104006i \(0.0331660\pi\)
\(258\) −7.80437 + 1.53200i −0.485879 + 0.0953780i
\(259\) −26.6718 8.66620i −1.65731 0.538492i
\(260\) 3.18930 + 10.7925i 0.197792 + 0.669325i
\(261\) −19.3908 + 7.91793i −1.20026 + 0.490107i
\(262\) −11.8194 + 6.02229i −0.730205 + 0.372058i
\(263\) 14.5181 7.39734i 0.895224 0.456139i 0.0550670 0.998483i \(-0.482463\pi\)
0.840157 + 0.542343i \(0.182463\pi\)
\(264\) 0.912268 + 2.49209i 0.0561462 + 0.153377i
\(265\) −1.90495 + 1.30742i −0.117020 + 0.0803144i
\(266\) 7.53258 + 2.44748i 0.461852 + 0.150065i
\(267\) 2.14787 + 10.9418i 0.131448 + 0.669626i
\(268\) 2.38422 2.38422i 0.145640 0.145640i
\(269\) −8.83824 6.42136i −0.538877 0.391517i 0.284791 0.958590i \(-0.408076\pi\)
−0.823668 + 0.567073i \(0.808076\pi\)
\(270\) 11.5875 + 0.854838i 0.705190 + 0.0520238i
\(271\) −2.71650 + 1.97365i −0.165016 + 0.119891i −0.667228 0.744853i \(-0.732519\pi\)
0.502213 + 0.864744i \(0.332519\pi\)
\(272\) −0.806752 + 5.09363i −0.0489165 + 0.308847i
\(273\) 13.4034 28.8830i 0.811212 1.74808i
\(274\) 9.76085i 0.589674i
\(275\) 1.97321 + 7.40242i 0.118989 + 0.446383i
\(276\) 11.0092 0.404835i 0.662678 0.0243682i
\(277\) 12.7426 25.0088i 0.765631 1.50263i −0.0961574 0.995366i \(-0.530655\pi\)
0.861788 0.507269i \(-0.169345\pi\)
\(278\) 4.79774 + 0.759888i 0.287749 + 0.0455750i
\(279\) −14.2522 16.8581i −0.853255 1.00927i
\(280\) 1.06086 + 8.09851i 0.0633985 + 0.483979i
\(281\) −0.417572 + 0.574739i −0.0249103 + 0.0342861i −0.821290 0.570510i \(-0.806745\pi\)
0.796380 + 0.604796i \(0.206745\pi\)
\(282\) −3.36258 + 3.61933i −0.200239 + 0.215528i
\(283\) 9.10320 1.44181i 0.541129 0.0857064i 0.120114 0.992760i \(-0.461674\pi\)
0.421015 + 0.907054i \(0.361674\pi\)
\(284\) −1.14657 + 3.52877i −0.0680363 + 0.209394i
\(285\) −0.0833801 8.39744i −0.00493901 0.497422i
\(286\) −2.38293 7.33390i −0.140905 0.433662i
\(287\) −4.98573 9.78504i −0.294298 0.577593i
\(288\) 2.56577 1.55461i 0.151189 0.0916065i
\(289\) 9.12626 2.96530i 0.536839 0.174430i
\(290\) −9.51171 + 12.3793i −0.558547 + 0.726938i
\(291\) 22.7955 + 6.49090i 1.33629 + 0.380503i
\(292\) −0.0932964 0.589050i −0.00545976 0.0344716i
\(293\) −1.97743 1.97743i −0.115523 0.115523i 0.646982 0.762505i \(-0.276031\pi\)
−0.762505 + 0.646982i \(0.776031\pi\)
\(294\) 6.12595 9.11842i 0.357273 0.531797i
\(295\) 6.55798 + 13.7720i 0.381820 + 0.801837i
\(296\) 4.51285 + 6.21140i 0.262304 + 0.361030i
\(297\) −7.95272 0.372559i −0.461464 0.0216180i
\(298\) 5.84222 + 2.97676i 0.338431 + 0.172439i
\(299\) −32.0116 −1.85128
\(300\) 7.78168 3.80073i 0.449275 0.219435i
\(301\) 16.7727 0.966760
\(302\) −0.949976 0.484037i −0.0546650 0.0278532i
\(303\) −0.0304705 + 0.252014i −0.00175048 + 0.0144778i
\(304\) −1.27450 1.75421i −0.0730979 0.100611i
\(305\) −11.3405 6.16688i −0.649354 0.353115i
\(306\) −13.1507 8.15000i −0.751775 0.465904i
\(307\) −11.7511 11.7511i −0.670673 0.670673i 0.287198 0.957871i \(-0.407276\pi\)
−0.957871 + 0.287198i \(0.907276\pi\)
\(308\) −0.875502 5.52770i −0.0498864 0.314970i
\(309\) 7.41082 26.0261i 0.421587 1.48057i
\(310\) −15.5066 5.50247i −0.880717 0.312520i
\(311\) 3.30339 1.07334i 0.187318 0.0608633i −0.213856 0.976865i \(-0.568602\pi\)
0.401174 + 0.916002i \(0.368602\pi\)
\(312\) −7.61644 + 4.24029i −0.431196 + 0.240059i
\(313\) 3.85400 + 7.56390i 0.217841 + 0.427537i 0.973904 0.226962i \(-0.0728795\pi\)
−0.756063 + 0.654499i \(0.772879\pi\)
\(314\) −6.70127 20.6244i −0.378175 1.16390i
\(315\) −23.6318 6.47609i −1.33150 0.364886i
\(316\) 0.411226 1.26562i 0.0231333 0.0711969i
\(317\) −9.73906 + 1.54252i −0.547000 + 0.0866363i −0.423817 0.905748i \(-0.639310\pi\)
−0.123183 + 0.992384i \(0.539310\pi\)
\(318\) −1.31114 1.21813i −0.0735249 0.0683093i
\(319\) 6.28766 8.65423i 0.352042 0.484544i
\(320\) 1.06823 1.96440i 0.0597159 0.109814i
\(321\) −3.41428 + 2.67771i −0.190567 + 0.149455i
\(322\) −22.9469 3.63443i −1.27878 0.202539i
\(323\) −5.07665 + 9.96348i −0.282472 + 0.554383i
\(324\) 1.31844 + 8.90290i 0.0732469 + 0.494606i
\(325\) −23.0021 + 10.2056i −1.27593 + 0.566103i
\(326\) 10.2817i 0.569452i
\(327\) 12.6532 + 5.87183i 0.699724 + 0.324713i
\(328\) −0.470327 + 2.96952i −0.0259694 + 0.163965i
\(329\) 8.42877 6.12386i 0.464693 0.337619i
\(330\) −5.26032 + 2.74639i −0.289571 + 0.151184i
\(331\) −13.3891 9.72777i −0.735933 0.534687i 0.155502 0.987836i \(-0.450301\pi\)
−0.891435 + 0.453149i \(0.850301\pi\)
\(332\) −1.95701 + 1.95701i −0.107405 + 0.107405i
\(333\) −22.4235 + 5.26429i −1.22880 + 0.288481i
\(334\) 22.9173 + 7.44629i 1.25398 + 0.407443i
\(335\) 5.97858 + 4.59367i 0.326644 + 0.250979i
\(336\) −5.94112 + 2.17484i −0.324114 + 0.118647i
\(337\) −23.3624 + 11.9038i −1.27263 + 0.648439i −0.954104 0.299475i \(-0.903189\pi\)
−0.318528 + 0.947913i \(0.603189\pi\)
\(338\) 10.9862 5.59775i 0.597570 0.304477i
\(339\) −17.6461 + 6.45964i −0.958406 + 0.350840i
\(340\) −11.5275 0.309321i −0.625168 0.0167753i
\(341\) 10.7226 + 3.48400i 0.580663 + 0.188669i
\(342\) 6.33277 1.48673i 0.342437 0.0803929i
\(343\) 1.69884 1.69884i 0.0917290 0.0917290i
\(344\) −3.71488 2.69902i −0.200293 0.145521i
\(345\) 4.09499 + 24.2913i 0.220467 + 1.30780i
\(346\) 19.4258 14.1137i 1.04434 0.758756i
\(347\) −1.86187 + 11.7554i −0.0999502 + 0.631061i 0.885957 + 0.463768i \(0.153503\pi\)
−0.985907 + 0.167293i \(0.946497\pi\)
\(348\) −10.9691 5.09030i −0.588005 0.272869i
\(349\) 25.4721i 1.36349i −0.731591 0.681744i \(-0.761222\pi\)
0.731591 0.681744i \(-0.238778\pi\)
\(350\) −17.6473 + 4.70412i −0.943289 + 0.251446i
\(351\) −2.87784 25.9929i −0.153608 1.38740i
\(352\) −0.695596 + 1.36518i −0.0370754 + 0.0727645i
\(353\) 8.69825 + 1.37767i 0.462961 + 0.0733258i 0.383558 0.923517i \(-0.374699\pi\)
0.0794030 + 0.996843i \(0.474699\pi\)
\(354\) −9.29725 + 7.29153i −0.494143 + 0.387541i
\(355\) −8.15673 1.51722i −0.432914 0.0805256i
\(356\) −3.78405 + 5.20829i −0.200554 + 0.276039i
\(357\) 23.9033 + 22.2077i 1.26510 + 1.17536i
\(358\) −4.45314 + 0.705308i −0.235356 + 0.0372767i
\(359\) 2.11987 6.52428i 0.111882 0.344338i −0.879402 0.476080i \(-0.842057\pi\)
0.991284 + 0.131742i \(0.0420571\pi\)
\(360\) 4.19196 + 5.23713i 0.220935 + 0.276021i
\(361\) 4.41845 + 13.5986i 0.232550 + 0.715715i
\(362\) 6.42000 + 12.6000i 0.337428 + 0.662239i
\(363\) −13.0940 + 7.28979i −0.687255 + 0.382615i
\(364\) 17.4839 5.68088i 0.916408 0.297759i
\(365\) 1.27890 0.377928i 0.0669408 0.0197817i
\(366\) 2.73835 9.61684i 0.143136 0.502680i
\(367\) −2.31983 14.6468i −0.121094 0.764559i −0.971256 0.238038i \(-0.923496\pi\)
0.850162 0.526522i \(-0.176504\pi\)
\(368\) 4.49754 + 4.49754i 0.234450 + 0.234450i
\(369\) −7.66670 4.75135i −0.399112 0.247345i
\(370\) −12.4608 + 11.8095i −0.647806 + 0.613949i
\(371\) 2.21843 + 3.05341i 0.115175 + 0.158525i
\(372\) 1.52985 12.6530i 0.0793191 0.656029i
\(373\) −15.4140 7.85384i −0.798108 0.406656i 0.00685847 0.999976i \(-0.497817\pi\)
−0.804967 + 0.593320i \(0.797817\pi\)
\(374\) 7.90165 0.408584
\(375\) 10.6867 + 16.1491i 0.551861 + 0.833936i
\(376\) −2.85228 −0.147095
\(377\) 31.3083 + 15.9524i 1.61246 + 0.821590i
\(378\) 0.888176 18.9592i 0.0456829 0.975157i
\(379\) −3.34257 4.60065i −0.171696 0.236319i 0.714494 0.699642i \(-0.246657\pi\)
−0.886190 + 0.463323i \(0.846657\pi\)
\(380\) 3.51914 3.33521i 0.180528 0.171093i
\(381\) −17.8475 + 26.5659i −0.914356 + 1.36101i
\(382\) 9.06711 + 9.06711i 0.463914 + 0.463914i
\(383\) −4.74888 29.9833i −0.242657 1.53207i −0.744799 0.667289i \(-0.767455\pi\)
0.502143 0.864785i \(-0.332545\pi\)
\(384\) 1.66583 + 0.474338i 0.0850092 + 0.0242060i
\(385\) 12.0013 3.54652i 0.611645 0.180747i
\(386\) 13.3138 4.32593i 0.677657 0.220184i
\(387\) 11.7816 7.13855i 0.598893 0.362873i
\(388\) 6.21246 + 12.1926i 0.315390 + 0.618987i
\(389\) 0.407506 + 1.25417i 0.0206613 + 0.0635891i 0.960856 0.277050i \(-0.0893567\pi\)
−0.940194 + 0.340639i \(0.889357\pi\)
\(390\) −11.6133 15.6551i −0.588063 0.792727i
\(391\) 10.1363 31.1963i 0.512615 1.57767i
\(392\) 6.26418 0.992148i 0.316389 0.0501110i
\(393\) 15.6385 16.8326i 0.788860 0.849091i
\(394\) 4.00131 5.50734i 0.201583 0.277456i
\(395\) 2.92548 + 0.544164i 0.147197 + 0.0273798i
\(396\) −2.96760 3.51020i −0.149128 0.176394i
\(397\) 10.9634 + 1.73643i 0.550238 + 0.0871491i 0.425362 0.905023i \(-0.360147\pi\)
0.124876 + 0.992172i \(0.460147\pi\)
\(398\) −2.45377 + 4.81580i −0.122997 + 0.241394i
\(399\) −13.7090 + 0.504110i −0.686307 + 0.0252371i
\(400\) 4.66558 + 1.79788i 0.233279 + 0.0898939i
\(401\) 38.4533i 1.92026i 0.279545 + 0.960132i \(0.409816\pi\)
−0.279545 + 0.960132i \(0.590184\pi\)
\(402\) −2.45835 + 5.29751i −0.122612 + 0.264216i
\(403\) −5.79343 + 36.5783i −0.288591 + 1.82209i
\(404\) −0.118569 + 0.0861458i −0.00589905 + 0.00428591i
\(405\) −19.3559 + 5.50884i −0.961805 + 0.273736i
\(406\) 20.6316 + 14.9897i 1.02393 + 0.743928i
\(407\) 8.31815 8.31815i 0.412316 0.412316i
\(408\) −1.72059 8.76512i −0.0851820 0.433938i
\(409\) 10.8096 + 3.51227i 0.534502 + 0.173670i 0.563817 0.825900i \(-0.309332\pi\)
−0.0293144 + 0.999570i \(0.509332\pi\)
\(410\) −6.72041 0.180331i −0.331897 0.00890589i
\(411\) −5.81166 15.8760i −0.286668 0.783105i
\(412\) 13.9206 7.09291i 0.685820 0.349443i
\(413\) 22.2017 11.3123i 1.09247 0.556643i
\(414\) −17.6654 + 7.21341i −0.868209 + 0.354520i
\(415\) −4.90732 3.77057i −0.240891 0.185090i
\(416\) −4.78657 1.55525i −0.234681 0.0762525i
\(417\) −8.25595 + 1.62064i −0.404296 + 0.0793633i
\(418\) −2.34919 + 2.34919i −0.114903 + 0.114903i
\(419\) 4.06691 + 2.95479i 0.198682 + 0.144351i 0.682678 0.730719i \(-0.260815\pi\)
−0.483996 + 0.875070i \(0.660815\pi\)
\(420\) −6.54738 12.5406i −0.319479 0.611917i
\(421\) −7.36850 + 5.35353i −0.359119 + 0.260915i −0.752684 0.658382i \(-0.771241\pi\)
0.393566 + 0.919296i \(0.371241\pi\)
\(422\) 2.00197 12.6399i 0.0974544 0.615303i
\(423\) 3.31427 7.88892i 0.161145 0.383573i
\(424\) 1.03327i 0.0501799i
\(425\) −2.66215 25.6478i −0.129133 1.24410i
\(426\) −0.236159 6.42221i −0.0114420 0.311157i
\(427\) −9.57331 + 18.7887i −0.463285 + 0.909248i
\(428\) −2.47432 0.391893i −0.119601 0.0189429i
\(429\) 8.24246 + 10.5098i 0.397950 + 0.507416i
\(430\) 4.90515 9.02024i 0.236547 0.434995i
\(431\) −14.5495 + 20.0257i −0.700824 + 0.964602i 0.299122 + 0.954215i \(0.403306\pi\)
−0.999946 + 0.0103868i \(0.996694\pi\)
\(432\) −3.24759 + 4.05625i −0.156250 + 0.195156i
\(433\) 21.9052 3.46945i 1.05270 0.166731i 0.393979 0.919119i \(-0.371098\pi\)
0.658720 + 0.752388i \(0.271098\pi\)
\(434\) −8.30582 + 25.5627i −0.398692 + 1.22705i
\(435\) 8.10006 25.7982i 0.388368 1.23693i
\(436\) 2.48870 + 7.65945i 0.119187 + 0.366821i
\(437\) 6.26122 + 12.2883i 0.299515 + 0.587831i
\(438\) 0.502470 + 0.902539i 0.0240089 + 0.0431250i
\(439\) 1.62057 0.526555i 0.0773456 0.0251311i −0.270089 0.962835i \(-0.587053\pi\)
0.347434 + 0.937704i \(0.387053\pi\)
\(440\) −3.22881 1.14573i −0.153927 0.0546206i
\(441\) −4.53469 + 18.4785i −0.215937 + 0.879929i
\(442\) 4.06030 + 25.6357i 0.193129 + 1.21937i
\(443\) 0.713085 + 0.713085i 0.0338797 + 0.0338797i 0.723844 0.689964i \(-0.242374\pi\)
−0.689964 + 0.723844i \(0.742374\pi\)
\(444\) −11.0384 7.41585i −0.523861 0.351941i
\(445\) −12.6465 6.87706i −0.599499 0.326004i
\(446\) −17.0657 23.4889i −0.808085 1.11223i
\(447\) −11.2747 1.36321i −0.533277 0.0644774i
\(448\) −3.25458 1.65829i −0.153765 0.0783470i
\(449\) −12.4310 −0.586657 −0.293329 0.956012i \(-0.594763\pi\)
−0.293329 + 0.956012i \(0.594763\pi\)
\(450\) −10.3939 + 10.8151i −0.489973 + 0.509830i
\(451\) 4.60656 0.216915
\(452\) −9.66667 4.92541i −0.454682 0.231672i
\(453\) 1.83333 + 0.221664i 0.0861374 + 0.0104147i
\(454\) −2.32271 3.19694i −0.109010 0.150040i
\(455\) 17.6731 + 37.1142i 0.828528 + 1.73994i
\(456\) 3.11744 + 2.09436i 0.145988 + 0.0980776i
\(457\) −25.4659 25.4659i −1.19125 1.19125i −0.976718 0.214529i \(-0.931178\pi\)
−0.214529 0.976718i \(-0.568822\pi\)
\(458\) −2.06521 13.0392i −0.0965011 0.609284i
\(459\) 26.2421 + 5.42596i 1.22488 + 0.253262i
\(460\) −8.66538 + 11.2778i −0.404025 + 0.525832i
\(461\) 34.8009 11.3075i 1.62084 0.526642i 0.648699 0.761045i \(-0.275314\pi\)
0.972140 + 0.234403i \(0.0753135\pi\)
\(462\) 4.71522 + 8.46951i 0.219372 + 0.394037i
\(463\) 3.00399 + 5.89566i 0.139607 + 0.273994i 0.950215 0.311595i \(-0.100863\pi\)
−0.810608 + 0.585589i \(0.800863\pi\)
\(464\) −2.15746 6.63998i −0.100158 0.308253i
\(465\) 28.4977 0.282960i 1.32155 0.0131219i
\(466\) −2.70862 + 8.33627i −0.125474 + 0.386170i
\(467\) 37.7026 5.97151i 1.74467 0.276328i 0.798970 0.601371i \(-0.205379\pi\)
0.945699 + 0.325043i \(0.105379\pi\)
\(468\) 9.86343 11.4317i 0.455937 0.528430i
\(469\) 7.23928 9.96401i 0.334279 0.460095i
\(470\) −0.828391 6.32386i −0.0382108 0.291698i
\(471\) 23.1795 + 29.5555i 1.06805 + 1.36185i
\(472\) −6.73768 1.06714i −0.310127 0.0491192i
\(473\) −3.19407 + 6.26871i −0.146863 + 0.288236i
\(474\) 0.0847006 + 2.30338i 0.00389043 + 0.105798i
\(475\) 8.41666 + 6.83373i 0.386183 + 0.313553i
\(476\) 18.8375i 0.863413i
\(477\) 2.85784 + 1.20063i 0.130852 + 0.0549730i
\(478\) 2.96351 18.7109i 0.135548 0.855815i
\(479\) 9.41843 6.84289i 0.430339 0.312660i −0.351445 0.936208i \(-0.614310\pi\)
0.781785 + 0.623549i \(0.214310\pi\)
\(480\) −0.567858 + 3.83113i −0.0259190 + 0.174866i
\(481\) 31.2614 + 22.7127i 1.42540 + 1.03561i
\(482\) 16.6233 16.6233i 0.757170 0.757170i
\(483\) 39.4870 7.75131i 1.79672 0.352697i
\(484\) −8.22894 2.67375i −0.374043 0.121534i
\(485\) −25.2283 + 17.3149i −1.14556 + 0.786230i
\(486\) −7.44528 13.6955i −0.337725 0.621242i
\(487\) 31.6495 16.1262i 1.43418 0.730750i 0.447629 0.894219i \(-0.352269\pi\)
0.986548 + 0.163470i \(0.0522686\pi\)
\(488\) 5.14377 2.62088i 0.232848 0.118642i
\(489\) −6.12178 16.7232i −0.276837 0.756249i
\(490\) 4.01903 + 13.6003i 0.181561 + 0.614400i
\(491\) 3.18688 + 1.03548i 0.143822 + 0.0467305i 0.380043 0.924969i \(-0.375909\pi\)
−0.236222 + 0.971699i \(0.575909\pi\)
\(492\) −1.00308 5.10996i −0.0452226 0.230375i
\(493\) −25.4597 + 25.4597i −1.14665 + 1.14665i
\(494\) −8.82874 6.41446i −0.397224 0.288600i
\(495\) 6.92068 7.59902i 0.311062 0.341551i
\(496\) 5.95310 4.32518i 0.267302 0.194206i
\(497\) −2.12014 + 13.3860i −0.0951012 + 0.600446i
\(498\) 2.01786 4.34829i 0.0904225 0.194852i
\(499\) 2.56390i 0.114776i 0.998352 + 0.0573880i \(0.0182772\pi\)
−0.998352 + 0.0573880i \(0.981723\pi\)
\(500\) −2.63109 + 10.8663i −0.117666 + 0.485958i
\(501\) −41.7085 + 1.53372i −1.86340 + 0.0685214i
\(502\) 6.19642 12.1612i 0.276560 0.542779i
\(503\) −14.3652 2.27523i −0.640515 0.101448i −0.172275 0.985049i \(-0.555112\pi\)
−0.468240 + 0.883601i \(0.655112\pi\)
\(504\) 8.36830 7.07474i 0.372754 0.315134i
\(505\) −0.225432 0.237864i −0.0100316 0.0105848i
\(506\) 5.72820 7.88419i 0.254650 0.350495i
\(507\) −14.5361 + 15.6460i −0.645570 + 0.694861i
\(508\) −18.2502 + 2.89055i −0.809723 + 0.128248i
\(509\) 2.88278 8.87228i 0.127777 0.393257i −0.866620 0.498969i \(-0.833712\pi\)
0.994397 + 0.105712i \(0.0337122\pi\)
\(510\) 18.9337 6.36044i 0.838397 0.281645i
\(511\) −0.673177 2.07183i −0.0297796 0.0916522i
\(512\) 0.453990 + 0.891007i 0.0200637 + 0.0393773i
\(513\) −9.41504 + 6.18872i −0.415684 + 0.273239i
\(514\) −19.2024 + 6.23925i −0.846983 + 0.275202i
\(515\) 19.7689 + 28.8038i 0.871120 + 1.26925i
\(516\) 7.64925 + 2.17809i 0.336740 + 0.0958850i
\(517\) 0.683651 + 4.31640i 0.0300669 + 0.189835i
\(518\) 19.8304 + 19.8304i 0.871298 + 0.871298i
\(519\) −23.1927 + 34.5221i −1.01804 + 1.51535i
\(520\) 2.05802 11.0641i 0.0902501 0.485194i
\(521\) −19.0337 26.1976i −0.833881 1.14774i −0.987188 0.159560i \(-0.948993\pi\)
0.153308 0.988179i \(-0.451007\pi\)
\(522\) 20.8720 + 1.74830i 0.913541 + 0.0765212i
\(523\) −19.7913 10.0842i −0.865413 0.440950i −0.0358458 0.999357i \(-0.511413\pi\)
−0.829567 + 0.558408i \(0.811413\pi\)
\(524\) 13.2652 0.579494
\(525\) 25.9025 18.1585i 1.13048 0.792504i
\(526\) −16.2940 −0.710454
\(527\) −33.8122 17.2282i −1.47288 0.750471i
\(528\) 0.318547 2.63463i 0.0138630 0.114657i
\(529\) −10.2602 14.1219i −0.446095 0.613997i
\(530\) 2.29088 0.300093i 0.0995096 0.0130352i
\(531\) 10.7805 17.3953i 0.467835 0.754891i
\(532\) −5.60044 5.60044i −0.242810 0.242810i
\(533\) 2.36711 + 14.9453i 0.102531 + 0.647354i
\(534\) 3.05370 10.7243i 0.132146 0.464087i
\(535\) 0.150258 5.59969i 0.00649622 0.242096i
\(536\) −3.20677 + 1.04194i −0.138511 + 0.0450051i
\(537\) 6.82307 3.79860i 0.294437 0.163922i
\(538\) 4.95969 + 9.73395i 0.213828 + 0.419660i
\(539\) −3.00287 9.24188i −0.129343 0.398076i
\(540\) −9.93642 6.02226i −0.427595 0.259157i
\(541\) −0.547811 + 1.68599i −0.0235522 + 0.0724863i −0.962142 0.272549i \(-0.912133\pi\)
0.938590 + 0.345036i \(0.112133\pi\)
\(542\) 3.31644 0.525272i 0.142453 0.0225624i
\(543\) −17.9442 16.6713i −0.770058 0.715434i
\(544\) 3.03128 4.17220i 0.129965 0.178882i
\(545\) −16.2592 + 7.74232i −0.696466 + 0.331644i
\(546\) −25.0552 + 19.6500i −1.07226 + 0.840941i
\(547\) −12.4044 1.96467i −0.530376 0.0840033i −0.114497 0.993424i \(-0.536526\pi\)
−0.415878 + 0.909420i \(0.636526\pi\)
\(548\) 4.43133 8.69698i 0.189297 0.371517i
\(549\) 1.27200 + 17.2722i 0.0542875 + 0.737159i
\(550\) 1.60249 7.49143i 0.0683302 0.319436i
\(551\) 15.1385i 0.644922i
\(552\) −9.99308 4.63737i −0.425334 0.197380i
\(553\) 0.760406 4.80101i 0.0323357 0.204160i
\(554\) −22.7075 + 16.4980i −0.964751 + 0.700933i
\(555\) 13.2360 26.6274i 0.561836 1.13027i
\(556\) −3.92984 2.85519i −0.166662 0.121087i
\(557\) −19.4225 + 19.4225i −0.822959 + 0.822959i −0.986531 0.163573i \(-0.947698\pi\)
0.163573 + 0.986531i \(0.447698\pi\)
\(558\) 5.04537 + 21.4910i 0.213588 + 0.909786i
\(559\) −21.9792 7.14148i −0.929621 0.302052i
\(560\) 2.73141 7.69745i 0.115423 0.325276i
\(561\) −12.8520 + 4.70468i −0.542612 + 0.198632i
\(562\) 0.632986 0.322522i 0.0267009 0.0136048i
\(563\) 22.4447 11.4362i 0.945933 0.481977i 0.0882171 0.996101i \(-0.471883\pi\)
0.857716 + 0.514125i \(0.171883\pi\)
\(564\) 4.63922 1.69826i 0.195347 0.0715097i
\(565\) 8.11276 22.8627i 0.341307 0.961842i
\(566\) −8.76558 2.84811i −0.368445 0.119715i
\(567\) 9.84380 + 31.3659i 0.413401 + 1.31725i
\(568\) 2.62363 2.62363i 0.110085 0.110085i
\(569\) 24.7435 + 17.9772i 1.03730 + 0.753643i 0.969757 0.244073i \(-0.0784837\pi\)
0.0675439 + 0.997716i \(0.478484\pi\)
\(570\) −3.73807 + 7.52003i −0.156570 + 0.314979i
\(571\) −8.91080 + 6.47408i −0.372905 + 0.270932i −0.758415 0.651772i \(-0.774026\pi\)
0.385509 + 0.922704i \(0.374026\pi\)
\(572\) −1.20632 + 7.61638i −0.0504386 + 0.318457i
\(573\) −20.1462 9.34903i −0.841621 0.390561i
\(574\) 10.9820i 0.458380i
\(575\) −27.5211 15.9368i −1.14771 0.664611i
\(576\) −2.99190 + 0.220336i −0.124662 + 0.00918066i
\(577\) −1.76187 + 3.45787i −0.0733478 + 0.143953i −0.924768 0.380530i \(-0.875741\pi\)
0.851421 + 0.524483i \(0.175741\pi\)
\(578\) −9.47778 1.50113i −0.394224 0.0624389i
\(579\) −19.0793 + 14.9632i −0.792907 + 0.621851i
\(580\) 14.0951 6.71182i 0.585266 0.278693i
\(581\) −5.94213 + 8.17864i −0.246521 + 0.339307i
\(582\) −17.3641 16.1324i −0.719765 0.668708i
\(583\) −1.56366 + 0.247659i −0.0647602 + 0.0102570i
\(584\) −0.184296 + 0.567203i −0.00762620 + 0.0234710i
\(585\) 28.2102 + 18.5484i 1.16635 + 0.766880i
\(586\) 0.864170 + 2.65964i 0.0356985 + 0.109869i
\(587\) −20.1279 39.5031i −0.830766 1.63047i −0.774945 0.632028i \(-0.782223\pi\)
−0.0558204 0.998441i \(-0.517777\pi\)
\(588\) −9.59794 + 5.34345i −0.395812 + 0.220360i
\(589\) 15.1745 4.93049i 0.625254 0.203157i
\(590\) 0.409159 15.2482i 0.0168448 0.627759i
\(591\) −3.22903 + 11.3401i −0.132825 + 0.466468i
\(592\) −1.20106 7.58319i −0.0493632 0.311667i
\(593\) 11.0677 + 11.0677i 0.454495 + 0.454495i 0.896843 0.442348i \(-0.145855\pi\)
−0.442348 + 0.896843i \(0.645855\pi\)
\(594\) 6.91679 + 3.94241i 0.283799 + 0.161759i
\(595\) −41.7650 + 5.47099i −1.71220 + 0.224289i
\(596\) −3.85404 5.30463i −0.157868 0.217286i
\(597\) 1.12370 9.29388i 0.0459902 0.380373i
\(598\) 28.5226 + 14.5330i 1.16638 + 0.594298i
\(599\) 39.0036 1.59364 0.796822 0.604215i \(-0.206513\pi\)
0.796822 + 0.604215i \(0.206513\pi\)
\(600\) −8.65902 0.146333i −0.353503 0.00597404i
\(601\) −25.7471 −1.05025 −0.525123 0.851027i \(-0.675981\pi\)
−0.525123 + 0.851027i \(0.675981\pi\)
\(602\) −14.9446 7.61463i −0.609094 0.310349i
\(603\) 0.844342 10.0801i 0.0343843 0.410493i
\(604\) 0.626686 + 0.862560i 0.0254995 + 0.0350971i
\(605\) 3.53809 19.0211i 0.143844 0.773319i
\(606\) 0.141561 0.210713i 0.00575054 0.00855962i
\(607\) −14.3533 14.3533i −0.582583 0.582583i 0.353030 0.935612i \(-0.385152\pi\)
−0.935612 + 0.353030i \(0.885152\pi\)
\(608\) 0.339200 + 2.14162i 0.0137564 + 0.0868542i
\(609\) −42.4822 12.0966i −1.72147 0.490179i
\(610\) 7.30474 + 10.6432i 0.295760 + 0.430931i
\(611\) −13.6526 + 4.43601i −0.552327 + 0.179462i
\(612\) 8.01733 + 13.2320i 0.324082 + 0.534872i
\(613\) −12.7810 25.0841i −0.516219 1.01314i −0.991104 0.133089i \(-0.957510\pi\)
0.474885 0.880048i \(-0.342490\pi\)
\(614\) 5.13543 + 15.8052i 0.207249 + 0.637848i
\(615\) 11.0381 3.70806i 0.445099 0.149523i
\(616\) −1.72945 + 5.32269i −0.0696814 + 0.214457i
\(617\) −22.8131 + 3.61324i −0.918421 + 0.145464i −0.597709 0.801713i \(-0.703922\pi\)
−0.320712 + 0.947177i \(0.603922\pi\)
\(618\) −18.4187 + 19.8250i −0.740909 + 0.797479i
\(619\) 5.12654 7.05608i 0.206053 0.283608i −0.693466 0.720489i \(-0.743917\pi\)
0.899519 + 0.436882i \(0.143917\pi\)
\(620\) 11.3184 + 11.9426i 0.454559 + 0.479626i
\(621\) 24.4379 22.2507i 0.980658 0.892889i
\(622\) −3.43062 0.543357i −0.137555 0.0217866i
\(623\) −10.6758 + 20.9524i −0.427716 + 0.839440i
\(624\) 8.71135 0.320336i 0.348733 0.0128237i
\(625\) −24.8562 2.67754i −0.994248 0.107102i
\(626\) 8.48916i 0.339295i
\(627\) 2.42223 5.21967i 0.0967345 0.208453i
\(628\) −3.39240 + 21.4188i −0.135372 + 0.854702i
\(629\) −32.0330 + 23.2733i −1.27724 + 0.927967i
\(630\) 18.1160 + 16.4988i 0.721759 + 0.657330i
\(631\) 20.4095 + 14.8283i 0.812488 + 0.590307i 0.914551 0.404471i \(-0.132544\pi\)
−0.102063 + 0.994778i \(0.532544\pi\)
\(632\) −0.940986 + 0.940986i −0.0374304 + 0.0374304i
\(633\) 4.26968 + 21.7508i 0.169705 + 0.864517i
\(634\) 9.37785 + 3.04705i 0.372442 + 0.121014i
\(635\) −11.7092 39.6236i −0.464664 1.57241i
\(636\) 0.615212 + 1.68061i 0.0243947 + 0.0666403i
\(637\) 28.4409 14.4914i 1.12687 0.574169i
\(638\) −9.53128 + 4.85643i −0.377347 + 0.192268i
\(639\) 4.20793 + 10.3051i 0.166463 + 0.407663i
\(640\) −1.84362 + 1.26533i −0.0728755 + 0.0500166i
\(641\) −30.1335 9.79096i −1.19020 0.386720i −0.354054 0.935225i \(-0.615197\pi\)
−0.836147 + 0.548505i \(0.815197\pi\)
\(642\) 4.25780 0.835807i 0.168042 0.0329867i
\(643\) 11.3185 11.3185i 0.446357 0.446357i −0.447785 0.894142i \(-0.647787\pi\)
0.894142 + 0.447785i \(0.147787\pi\)
\(644\) 18.7959 + 13.6560i 0.740660 + 0.538121i
\(645\) −2.60752 + 17.5919i −0.102671 + 0.692682i
\(646\) 9.04665 6.57278i 0.355936 0.258602i
\(647\) 4.88293 30.8296i 0.191968 1.21204i −0.683933 0.729545i \(-0.739732\pi\)
0.875901 0.482491i \(-0.160268\pi\)
\(648\) 2.86709 8.53111i 0.112630 0.335134i
\(649\) 10.4520i 0.410278i
\(650\) 25.1283 + 1.34952i 0.985613 + 0.0529325i
\(651\) −1.71075 46.5229i −0.0670498 1.82338i
\(652\) 4.66780 9.16108i 0.182805 0.358775i
\(653\) −1.59686 0.252918i −0.0624900 0.00989744i 0.125111 0.992143i \(-0.460071\pi\)
−0.187601 + 0.982245i \(0.560071\pi\)
\(654\) −8.60834 10.9763i −0.336613 0.429207i
\(655\) 3.85264 + 29.4107i 0.150535 + 1.14917i
\(656\) 1.76720 2.43234i 0.0689976 0.0949670i
\(657\) −1.35464 1.16880i −0.0528496 0.0455994i
\(658\) −10.2903 + 1.62982i −0.401156 + 0.0635369i
\(659\) 1.49604 4.60434i 0.0582774 0.179360i −0.917680 0.397320i \(-0.869940\pi\)
0.975958 + 0.217960i \(0.0699403\pi\)
\(660\) 5.93382 0.0589182i 0.230974 0.00229339i
\(661\) −14.5577 44.8040i −0.566229 1.74267i −0.664271 0.747492i \(-0.731258\pi\)
0.0980414 0.995182i \(-0.468742\pi\)
\(662\) 7.51349 + 14.7460i 0.292020 + 0.573121i
\(663\) −21.8677 39.2789i −0.849272 1.52547i
\(664\) 2.63218 0.855246i 0.102148 0.0331900i
\(665\) 10.7903 14.0434i 0.418432 0.544581i
\(666\) 22.3694 + 5.48953i 0.866797 + 0.212715i
\(667\) 6.94676 + 43.8601i 0.268980 + 1.69827i
\(668\) −17.0389 17.0389i −0.659256 0.659256i
\(669\) 41.7427 + 28.0437i 1.61387 + 1.08423i
\(670\) −3.24147 6.80721i −0.125229 0.262985i
\(671\) −5.19911 7.15597i −0.200710 0.276253i
\(672\) 6.28093 + 0.759414i 0.242292 + 0.0292950i
\(673\) 22.8312 + 11.6331i 0.880077 + 0.448422i 0.834800 0.550553i \(-0.185583\pi\)
0.0452767 + 0.998974i \(0.485583\pi\)
\(674\) 26.2203 1.00997
\(675\) 10.4663 23.7793i 0.402847 0.915267i
\(676\) −12.3301 −0.474234
\(677\) 16.4540 + 8.38373i 0.632379 + 0.322213i 0.740633 0.671910i \(-0.234526\pi\)
−0.108254 + 0.994123i \(0.534526\pi\)
\(678\) 18.6554 + 2.25559i 0.716457 + 0.0866254i
\(679\) 29.3799 + 40.4379i 1.12750 + 1.55187i
\(680\) 10.1307 + 5.50900i 0.388494 + 0.211260i
\(681\) 5.68136 + 3.81686i 0.217710 + 0.146262i
\(682\) −7.97224 7.97224i −0.305273 0.305273i
\(683\) −2.58115 16.2967i −0.0987650 0.623578i −0.986568 0.163353i \(-0.947769\pi\)
0.887803 0.460224i \(-0.152231\pi\)
\(684\) −6.31750 1.55034i −0.241556 0.0592786i
\(685\) 20.5693 + 7.29895i 0.785912 + 0.278878i
\(686\) −2.28494 + 0.742422i −0.0872394 + 0.0283458i
\(687\) 11.1227 + 19.9787i 0.424357 + 0.762234i
\(688\) 2.08465 + 4.09136i 0.0794767 + 0.155982i
\(689\) −1.60699 4.94581i −0.0612214 0.188420i
\(690\) 7.37934 23.5028i 0.280927 0.894735i
\(691\) −10.6221 + 32.6914i −0.404084 + 1.24364i 0.517574 + 0.855638i \(0.326835\pi\)
−0.921658 + 0.388003i \(0.873165\pi\)
\(692\) −23.7160 + 3.75624i −0.901547 + 0.142791i
\(693\) −12.7121 10.9682i −0.482892 0.416646i
\(694\) 6.99576 9.62884i 0.265555 0.365506i
\(695\) 5.18898 9.54218i 0.196829 0.361956i
\(696\) 7.46258 + 9.51535i 0.282868 + 0.360678i
\(697\) −15.3142 2.42553i −0.580067 0.0918736i
\(698\) −11.5641 + 22.6958i −0.437707 + 0.859048i
\(699\) −0.557896 15.1717i −0.0211016 0.573845i
\(700\) 17.8595 + 3.82031i 0.675026 + 0.144394i
\(701\) 14.8859i 0.562232i −0.959674 0.281116i \(-0.909295\pi\)
0.959674 0.281116i \(-0.0907045\pi\)
\(702\) −9.23636 + 24.4663i −0.348604 + 0.923423i
\(703\) 2.60428 16.4428i 0.0982222 0.620150i
\(704\) 1.23956 0.900593i 0.0467177 0.0339424i
\(705\) 5.11264 + 9.79252i 0.192553 + 0.368808i
\(706\) −7.12475 5.17643i −0.268143 0.194818i
\(707\) −0.378543 + 0.378543i −0.0142366 + 0.0142366i
\(708\) 11.5942 2.27594i 0.435736 0.0855351i
\(709\) 38.5502 + 12.5257i 1.44778 + 0.470413i 0.924314 0.381632i \(-0.124638\pi\)
0.523468 + 0.852045i \(0.324638\pi\)
\(710\) 6.57890 + 5.05493i 0.246902 + 0.189708i
\(711\) −1.50921 3.69601i −0.0565998 0.138611i
\(712\) 5.73613 2.92270i 0.214970 0.109533i
\(713\) −41.7019 + 21.2482i −1.56175 + 0.795750i
\(714\) −11.2159 30.6391i −0.419745 1.14664i
\(715\) −17.2368 0.462520i −0.644621 0.0172973i
\(716\) 4.28798 + 1.39325i 0.160249 + 0.0520681i
\(717\) 6.32040 + 32.1976i 0.236040 + 1.20244i
\(718\) −4.85077 + 4.85077i −0.181029 + 0.181029i
\(719\) −17.9319 13.0283i −0.668748 0.485874i 0.200858 0.979620i \(-0.435627\pi\)
−0.869606 + 0.493746i \(0.835627\pi\)
\(720\) −1.35745 6.56942i −0.0505893 0.244828i
\(721\) 46.1690 33.5437i 1.71942 1.24923i
\(722\) 2.23676 14.1224i 0.0832437 0.525580i
\(723\) −17.1401 + 36.9353i −0.637449 + 1.37364i
\(724\) 14.1413i 0.525556i
\(725\) 18.9746 + 29.3013i 0.704699 + 1.08822i
\(726\) 14.9763 0.550713i 0.555823 0.0204389i
\(727\) −8.45889 + 16.6015i −0.313723 + 0.615716i −0.992993 0.118172i \(-0.962296\pi\)
0.679270 + 0.733888i \(0.262296\pi\)
\(728\) −18.1574 2.87585i −0.672957 0.106586i
\(729\) 20.2641 + 17.8428i 0.750523 + 0.660844i
\(730\) −1.31109 0.243873i −0.0485255 0.00902614i
\(731\) 13.9192 19.1581i 0.514819 0.708588i
\(732\) −6.80584 + 7.32548i −0.251551 + 0.270758i
\(733\) 2.14436 0.339633i 0.0792038 0.0125446i −0.116707 0.993166i \(-0.537234\pi\)
0.195911 + 0.980622i \(0.437234\pi\)
\(734\) −4.58254 + 14.1036i −0.169145 + 0.520574i
\(735\) −14.6346 19.7279i −0.539807 0.727676i
\(736\) −1.96550 6.04917i −0.0724491 0.222975i
\(737\) 2.34541 + 4.60312i 0.0863942 + 0.169558i
\(738\) 4.67401 + 7.71409i 0.172053 + 0.283960i
\(739\) 25.4696 8.27559i 0.936916 0.304423i 0.199528 0.979892i \(-0.436059\pi\)
0.737388 + 0.675470i \(0.236059\pi\)
\(740\) 16.4641 4.86529i 0.605231 0.178852i
\(741\) 18.1791 + 5.17642i 0.667827 + 0.190161i
\(742\) −0.590418 3.72775i −0.0216749 0.136850i
\(743\) 30.8466 + 30.8466i 1.13165 + 1.13165i 0.989903 + 0.141749i \(0.0452727\pi\)
0.141749 + 0.989903i \(0.454727\pi\)
\(744\) −7.10746 + 10.5794i −0.260572 + 0.387859i
\(745\) 10.6417 10.0855i 0.389882 0.369505i
\(746\) 10.1684 + 13.9956i 0.372293 + 0.512417i
\(747\) −0.693051 + 8.27393i −0.0253574 + 0.302727i
\(748\) −7.04042 3.58727i −0.257423 0.131164i
\(749\) −9.15060 −0.334356
\(750\) −2.19041 19.2406i −0.0799824 0.702569i
\(751\) 48.1007 1.75522 0.877610 0.479376i \(-0.159137\pi\)
0.877610 + 0.479376i \(0.159137\pi\)
\(752\) 2.54140 + 1.29491i 0.0926753 + 0.0472204i
\(753\) −2.83765 + 23.4695i −0.103410 + 0.855275i
\(754\) −20.6537 28.4274i −0.752163 1.03526i
\(755\) −1.73039 + 1.63996i −0.0629755 + 0.0596842i
\(756\) −9.39868 + 16.4896i −0.341827 + 0.599720i
\(757\) 2.64953 + 2.64953i 0.0962989 + 0.0962989i 0.753615 0.657316i \(-0.228308\pi\)
−0.657316 + 0.753615i \(0.728308\pi\)
\(758\)